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Abstract

Many studies were recently done for investi-
gating the properties of contextual language
models but surprisingly, only a few of them
consider the properties of these models in terms
of semantic similarity. In this article, we first
focus on these properties for English by ex-
ploiting the distributional principle of substitu-
tion as a probing mechanism in the controlled
context of SemCor and WordNet paradigmatic
relations. Then, we propose to adapt the same
method to a more open setting for characteriz-
ing the differences between static and contex-
tual language models.

1 Introduction

The introduction of contextual word embeddings
such as ELMo (Peters et al., 2018) or BERT (Devlin
et al., 2019) is considered as a major breakthrough
in Natural Language Processing, especially for clas-
sification or sequence labeling tasks that can be ad-
dressed by supervised machine learning approaches.
However, this kind of embeddings also represents
a significant change from the viewpoint of distribu-
tional semantics. While previous approaches, includ-
ing static word embeddings such as Skip-gram or
CBOW models (Mikolov et al., 2013), built the dis-
tributional representation of a word by cumulating
the contexts in which it was found, the neural lan-
guage models such as ELMo or BERT produce a
representation for each occurrence of the word.

While this specificity is not a difficulty – and even
more so an advantage – in the context of a super-
vised classification or sequence labeling task, it is a
problem in contexts requiring a distributional repre-
sentation of words at the type level and not only at

the token level. This is the case for the evaluation of
the semantic similarity of words, which is a classi-
cal tool for investigating the semantic properties of
distributional representations through datasets, such
as Simlex-99 (Hill et al., 2015), built for evaluating
the correlation of the similarity computed from these
representations with human judgments.

As illustrated by Rogers et al. (2020), the proper-
ties of contextual word embeddings have been the
focus of many recent studies, especially in the case of
BERT. Surprisingly, only a few of them consider the
semantic properties of these models. Moreover, most
of them are performed at the word type level, which
involves building representations of words from the
representation of their occurrences, which is neither
a straightforward nor a neutral operation.

In this article, we propose to exploit the distribu-
tional principles to investigate the semantic properties
of contextual word embeddings in terms of paradig-
matic semantic relations without the requirement to
build representations at the word type level. More
precisely, we present the following main contribu-
tions:

• we show that the distributional hypothesis
can be applied at the word token level with
contextual word embeddings and that ELMo
and BERT exhibit specific semantic properties
falling more into the scope of semantic similar-
ity than semantic relatedness;

• we show how the transposition of this method
to the word type level can be used to study the
differences between contextual and static word
embeddings.



2 Related work

2.1 Distributional semantic similarity
The work on distributional semantics is closely linked
to the notion of semantic similarity since one major
criterion for judging the quality of a distributional
representation is its ability to account for semantic
similarity, either by its correlation with direct human
judgment (Rubenstein and Goodenough, 1965) or
more indirectly through the extraction of semantic
similarity relations (Grefenstette, 1996; Landauer
and Dumais, 1997). In our work, we focus more
particularly on the second option, which is histori-
cally linked to the notion of distributional thesaurus:
the semantic similarity relations of a word are ex-
tracted by retrieving its nearest neighbors according
to the similarity of their distributional representations
(Grefenstette, 1994; Lin, 1998; Curran and Moens,
2002). This perspective was dominant for count-
based approaches (Weeds et al., 2004; Ferret, 2010;
Padró et al., 2014) but is also represented among
studies on static word embeddings (Schnabel et al.,
2015; Antoniak and Mimno, 2018; Ferret, 2018). In
this article, we extend the use of this paradigm to the
exploration of the semantic properties of contextual
embeddings.

2.2 Semantic Study of Contextual Word
Embeddings

In (Rogers et al., 2020), the semantic studies of
BERT-like models mainly point out work focusing
on semantic roles in sentences, either in the context
of semantic role labeling (Tenney et al., 2019) or
tasks close to lexical substitution (Ettinger, 2020;
Garí Soler et al., 2019). However, the work of Vulić
et al. (2020) clearly presents the largest set of experi-
ments concerning the semantic properties of BERT
and RoBERTa models. It includes experiments con-
cerning their correlation with human judgment in
terms of semantic similarity or their ability to classify
word pairs according to different types of relations
(Chersoni et al., 2016; Xiang et al., 2020). Other
studies also considered contextual embeddings from
a semantic viewpoint but in more specific contexts:
the impact of their training objectives (Mickus et al.,
2020), their level of contextualization (Ethayarajh,
2019), their possible biases (Bommasani et al., 2020),
their ability to represent word senses (Coenen et al.,

2019), to build representations for rare words (Schick
and Schütze, 2020), to account for selectional prefer-
ences (Metheniti et al., 2020) or to interpret logical
metonymy (Rambelli et al., 2020). Finally, (Chro-
nis and Erk, 2020) is linked to the representation
of word senses through the notion of prototype but
mainly applies it for characterizing semantic simi-
larity versus semantic relatedness and abstractness
versus concreteness. While it has links with some of
these studies, our work proposes a specific method,
based on the distributional hypothesis, that aims at
characterizing contextual word embeddings by focus-
ing on paradigmatic relations observed at the word
token level without the necessity to build representa-
tions at the word type level.

3 Principles and Methodology

With contextual embedding models, the similarity be-
tween embeddings can only be computed for words
in context, i.e. occurrences of words. More precisely,
the embedding built for an occurrence of a word with
this kind of model integrates two dimensions: one
dimension, resulting from the training on a language
modeling task, accounts for the aggregation of all
the contexts of the occurrences of the word, as for
all distributional models; the second dimension takes
into account the local context of the considered oc-
currence, i.e. its surrounding words.

In our case, we focus on the first dimension for
evaluating the similarity between words, which re-
quires being able to control the second one. We
propose to perform this control in a very simple man-
ner: for evaluating the similarity of two words, we
put the two words in the same context, i.e. at the
same position in the same sentence, and compute
a word embedding for each of them by applying a
contextual language model. In practice, this control
is implemented by a substitution: for two words w1

and w2, a sentence Si containing an occurrence of
w1 is selected and a contextualized representation of
w1 is computed; then, w1 is replaced by w2 in sen-
tence Si and a contextualized representation of w2

is computed similarly as for w1. By computing the
similarity between the representations of w1 and w2,
we can evaluate to what extent w1 can be replaced
by w2 and, by following Harris (1954)’s principle
of substitutability, also obtain an evaluation of their



semantic similarity. This evaluation is limited to the
selected sentence but the application of this strategy
to a set of sentences gives a more global picture of
the semantic relationship between the two words. It
should be noted that w1 and w2 do not have sym-
metric roles: we evaluate the similarity of w2 with
respect to w1 since the representation of w2 is built in
the context of a sentence in which w1 initially occurs.
In the rest of the paper, the terms key, target, and test
sentence will refer to w1, w2, and Si respectively.

We first exploit the presented principle of substi-
tution for investigating the semantic properties of
ELMo and BERT. More precisely, the idea is, for
each word of a set of keys, to gather a set of targets
such that each (key, target) pair is linked by a seman-
tic relation of a known type. Given a test sentence
containing an occurrence of the key, its targets can
be ranked according to their similarity value with the
key following the principle of substitution outlined
previously. The resulting ranking indirectly ranks the
types of semantic relations associated with the targets
and gives some insights into the semantic properties
of ELMo or BERT.

Our work focuses more particularly on paradig-
matic relations, more precisely synonymy [SYN],
hypernymy [HYPE], hyponymy [HYPO], and cohy-
ponymy [COHYP] and adopts WordNet 3.0 as a refer-
ence resource for these types of relations. However,
WordNet (Miller, 1990) is based on the notion of
synset while sentences contain words and not word
senses. To bypass this difficulty, we use as test sen-
tences sentences from SemCor (Miller et al., 1993), a
subset of the Brown Corpus whose open class words
were tagged with WordNet synsets. Hence, the sense
of an occurrence of a key is known and the relation
with the target depends on this sense, which makes
the use of substitution particularly accurate. For in-
stance, the second sense of the key disaster (an event
resulting in great loss and misfortune) has the follow-
ing test sentence in SemCor:
[1] Since the 1946 disaster there have been 15 tsunami
in the Pacific, but only one was of any consequence.

This sense of disaster has words such as cataclysm or
catastrophe as synonyms, misfortune as hypernym,
tsunami or meltdown as hyponyms, and adversity
or misadventure as cohyponyms. For evaluating to
which extent ELMo for instance accounts more for
synonymy than for hypernymy, the test sentence [1]

is turned into sentences [2] and [3] by substituting a
synonym or a hypernym for the key.
[2] Since the 1946 catastrophe there have been 15
tsunami in the Pacific, but only one was of any con-
sequence.
[3] Since the 1946 misfortune there have been 15
tsunami in the Pacific, but only one was of any con-
sequence.

The three sentences are encoded using ELMo and the
representation of both the key in sentence [1] and the
two targets in sentences [2] and [3] are extracted from
ELMo’s internal layers. Since ELMo has three layers
– one input non-contextual layer, layer 0, and two con-
textual layers, layer 1 and layer 2 – we actually have
three representations for each word. In this example
and for layer 1, the similarity, classically evaluated by
the cosine measure, between the representations of
the key and the target synonym catastrophe is equal
to 0.89 while the similarity of the key and the target
hypernym misfortune is only equal to 0.55, giving a
clear advantage to synonymy over hypernymy in that
case. The process is the same for BERT, except that
we have 12 layers (layer 1 to layer 12) in that case.
A global picture of the semantic properties of ELMo
or BERT is obtained by considering a significant
number of keys and targets in the context of a large
number of test sentences from SemCor. Moreover,
we enrich this picture by considering the relations
between the ELMo and BERT embeddings and the
more classical static word embeddings by adding as
targets DIST_NGH the most similar neighbors to the
keys of our study retrieved with the cosine measure
by a Skip-gram model trained on a large corpus.

This investigation of the semantic properties of
ELMo and BERT can be viewed as a kind of seman-
tic probing task and related to the work of Schick and
Schütze (2020) and their WordNet Language Model
Probing. While their overall objective is different
from ours, their probing task is also significantly dif-
ferent since their notion of pattern is more adapted to
syntagmatic relations than to paradigmatic relations.

4 Experiments: Study of Contextual Word
Embeddings

4.1 Experimental Setup
The implementation of the principles of the previous
section is associated with some choices about test



ELMo BERT

avg. #tgt random L0 L1 L2 L1 L3 L5 L8 L10 L12

SYN 2.1 5.3 30.9 29.3 26.9 33.5 34.5 36.1 36.7 36.0 35.1
HYPE 1.9 6.7 4.3 6.1 6.2 7.8 9.3 9.9 10.9 11.1 11.2
HYPO 5.9 14.5 11.4 13.8 14.8 10.5 11.1 11.7 12.3 11.9 12.3
COHYP 8.3 29.5 6.7 7.9 9.6 6.4 6.7 7.5 7.7 7.8 7.9
DIST_NGH 10 44.0 46.6 42.9 42.5 41.7 38.4 34.7 32.3 33.1 33.5

Table 1: P@1 (×100) for the ranking, based on SemCor’s sentences, of the reference targets for a set of keys1.

sentences and semantic relations between keys and
targets. First, both keys and targets are restricted
to nouns. The number of targets for each key is
limited to 40 to have comparable results for all keys.
Moreover, we only retain keys having targets for all
the five types of relations we consider, once again
for the homogeneity of results. We also limit the
number of targets for each type of relation to 10, with
an additional limit of 30 for all WordNet relations.
In practice, this limit only concerns hyponymy and
cohyponymy relations, whose number tends to be
high. The first column of Table 1 gives the average
number of targets of each key according to their type.

For WordNet relations, we adopt the following
definitions for each type of target:

• synonyms [SYN]: all the words of Synsetkey,
the synset of the sense associated with the occur-
rence of the considered key in a test sentence;

• hypernyms [HYPE]: all the words of the synsets
Synsethype having a direct hypernymy relation
with Synsetkey;

• hyponyms [HYPO]: all the words of the
synsets having a direct hyponymy relation with
Synsetkey;

• cohyponyms [COHYP]: all the words of the
synsets, except Synsetkey, having a direct hy-
ponymy relation with the Synsethype synsets.

As mentioned previously, the DIST_NGH targets
are obtained by a Skip-gram model, trained on a 1 bil-
lion word subset of the Annotated English Gigaword
corpus (Napoles et al., 2012) with the best hyper-
parameter values from (Baroni et al., 2014). More
precisely, we use this model to retrieve the 10 first
neighbors, among a vocabulary of 20,813 nouns, of
each key that are not present in the set of WordNet
targets. In that case, this selection is not done accord-
ing to the sense of the key in a test sentence since we

do not have access to word senses.
Concerning test sentences, an upper limit on the

number of sentences for each key is also fixed: no
more than 20 sentences for each sense of a key. Fi-
nally, our evaluation is based on 41,079 SemCor’s
sentences, which represents around 4.5 sentences by
sense on average and 7.9 sentences for each of the
5,241 keys. These keys cover a large spectrum of
frequencies since if we refer to the subpart we use
of the Gigaword corpus, the most frequent key, year,
has 2,991,899 occurrences while the least frequent
keys such as inadvertence have only 22 occurrences.

4.2 Evaluation
The results of the ranking of the targets selected for
all our keys are presented in Table 1 for each layer
of ELMo and BERT and each type of target. More-
over, the second column provides the P@1 values
of a random ranker (average values over 100 runs).
P@1 in this context corresponds to the proportion of
sentences that rank first a target linked to a key with
a specific type of relation (one by row).

This table first shows that the different layers of
ELMo and BERT do not have exactly the same se-
mantic properties, which is a confirmation of previ-
ous findings as those of Ethayarajh (2019) or Wu et
al. (2020). It also shows some similarities and differ-
ences between ELMo and BERT. The most obvious
difference is that BERT has much higher results than
ELMo for synonyms and hypernyms but lower re-
sults for hyponyms and cohyponyms, meaning that
BERT favors semantic similarity over semantic re-
latedness (Budanitsky and Hirst, 2006) as we can

1The percentage of cases in which the first target of a
key corresponds to a paradigmatic relation is equal to 100 −
P@1(DIST_NGH) × 100. For instance, 56% for the random
ranker.



consider that hyponyms and cohyponyms, despite
their paradigmatic nature, are less strong than syn-
onyms and hypernyms in terms of semantic similarity.
The trend is even more obvious for the DIST_NGH

relations coming from the static embeddings, which
are more likely to be syntagmatic relations.

ELMo and BERT also exhibit some differences in
their layers. While the capacity of ELMo to rank syn-
onyms first steadily decreases as we consider higher
layers, it first increases until layer 8 for BERT, then
tends to decrease. This observation has also to be put
in relation to the results of Ethayarajh (2019), who
observed that word representations are more context-
specific as the level of their layers increases. From
the viewpoint of ELMo, it means that having more
contextual representations is likely to favor semantic
relatedness over semantic similarity. This is not unex-
pected since from the semantic viewpoint, contextual
relations are syntagmatic rather than paradigmatic
relations. This result is less obvious for BERT since
its first layers have the best precision for DIST_NGH

relations but a change more compatible with the re-
sults of ELMo occurs after layer 8 concerning the
ranking of synonyms and DIST_NGH relations.

However, ELMo and BERT also have strong con-
vergences. First, the most significant effect of the
ranking by ELMo and BERT is obtained for syn-
onyms. P@1 is up to nearly six times higher for the
best ELMO’s layer and nearly seven times for the
best BERT’s layer compared to the random ranking,
which indicates that the application of the distribu-
tional hypothesis as described in Section 3 is an inter-
esting method for identifying the synonyms of a word
among a list of its distributional neighbors. It also
illustrates the fact that even if some differences can
be noted between layers in terms of semantic orienta-
tion, they all have a strong bias towards synonymy.
We can also observe that both ELMo and BERT have
a strong inverse correlation between P@1 for syn-
onyms and P@1 for DIST_NGH relations: when a
layer tends to favor strict semantic similarity, it logi-
cally obtains worse results for semantic relatedness
at the same time. However, this correlation does not
lead to results for DIST_NGH relations much lower
than the results of a random ranker for ELMo, which
suggests that ELMo is not radically different from
static embeddings from the viewpoint of the semantic
similarity it conveys. This trend is less clear-cut for

BERT since its results for synonyms are more compa-
rable to those for DIST_NGH relations but BERT nev-
ertheless gives significant importance to DIST_NGH

relations. A closer look at the first ranked DIST_NGH

word also shows that it frequently has a strong se-
mantic relationship with the key. In some cases, it
is one of its synonyms but for a different sense, that
is close to the sense of the current occurrence. For
instance, in the sentence:
Land reform programs need to be supplemented with
programs for promoting rural credits and [...] in agricul-
ture.

the word ranked first by the first layer of ELMo, farm-
ing, is a synonym of the second sense of agriculture
– the practice of cultivating the land or raising stock
– whereas this occurrence is tagged in SemCor with
its first sense – a large-scale farming enterprise. In
some other cases, the top word is actually a synonym
of the key but is not considered as such in WordNet.
For instance, the top word capability for the key abil-
ity. Finally, it is also frequent to find as the top word
an antonym of the key, as inaction for the key action.
While this is not an intended outcome, antonyms
are known to be distributionally very similar to syn-
onyms and their presence confirms the observed trend
to favor semantic similarity.

5 Contextual Word Embeddings vs Static
Embeddings

5.1 Principles
Besides the investigation of the semantic properties
of contextual word embeddings, the method we have
presented can also be adapted to study the differences
between contextual and static word embeddings con-
cerning these properties. More precisely, the idea is
to define targets by replacing WordNet semantic rela-
tions with relations characterizing static embeddings.
Due to the distributional nature of these embeddings,
we choose to associate as targets with each key, corre-
sponding to a word Wi, its most similar distributional
neighbors according to the considered static embed-
dings. As previously, targets are reranked according
to a set of test sentences and we use paradigmatic
relations in WordNet for determining a posteriori
which types of relations contextual word embeddings
favor compared to static embeddings.

However, since static embeddings are defined at



the word type level, their comparison with contextual
word embeddings requires aggregating the contextual
representations of keys and targets built from test sen-
tences for producing type level representations. We
classically distinguish between early and late fusion.
The early fusion consists in this context in aggregat-
ing the contextual representations of a key or a tar-
get extracted from the encoding by ELMo or BERT
of the test sentences where it occurs. For this ag-
gregation, we consider three operators (Bommasani
et al., 2020): average, element-wise maximum, and
minimum. The late fusion approach (Curran, 2002)
produces a reranking of the neighbors of a word for
each test sentence and merges the resulting rankings
according to methods that are typically used in Infor-
mation Retrieval for merging ranked lists of retrieved
documents. More precisely, we experiment with two
kinds of methods: the Borda, Condorcet (Nuray and
Can, 2006) and Reciprocal Rank (RRF) (Cormack et
al., 2009) fusions based on ranks and the CombSum
fusion based on similarity values, normalized with
the Zero-one method (Wu et al., 2006).

The definition of static embeddings at the word
level also influence the way test sentences are se-
lected: a static embedding is not associated with a
particular sense of a word but, according to the idea
developed by McCarthy et al. (2004) that most words
have one predominant sense in a specific corpus, it
is supposed to be related to the predominant sense of
the word it is associated with in the corpus used for
its building. Hence, we adopt a strategy for selecting
test sentences accordingly. Its first step consists in
selecting randomly for each word Wi a large enough
set of sentences containing the word, at most Nsent,
from the corpus used for retrieving the targets. The
resulting set of contexts for each word can be consid-
ered statistically representative of its various senses.

The second step aims at selecting a smaller num-
ber of context sentences for performing the reranking
at a reasonable cost while taking into account the
predominant sense hypothesis. Following this hy-
pothesis, we assume that most of the test sentences
first selected for a word refer to its predominant sense.
As a consequence, averaging the representations of
the word resulting from the encoding of the set C =
{Sj} of its test sentences by ELMo or BERT should
lead to a representation of the word, denoted v(Wi,C),
very close to its predominant sense. Considering that

we select a fixed number NC of test sentences, we
propose the following options:

• random: it is our base option in which NC sen-
tences are randomly selected among the Nsent

initially selected for the word;
• closest_avg: we select test sentences Sj such

that the representation of the word v(Wi,Sj) is
closest to v(Wi,C), with the idea to favor the ho-
mogeneity among the test sentences towards the
predominant sense of the word;

• farthest_avg: this is the opposite of closest_avg.
We select test sentences such that v(Wi,Sj) is
farthest to v(Wi,C) to increase the presence of
minor senses of the word;

• uniform: the idea is to account for the diversity
of word’s senses by selecting NC that are uni-
formly distributed in terms of the similarity of
v(Wi,Sj) to v(Wi,C).

5.2 Experimental Setup
The main difference with the setup of our first exper-
iment concerns test sentences: they are selected from
the corpus used for training the static embeddings
and keys are not semantically disambiguated in them.
More precisely, we select 10 test sentences for each
key with a size between 10 and 90 words for having
a significant and focused context. For the static em-
beddings, we rely on the same Skip-gram model as
the one used for extracting the DIST_NGH relations.
In a first experiment (see Section 5.3), we apply the
reranking process to the same 5,241 keys as in Sec-
tion 4 for having a direct comparison with Table 1.
Test sentences are selected randomly and we apply
an early fusion by averaging the representations ex-
tracted from test sentences. In a second experiment
(see Section 5.4), we consider a larger number of
10,302 keys for testing the various options presented
in the previous section. In both cases, the targets
correspond to the first 10 distributional neighbors of
the keys, retrieved by the cosine measure.

As in (Piasecki et al., 2018), our gold standard
neighbors are obtained by extracting from WordNet
the words linked to a key through the same types of
relations as in Section 4 but the number of relations
is larger since we consider all the synsets in which
the key is present (see the first column of Table 2).
We report the precision at the first rank (P@1) of
the retrieved neighbors for each type of relation in



avg. ELMo BERT

#ref. rel. Skip-gram L0 L1 L2 L1 L3 L5 L8 L10 L12

SYN 3.5 18.6 22.6 23.0 21.4 20.1 20.6 20.9 21.4 21.3 21.9
HYPE 5.0 6.9 5.8 6.6 6.3 8.1 8.3 8.6 8.9 9.0 8.5
HYPO 10.8 11.8 13.3 14.2 13.7 10.5 10.8 11.3 11.5 10.9 10.2
COHYP 56.3 27.9 33.5 34.8 33.0 30.0 30.7 31.2 31.3 31.2 31.6

Table 2: P@1 (×100) for the ranking of Skip-gram’s distributional neighbors by contextual models.

the first experiment and add precisions at ranks 2
and 5 (P@2 and P@5) for the second experiment
but without detailing these measures according to the
different types of relations.

5.3 Skip-gram versus Contextual Models
Table 2 compares the distributional neighbors re-
trieved by the Skip-gram model with their ranking by
ELMo and BERT according to the methodology we
propose. The first observation is that while these mod-
els significantly2 favor synonyms and cohyponyms
compared to Skip-gram, the situation is more com-
plex for hypernyms and hyponyms: ELMo degrades
Skip-gram’s results for hypernyms but improves them
for hyponyms while BERT does exactly the opposite.
We can also note that the Skip-gram model largely
favors cohyponymy over the other lexical relations, a
trend that tends to be increased by ELMo and BERT,
to a greater extent by ELMo. Interestingly, in Ta-
ble 1, the ranking of cohyponyms by ELMo and
BERT is much worse than the one obtained by a
random ranker. This difference illustrates the contex-
tual nature of these models but also its limits. In the
experiment of Section 4, keys are semantically dis-
ambiguated in test sentences and targets are related
to their sense. In such a situation, a contextual model
can favor the targets most semantically linked to their
key, such as synonyms, because they produce repre-
sentations that are specific to the considered context,
which is related to the sense of the key. On the con-
trary, in this second experiment, the targets cover all
the senses of the key and in such a configuration, cor-
responding to the word type level, the representations
built by contextual models favor semantic relatedness
over semantic similarity and are closer to static em-
beddings, even if they globally tend to outperform

2Differences are judged significant according to a paired
Wilcoxon test if p ≤ 0.01.

them. This effect has a much greater impact for syn-
onyms in the case of BERT than for ELMo, which
probably results from a greater sensitivity of BERT to
the context than ELMo. However, it does not modify
the pattern of results among BERT’s layers, with best
results around layer 8, while ELMo’s best results are
fairly surprisingly obtained by a more contextualized
layer than previously. We can note that the observa-
tion about BERT is close to the findings of Chronis
and Erk (2020), who found that BERT’s layer 7 “is
optimal for estimating similarity” in their comparison
with relatedness.

Table 2 also shows that BERT is globally closer
to the Skip-gram model than ELMo from the view-
point of paradigmatic relations, except for hyper-
nyms. This is surprising if we consider the results of
Table 1, where BERT globally outperforms ELMo
for paradigmatic relations, especially for synonyms.
We analyze this observation as a consequence of the
use of wordpieces by BERT for dealing with out-of-
vocabulary words. In the experiments of Section 4,
73% of words are part of BERT’s vocabulary while
this ratio decreases to 49.4% in the experiments of
Table 2. Following Bommasani et al. (2020) and
others, we build the representation of a word split
into wordpieces by averaging the representations of
its wordpieces. While this is considered as the best
strategy in such a situation, our results show that it
has a significant negative impact when the number
of words split into wordpieces reaches a certain level
and introduces a form of bias into results as all words
do not have the same status.

5.4 Impact of Reranking Options
We have seen in Section 5.1 that the method we pro-
pose depends on the definition of several hyperparam-
eters and options. Table 3 shows the impact of two
parameters of the method that influence both its per-



P@1 P@2 P@5

n=10, s=10 41.8 34.5 24.0

s=10, n=5 41.3† 33.6 21.6
s=10, n=15 41.6† 34.8† 24.7
n=15, s=5 41.2† 34.6† 24.8
n=15, s=15 41.6† 34.8† 24.8

Table 3: Impact of the number of neighbors (n) and test
sentences (s) for ELMoL1 (reference configuration of Ta-
ble 2: n=10, s=10; †: non-significant difference compared
to this reference).

P@1 P@2 P@5

average 41.6 34.8 24.7
max 40.6 33.9 24.3
min 40.5 33.9 24.3

Borda 41.1 34.4 24.6
Condorcet 40.9 34.4 24.6
RRF 41.1† 34.4 24.6
CombSum 41.0 34.3 24.6†

Table 4: Impact of the fusion method for token level rep-
resentations with ELMoL1 (reference method in Table 3:
average).

formance and speed: the number of test sentences (s)
and the number of reranked neighbors (n). The eval-
uation of this impact is done according to ELMo’s
layer 1, which globally obtains the best results in
reranking targets from Skip-gram, as indicated by
Table 2. Moreover, it is also performed by merging
the four types of semantic relations we consider in
Table 2. We can globally observe that the proposed
method is not very sensitive to changes in the value
of these two parameters as their impact on results
is generally not significant. These experiments also
show that reranking only a small number of neigh-
bors under-exploits the capabilities of the method,
especially when the number of test sentences is small.
However, it is interesting to note that the proposed
method can be effective with only a restricted num-
ber of test sentences. Finally, we adopt s=10 and
n=15 as the more interesting compromise between
the quality of results and the speed of the method for
our following evaluations.

In Section 5.1, we have seen that considering keys
and targets at word level requires aggregating token
level representations, with several possible options.

P@1 P@2 P@5

random 41.6 34.8 24.7
closest_avg 41.4† 34.5 24.8†

farthest_avg 39.9 33.6 24.1
uniform 41.8† 34.9† 24.8†

Table 5: Impact of the selection method of test sentences
for ELMoL1 (reference method in Table 3: random).

P@1 P@2 P@5

initialhigh 41.6 35.3 26.4
initiallow 30.0 24.1 16.8

rerankinghigh 50.8 43.1 31.1
rerankinglow 32.8 26.6 18.4

Table 6: Comparison of the initial ranking of the tar-
gets given by Skip-gram and their reranking by ELMoL1

(corresponding to uniform in Table 5) according to the
frequency of keys (high or low).

Taking as reference the average option adopted in the
evaluation of Section 5.3, Table 4 shows that while
the best results are obtained by the average option,
an early fusion approach, the late fusion approaches
globally outperform the other early fusion options.
However, the results of the different settings are fairly
homogeneous. This is particularly true for all the
results of the late fusion approaches, which suggests
that for a key or a target, the rerankings produced by
the test sentences are very similar.

The last evaluation of the options of the reranking
concerns the way test sentences are selected from
their initial set. As for the aggregation of token repre-
sentations, the differences between the tested options
reported in Table 5 are not very high. Only the far-
thest_avg option is significantly worse than random,
our reference, which is not very surprising since fa-
voring the most atypical test sentences does not seem
a priori a good option. Finally, the uniform method
appears as the best choice both because it obtains the
best results, even if they are not statistically different
from those of random, and more importantly, it is
deterministic, which is not the case of random.

5.5 Complementary Analyses and Examples
While Table 2 shows the differences between static
and contextual embeddings according to the type of
semantic relation, it is also interesting to perform



Keys Initial order of targets Targets after reranking

response
reactionsyn, wakecoh, action, criticism, rebuke,
condemnation, denunciationcoh, explanationcoh,
commentcoh

reactionsyn, replysyn, answersyn, counteraction, rebuke,
explanationcoh, unresponsiveness, condemnation, action

bureau department, telephone, reporting, newsroom, enumerator,
agencysyn, officesyn, correspondent, authority

agencysyn, department, officesyn, authoritysyn, newsroom,
correspondent, enumerator, chief, deputy

supposition contrary, conjecturesyn, theoryhype, fact, notion,
assumptionsyn, characterisation, assertion, reductionism

assumptionsyn, assertion, conjecturesyn, hypothesissyn,
notion, belief, surmisesyn, theoryhype, characterisation

lookout alert, loiterer, vigilance, binoculars, spottersyn, prowl,
watchsyn, warning, rubbernecker, sentrysyn

prowl, sentrysyn, spottersyn, sentinelsyn, watchsyn,
sightseer, alert, picnicker, vigilance

Table 7: Examples of reranking by ELMoL1 of the first targets of some keys (syn: synonym, coh: cohyponym, hype:
hypernym).

such a comparison according to the frequency of
keys. Table 6 illustrates it for ELMo by the split of
results into two equally balanced frequency slices –
high and low. While the reranking method leads to
an improvement for the two slices, this improvement
is clearly more significant for high-frequency words.
Since we use the same number of test sentences for
all words, we assume that this finding is not linked
to the number of occurrences of the words but their
number of senses. As a contextual model, ELMo
produces more specific representations than the Skip-
gram model we use for retrieving the targets and
these focused representations are more effective for
retrieving relevant neighbors in terms of paradigmatic
relations, especially for polysemous words such as
high-frequency words.

Finally, Table 7 presents more qualitatively for
some keys the differences between the first targets of
the Skip-gram model and their reranking by ELMo.
While it shows the global tendency of ELMo to favor
synonymy more than Skip-gram does, it also illus-
trates, in accordance with the results of Table 1, that
this feature is particularly effective when a significant
proportion of the reranked targets are linked to their
key with paradigmatic relations.

6 Conclusion and Perspectives

In this article, we have investigated how the distri-
butional principle of substitution can be used as a
form of probe for testing the kind of semantic sim-
ilarity conveyed by ELMo and BERT. Experiments
with WordNet paradigmatic relations and SemCor at
the level of word senses have shown that the contex-
tual nature of these models clearly favors synonymy

in terms of lexical relations. Moreover, we have
adapted the same method for studying the differences
between contextual and static embeddings, with the
conclusion that the bias of contextual embeddings
towards semantic similarity at the token level is re-
duced at the word type level but is still present.

One extension of this work is to address the prob-
lem raised by the representation of words split into
wordpieces by BERT. More precisely, we plan to test
two types of solutions: one is a specific mechanism
for building word representations from their word-
pieces as the One-Token Approximation of Schick
and Schütze (2020); the other relies on character-
based models such as the recent CharacterBERT
(El Boukkouri et al., 2020) or CharBERT (Ma et
al., 2020) models.
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