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Abstract

There are two cases describing how a classi-
fier processes input text, namely, misclassi-
fication and correct classification. In terms
of misclassified texts, a classifier handles the
texts with both incorrect predictions and ad-
versarial texts, which are generated to fool
the classifier, which is called a victim. Both
types are misunderstood by the victim, but
they can still be recognized by other classi-
fiers. This induces large gaps in predicted
probabilities between the victim and the other
classifiers. In contrast, text correctly classified
by the victim is often successfully predicted
by the others and induces small gaps. In this
paper, we propose an ensemble model based
on similarity estimation of predicted probabil-
ities (SEPP) to exploit the large gaps in the
misclassified predictions in contrast to small
gaps in the correct classification. SEPP then
corrects the incorrect predictions of the mis-
classified texts. We demonstrate the resilience
of SEPP in defending and detecting adversar-
ial texts through different types of victim clas-
sifiers, classification tasks, and adversarial at-
tacks.

1 Introduction

Recent deep learning models have reached the hu-
man level in many NLP tasks. However, these mod-
els are sensitive to changes in the input data. An
adversarial text can be generated from an original
text while the original meaning is still preserved and
bypasses human recognition. However, adversarial
text can fool many victims, such as sentiment anal-
ysis (Ren et al., 2019), question answering (Jia and
Liang, 2017), and search engines (Gil et al., 2019).

Popular adversarial text defenders are based on
adversarial training (Shrivastava et al., 2017; Tramèr
et al., 2018) or modification detection (Pruthi et al.,
2019). N -gram (Juuti et al., 2018) and text similar-
ity (Nguyen-Son et al., 2019) address the adversarial
text detection problem. However, recent generators
can generate adversarial text via a very small change
from the original by replacing a few words (Ren et
al., 2019; Jin et al., 2020), few characters (Gao et al.,
2018; Jones et al., 2020), or both (Li et al., 2019).
High duplication in word usage between the origi-
nal and adversarial texts confuses both the existing
defenders and detectors.

1.1 Motivation

Correct classification of text by a classifier often in-
duces small gaps to other classifiers. An adversary
can fool a victim classifier’s predictions by gener-
ating misclassified text, but it does not fool other
classifiers. For instance, we randomly choose cor-
rectly classified text t1 and its adversarial text t2 tar-
geting a CNN classifier (Figure 1). The predictions
are made with popular deep learning models includ-
ing CNN (Kim, 2014), BiLSTM, BERT-large (De-
vlin et al., 2019), RoBERTa-large (Liu et al., 2019),
and XLNet-large (Yang et al., 2019). The predic-
tion is indicated by pair values of positive and neg-
ative prediction probabilities. The original text t1 is
negative, so the CNN and the other models correctly
predict the text with higher negative than positive
values. The adversarial text t2 changes two words
“script, ace” into their synonyms “hand, genius” us-
ing Ren et al. (2019)’s work. The generated text
reduces the negative probability of the victim clas-
sifier to less than 0.5. However, using the synonym
does not change the overall meaning, so the other
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Text

Caddyshack II is NOTHING compared to the

original Caddyshack. But, there are legitimate

reasons for it. (1) Rodney Dangerfield was

supposed to be the ace of this film BUT he didn't

like the script/hand, wanted to change it, his

request was denied, so he didn't do the film. (2) It

was low budget, Bill Murray had grown to

superstar status. Ted Knight passed away in 1986,

and Chevy Chase the "so-called ace/genius" of

the first movie (although it was Rodney all the

way) couldn’t be on more than 5 minutes, because

it would cost too much to pay him. BUT you had

Dan Aykroyd, Robert Stack, Randy Quaid and

Jackie Mason, all serviceable substitutes, who

none had their best performances.

I am not a big fan of the

Spielberg/Cruise version of this

film. And so I must throw in

with the more humble

Latt/Howel version. C Thomas

Howel had more heart and

more sympathy that Cruise in

the lead role (at least in my

opinion). Now this is hard to

imagine until you strip away

everything in the Spielberg

version that cost more than a

thousand dollars. There would

be nothing left, no special

effects, no sets, no Cruise.

CNN (victim) (0.13, 0.87) (0.68, 0.32) (0.58, 0.42)

Bi-LSTM (0.05, 0.95) (0.11, 0.89) (0.12, 0.88)

BERT-large (0.21, 0.79) (0.22, 0.78) (0.12, 0.88)

RoBERTa-large (0.06, 0.94) (0.23, 0.77) (0.09, 0.91)

XLNet-large (0.30, 0.70) (0.33, 0.67) (0.05, 0.95)

Figure 1: Predictions (positive, negative) based on sentiment analysis classifiers.

models mostly retain their negative predictions. We
randomly select a negative text t3, which is misclas-
sified by the CNN victim, and observe that t3 has
the same characteristic as t2. In particular, t3 is pre-
dicted as positive by the victim, while other classi-
fiers still predict it as negative. Based on the gaps
in prediction probabilities among the classifiers, we
can distinguish correctly classified text from mis-
classified text.

1.2 Contributions

In this paper, we proposed an ensemble model based
on similarity estimation of predicted probabilities
(SEPP) to defend adversarial texts. Unlike a basic
ensemble model, which directly votes predictions
from multiple classifiers, SEPP estimates the simi-
larity in prediction probabilities from the classifiers.
The similarity is used to identify the victim classifier
and misclassified texts. The probabilities of misclas-
sified texts are corrected by using predictions from
other classifiers. We use the same technique to de-
tect adversarial texts.

We conducted experiments with adversarial texts
generated by the probability weighted word saliency

generator (Ren et al., 2019) that fool the CNN-
based sentiment analysis classifier. SEPP recovers
the prediction from 22.9% to 94.0% on an adversar-
ial dataset while keeping 96.6% on the clean dataset.
This is better than the 89.6% and 92.6% achieved by
adversarial training and ensemble baselines, respec-
tively. Moreover, we detect the adversarial texts at
a rate of 96.3%, which outperforms existing work,
neural baselines, and ensemble baselines. Other ex-
periments on BiLSTM and BERT yield similar re-
sults. SEPP also works well on multiple-class classi-
fication tasks and other adversarial attacks. In sum-
mary, our contributions are as follows:

• We determined that predictions of various clas-
sifiers for misclassified text differ from those of
correctly classified text.

• We proposed an ensemble model using similar-
ity estimation of predicted probabilities (SEPP)
to detect a victim classifier and misclassified
texts. We leveraged this detection to recover
the prediction of the victim.

• We reused SEPP to distinguish adversarial text



from the original text.

• We evaluated the various adversarial texts,
which fooled CNN, BiLSTM, and BERT clas-
sifiers on binary- and multiple-class classifica-
tion tasks. The results indicate that SEPP out-
performs other existing methods.

1.3 Roadmap
The rest of this paper is organized as follows. Sec-
tion 2 describes related work on adversarial text gen-
eration, detection, and defense. Section 3 introduces
the SEPP system. The experiential results are shown
and analyzed in Section 4. Section 5 summarizes
some main key points and mentions future work.

2 Related Work

2.1 Adversarial Text Generation
Adversarial text generation can be categorized by
the extent of the generation:

2.1.1 Paragraph
Juuti et al. (2018) trained a neural model on

human-written reviews and generated adversarial
texts by topic. Jia and Liang (2017) added a noise
sentence to an original paragraph to change a cor-
rect result of a question answering system. Wang
et al. (2020) changed product categories of a review
while keeping the sentiment but fooling a sentiment
analysis classifier.

2.1.2 Sentence
Iyyer et al. (2018) generated an adversarial sen-

tence with the desired syntax. They used back-
translation to create a paraphrased sentence pair with
different syntax. They then designed an attention
network to convert a sentence into a paraphrase with
the target syntax. Ren et al. (2020) combined VAE
and GAN to generate large scale adversarial sen-
tences for a limited training dataset. Han et al.
(2020) generated a text using an RNN network tar-
geting structured prediction models such as depen-
dency parsing or POS tagger.

2.1.3 Phrase
Ribeiro et al. (2018) compiled paraphrased pairs

at the phrase level. They then suggested a rule to re-
place individual phrases in an original text with cor-
responding phrases in the paraphrased pairs. Liang

et al. (2018) inserted or deleted consecutive hot
words that affected the predictions of classifiers.
Wallace et al. (2019) added a fixed phrase at the be-
ginning of any sentence and optimized it by the gra-
dient of a victim system. They claim that a phrase
“zoning tapping fiences” reduces the victim’s accu-
racy from 86.2% to 29.1% on positive samples.

2.1.4 Word
Adversarial text can be created by using various

word operations (insertion, deletion, and replace-
ment) to fool AI systems with both white-box and
black-box attacks. As an example of a white-box at-
tack, Ebrahimi et al. (2018) operated on hot words
that induce a high gradient change in the system. As
an example of a black-box attack, Liang et al. (2018)
and Jin et al. (2020) examined occluded words and
observed the prediction change. Garg and Ramakr-
ishnan (2020) marked candidate words and chose
the top ones predicted by a BERT model. Li et
al. (2020) extended this idea for sub-words. Zhang
et al. (2019) improved the fluency of word replace-
ment by performing Metropolis-Hastings sampling.
The chance of replacement is improved by using a
genetic algorithm (Alzantot et al., 2018), particle
swarm optimization (Zang et al., 2020), or boundary
optimization (Meng and Wattenhofer, 2020). Ren
et al. (2019) upgraded the text fluency with synony-
mous words in Wordnet and similar name entities.

2.1.5 Character
Many of the word-based approaches can be ap-

plied directly to characters (Liang et al., 2018;
Ebrahimi et al., 2018). Moreover, Zhou et al. (2019)
recovered the character replacement in an adversar-
ial text. Gil et al. (2019) suggested a method based
on a character operator targeting Google search
scores. Pruthi et al. (2019), Jones et al. (2020), and
Li et al. (2019) manipulated the middle characters of
an individual word to preserve the text fluency.

Analysis: The paragraph approach generates flex-
ible adversarial texts. The generation of large hard-
to-read text makes it easily recognizable by the N -
gram model and readability metrics (Juuti et al.,
2018). The sentence approaches preserves the text
meaning, but they induce significant changes in text
complexity (Nguyen-Son et al., 2019). In the phrase
approach, the rules become fragile when we gather



sufficient paraphrased pairs. The insertion and dele-
tion of hot phrases into original text induces non-
fluent text. The operators on character introduce
misspellings. With the word operator, while inser-
tion and deletion also lead to nonfluent text, the re-
placement produces fluent text. Among these re-
placements, the Wordnet-based approach (Ren et
al., 2019) preserves more the original meaning than
other replacements, which are based on word em-
bedding (Li et al., 2020; Zang et al., 2020). More-
over, this replacement works well on many tasks
(binary- or multiple-class classification) and is cho-
sen to conduct main experiments in this paper.

2.2 Adversarial Text Defense

The most popular approach in the defense against
adversarial text is adversarial training (Shrivastava
et al., 2017), which was previously used in image
processing. The adversarial texts were added to
the training data before the classifier was retrained.
Another approach estimated the similarity between
original and adversarial texts on training data (Liu
et al., 2020). The upper and lower bounds of ad-
versarial data were also approximated (Ye et al.,
2020; Huang et al., 2019; Jia et al., 2019) to alle-
viate such texts. Other defenses identified changes
in adversarial texts from their origins at the charac-
ter level (Jones et al., 2020; Pruthi et al., 2019) or
word level (Zhou et al., 2019). The main drawback
of previous approaches is that they need to retrain
the classifier. Thus, they are sensitive to a new kind
of adversarial text.

2.3 Adversarial Text Detection

Original text is generally more fluent than adver-
sarial text. Existing methods estimate the fluency
based on the N -gram model. Juuti et al. (2018) ex-
tracted the N -gram features based on a variety of
text components, including word, part of speech,
and syntactic dependency. They also measured the
text readability using thirteen relative metrics. Our
previous work (Nguyen-Son et al., 2019) extracted
word N -gram features in both internal informa-
tion from a training corpus and external informa-
tion from a website corpus1. Text coherence was

1https://catalog.ldc.upenn.edu/
LDC2006T13

measured by matching similar words and combin-
ing them with the N -gram features. Powerful deep
learning models (e.g., BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), and XLNet (Yang et
al., 2019)) can be used as reputable detectors since
they prove their performance in most of the major
classification tasks.

Existing methods extract the difference in word
usage between original and adversarial texts. How-
ever, recent adversarial texts produced only minimal
changes from the original texts. Thus, they confuse
all text-based methods.

3 Similarity Estimation of Predicted
Probabilities

We proposed an ensemble model based on the sim-
ilarity estimation of predicted probabilities system
(SEPP) for defending against adversarial text, as
shown in Figure 2.

3.1 Training phase
The objective of the training phase is to create two
kinds of discriminators. A discriminator Ωk detects
misclassified texts for a classifier Γk. Another dis-
criminator Ψ detects a victim among candidate clas-
sifiers.

3.1.1 Training Misclassification Discriminator
Ωk

We describe the training of a misclassification dis-
criminator Ωk for a victim classifier Γk in the fol-
lowing steps. The other misclassification discrimi-
nators is trained in the same manner way.

• Preparing training texts: We run a victim clas-
sifier Υk to divide clean texts Tk into misclas-
sified texts Mk and correctly classified texts
Ck. Adversarial texts Ak are then generated
from Ck by using an existing generator and are
added to Mk. Each text t in Mk and Ck is
used to extract features for training Ωk (Algo-
rithm 1).

• Measuring similarities: The probability ŷc of
the predicted class c in Υk is calculated with
respect to its similarity to corresponding proba-
bilities in other classifiers Γi. In particular, the
similarity is the Manhattan distance of ŷc and
ŷci (line 7).
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Figure 2: Similarity estimation of the predicted probability of defending against adversarial text. Training and testing
are shown as solid and dashed lines, respectively.

Algorithm 1: Extracting features.
Input : text t; victim Υk;

other classifiers Γ = {Γi}
Output: extracted features

1 ŷ = getPredict (Υk, t)
2 c = arg max ŷ
3 P = {ŷi = getPredict(Γi, t)}
4 Λ = ∅ // similarity features

5 θ = 0 // differences count feature

6 for ŷi ∈ P do
7 Λ = Λ ∪ |ŷc − ŷci |
8 if arg max ŷi 6= c then
9 θ = θ + 1

10 end if
11 end for
12 return Λ ∪ θ

• Counting different predictions: We count pre-
dicted classes of other classifiers Γi that are
different from the predicted class c of the vic-
tim, which calls the different prediction count
θ (line 9).

• Training the misclassification discriminator:
All similarities Λ and θ are input into a feed-
forward neural network to train Ωk.

In Figure 1, t1, CNN, and other classifiers can be
used as t, Υk, and Γi, respectively. t1 is run on these
classifiers to obtain (positive, negative) probabili-
ties ŷ = (0.13,0.87), ŷ1 = (0.05,0.95), · · · . The

similarities are calculated as Λ = (|0.87− 0.95| =
0.08, |0.87 − 0.79| = 0.08, · · · ). All classifiers
predict t1 as negative; therefore, θ = 0. With the
small values in Λ and θ, t1 is most likely to be de-
termined as correctly classified text. With adversar-
ial text t2, the misclassified text should be detected
with large values: Λ = (0.57, · · · ), θ = 4. Simi-
larly, t3 should be considered misclassified text with
Λ = (0.56, · · · ), θ = 4.

3.1.2 Training Victim Discriminator Ψ

We use all misclassified texts to train a vic-
tim discriminator Ψ. Each text extracts indi-
vidual features from a victim classifier in the
same manner as above. The individual features
are concatenated in order and input into another
feedforward neural network to train Ψ. When
we use t2 as the input text, individual features
(0.57, 0.46, ..., 4) and (0.57, 0.11, ..., 1)... are ex-
tracted with Υ1,Υ2.... The concatenated fea-
tures (0.57, 0.46, ..., 4, 0.57, 0.11, ..., 1...) contain
high values in the first individual features, so the first
classifier should be identified.

3.2 Testing phase

A testing sample s of adversarial or original text is
run with Ψ to determine the victim Υv. Then, the
corresponding discriminator Ωv determines whether
s is a correct or misclassified text. If Ωv determines s
as the correctly classified sample, then, we retain the
original prediction on Υv for the final defense prob-



ability. Otherwise, the defense probability is calcu-
lated by:

ŷd =
1

n

n∑
i=1

ŷi

where ŷi is the probability from other classifiers Γi

and n is the total number of the other classifiers.
For example, if Ψ identifies the victim Υ1

of adversarial text t2, Ω1 detects t2 as misclas-
sified text. The prediction of t2 is updated
from positive with ŷ = (0.58, 0.42) to negative

with: ŷd =

(
0.11 + 0.22 · · ·

4
,
0.89 + 0.78 · · ·

4

)
=

(0.22,0.78). A similar flow should be processed
with the misclassified text t3. In the case of the cor-
rectly classified text t1, because this kind of text is
already learned via all misclassification discrimina-
tors, the correctly classified text should be identified
with any victim detected by Ψ.

4 Evaluation

In this section, we present our experimental evalua-
tion of defending and detecting adversarial texts.

4.1 Defending against Adversarial Texts
4.1.1 Dataset

We created adversarial texts by using the prob-
ability weighted word saliency (PWWS) genera-
tor (Ren et al., 2019) on the IMDB2 (binary class)
and AGNEWS3 (four classes). We used testing data
as a clean dataset. The adversarial texts are re-
placed with the original texts from the clean dataset
to form an adversarial dataset. We use the ratio of
80/10/10 for training/developing/testing sets. This
ratio is reused in further experiments.

4.1.2 Comparison
We compared SEPP4 with adversarial train-

ing (Shrivastava et al., 2017) and ensemble base-
lines (Opitz and Maclin, 1999). While adversar-
ial training adds adversarial texts and retrains the

2https://ai.stanford.edu/˜amaas/data/
sentiment/

3http://groups.di.unipi.it/˜gulli/AG_
corpus_of_news_articles.html

4SEPP using five classifiers (Figure 1), separately trained on
the IMDB with suggested configurations and obtained similar
performance. For example, CNN and RoBERTa-large achieved
88.8% and 96.5% accuracies, respectively.

victims, ensemble learning votes on the predictions
from the five individual classifiers (Figure 1). There
are two popular ways to vote: average the predic-
tions (soft) and select the majority class (hard). Ta-
ble 1 lists the accuracy scores on testing sets while
the developing sets reach similar values. SEPP can
be trained with different training data (unknown),
multiple training data (unsure), and the same train-
ing data (known). For example, if a victim is
CNN, the different (resp. multiple, same) training
data consists of misclassified and correctly classified
texts, Mk and Ck (Figure 2), generated with BiL-
STM (resp. both BiLSTM and CNN, and CNN).

The victim classifier declines significantly when
moving from clean to adversarial data. Adversarial
training efficiently defends against adversarial text,
but it ignores the other misclassified texts. Ensem-
ble learning appropriates this task in which adversar-
ial text fools the victim classifier only but the other
classifiers are still persistent. SEPP processes both
kinds of misclassified texts and achieves high out-
comes even with unknown victim classifiers. More-
over, SEPP (unsure) detects the victim classifiers
more than 90% of accuracy.

4.1.3 Ablation Studies
We analyzed the contributions of the individual

classifiers used in SEPP. The victim CNN is com-
bined with the individual classifiers (Table 2). SEPP
is presented with three groups of features: simi-
larities Λ (SEPP-Λ), differences θ (SEPP-θ), and
their combination (SEPP). The detection is affected
by the performance of each model. In particular,
BERT, RoBERTa, and XLNet are better than BiL-
STM. SEPP improves both predictions in individual
and combined features.

4.1.4 Attacking the BERT
We conducted other experiments (Table 3) target-

ing the BERT on SST-2 with various attacks at dif-
ferent text levels: character (DeepWordBug (Gao et
al., 2018)), character and word (TextBugger (Li et
al., 2019)), and word (TextFooler (Jin et al., 2020)).
We reused all six pretrained SST-2 classifiers for
the ensemble models from the TextAttack frame-
work (Morris et al., 2020) including CNN, LSTM,
BERT-base, DistilBERT-base, RoBERTa-base, and
AlBERT-base. The change in a few SST-2 words



Method
IMDB AGNEWS

CNN BiLSTM CNN BiLSTM
Clean Adv Clean Adv Clean Adv Clean Adv

Original (victim) 88.9 22.9 87.0 14.2 91.7 62.6 92.2 56.5
Adversarial training (known) 88.4 89.6 86.0 86.6 92.2 88.2 91.6 85.3
Ensemble (soft voting) 95.0 92.6 95.0 92.6 94.7 94.3 94.7 94.2
Ensemble (hard voting) 96.0 90.6 96.0 91.3 96.3 93.0 96.3 94.0
SEPP (unknown) 96.3 90.9 96.3 93.5 94.1 89.9 94.1 91.6
SEPP (unsure) 96.3 94.8 96.3 94.1 94.2 91.4 94.2 90.5
SEPP (known) 96.6 94.0 96.6 94.1 96.5 95.7 96.2 94.6

Table 1: Defending against adversarial texts targeting binary-class (IMDB) and multiclass (AGNEWS).

Combination IMDB AGNEWS
Clean Adv Clean Adv

CNN+BiLSTM 87.3 68.0 92.2 83.0
CNN+BERT 95.2 91.9 95.9 94.5
CNN+RoBERTa 97.0 95.7 95.4 93.3
CNN+XLNet 95.0 92.6 94.7 94.3
SEPP-Λ 96.4 93.4 90.8 94.1
SEPP-θ 96.6 94.1 96.6 95.5
SEPP (both) 96.6 94.0 96.5 95.7

Table 2: Combination of classifiers and features in SEPP.

(8.7 words/text) leads to a remarkable change in
classifiers’ predictions and negatively affects ensem-
ble models, especially in hard voting. However,
SEPP retains the most efficient defenses across the
attacks.

4.2 Detecting Adversarial Texts

4.2.1 Detecting Adversarial Texts with
Duplicate Replacement

We integrated adversarial texts with the original
texts to form adversarial/original pairs. These pairs
are split into training/development/testing sets with
the previous ratio (80/10/10). SEPP detects adver-
sarial texts by extracting the same kind of features
as when detecting misclassified texts (see misclas-
sification discriminator Ωk in Figure 2). We com-
pared SEPP with existing methods in detecting ad-
versarial text, deep neural, and ensemble baselines
as shown in Table 4. The neural baselines were
trained on large models with a batch size of 4, a
maximum length of 512, and an epoch of 2. The
learning rates were estimated in a range of 10e−7

Figure 3: Learning rate estimation of BERT-large model
in duplicate and unduplicate replacement generation of
adversarial texts.

to 10e−2. For example, Figure 3 shows the losses in
the red line corresponding to the learning rates using
the BERT-large model. An optimal learning rate of
1.28e−5 was chosen when the loss was still decreas-
ing, as recommended by Smith (2017). The number
of training/test sets is shown in the second row.

The results show that the deep neural and en-
semble baselines efficiently enhanced the traditional
approaches by more than 10%. SEPP5 achieves
the highest performances in binary-class classifica-
tion algorithms and reaches the competitive perfor-
mances in multi-class classification.

4.2.2 Human Recognition

We randomly chose 50 adversarial/original pairs
in the development set for human recognition. They

5Our source code is available at the following link (https:
//github.com/quocnsh/SEPP)



Method Clean DeepWordBug TextBugger TextFooler
Victim 88.6 10.2 14.8 2.27
Adversarial training 88.6 45.5 67.4 54.5
Ensemble (soft voting) 87.5 54.6 69.3 58.0
Ensemble (hard voting) 89.8 40.9 60.2 43.2
SEPP 89.8 55.7 72.7 63.4

Table 3: Attacking BERT on SST-2.

Method IMDB AGNEWS
CNN BiLSTM CNN BiLSTM

#train/#test 26531/3316 30046/3756 3376/422 2538/317
N -gram 81.3 83.0 70.1 69.6
Complexity 80.0 82.9 73.2 68.7
BERT-large 92.7 91.5 89.3 88.7
RoBERTa-large 95.0 94.9 88.4 93.8
XLNet-large 94.6 94.9 91.0 92.3
Ensemble (soft voting) 94.6 96.7 94.8 97.0
Ensemble (hard voting) 94.8 95.2 92.9 95.4
SEPP 96.3 97.6 94.3 96.8

Table 4: Detecting adversarial texts with duplicate replacement.

were shuffled, and each text was displayed to 11
raters who decided whether it was written by a hu-
man or generated by a machine6. The raters recog-
nized the adversarial texts with 62.1% accuracy on
average with a low agreement (κ = −0.039). This
recognition accuracy was lower than those of all ma-
chine detectors. This demonstrates that we need a
detector to assist us in recognizing such texts.

4.2.3 Detecting Adversarial Texts with
Unduplicated Replacement

We analyzed the PWWS generator and found that
it uses a large number of duplicate word replace-
ments to generate adversarial texts. In particular,
each replacement in a developing text was reused in
1544.3 texts on average in training texts. We clus-
tered the texts in the development set in ranges of
the number of duplicate replacements, as shown in
Figure 4. We compared the detection of the top six
methods. The low ranges significantly affected the
deep learning baselines. In the high ranges, many
duplicate replacements occurred with training data,
offering more chances for detection with these mod-

6The survey is available at the following link (https://
forms.gle/TNRNeYyAcyrt8zF67)
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Figure 4: Detection of adversarial texts that fool CNN
classifier. Duplicate replacement indicates number of re-
placements reused in training data.

els. However, since SEPP is independent of these
replacements, we achieved resistant performances
even in the low ranges.

We used PWWS to generate adversarial texts
without reusing previous word replacements. We
ran the detectors on this dataset (Table 5). While ex-
isting methods and deep neural baselines remained
in the random guess range, SEPP and ensemble



Method IMDB AGNEWS
CNN BiLSTM CNN BiLSTM

#train 1682 2028 972 1172
N -gram 51.9 52.7 55.6 56.8
Complexity 51.1 51.2 50.8 53.4
BERT-large 50.9 51.6 56.5 63.5
RoBERTa-large 50.0 54.0 52.4 50.0
XLNet-large 50.0 55.9 50.0 62.2
Ensemble (soft voting) 89.1 88.6 91.9 96.6
Ensemble (hard voting) 89.1 89.0 94.4 95.2
SEPP 89.6 89.8 92.7 95.9

Table 5: Detecting adversarial texts with unduplicated replacement.

baselines accuracy also maintained the prediction at
around 92%. We analyzed the learning rate estima-
tion process of the BERT-large model, as shown by
the blue line (Figure 3). All of the losses were simi-
lar to a random line (−ln(0.5) = 0.69). The losses
remained after many epochs of training.

5 Conclusion

In this paper, we propose an ensemble model based
on similarity estimation of predicted probabilities
(SEPP) for defending against adversarial text by de-
tecting a victim classifier and correcting misclas-
sified text. SEPP measures the similarity among
predictions from multiple classifiers. We evaluated
adversarial texts generated by word-based and/or
character-based generators. The generated texts
targeted popular classifiers (CNN, BiLSTM, and
BERT) in a binary and a multiclass classification.
The results show that SEPP outperformed the exist-
ing work not only in defending against adversarial
texts but also in maintaining performance on clean
texts. Moreover, we achieved better performance in
detecting adversarial texts than existing detectors.

Based on the generalization of the proposed
method, we can straightforwardly apply it for de-
tecting other adversarial data such as fake images or
forged audio.
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