Plug-and-Blend: A Framework for Controllable Story Generation with
Blended Control Codes

Zhiyu Lin
Georgia Institute of Technology
North Ave NW, Atlanta, GA 30332
zhiyulin@gatech.edu

Abstract

We describe a Plug-and-Play controllable lan-
guage generation framework, Plug-and-Blend,
that allows a human user to input multiple con-
trol codes (topics). In the context of auto-
mated story generation, this allows a human
user loose or fine grained control of the top-
ics that will appear in the generated story, and
can even allow for overlapping, blended top-
ics. We show that our framework, working
with different generation models, controls the
generation towards given continuous-weighted
control codes while keeping the generated sen-
tences fluent, demonstrating strong blending
capability.

1 Introduction

Recent advancement in very large pre-trained neu-
ral language models (e.g. (Radford et al., 2019;
Brown et al., 2020)) have enabled a new generation
of applications that make use of the text genera-
tion capability they provide, ranging from auto-
completion of e-mails to solving complicated math
equations. However these very large pre-trained
neural language models are also difficult to control
beyond providing a prompt for a generated contin-
vation. This makes very large language models
ill-suited for co-creative tasks wherein a human
works with a language model in an iterative fash-
ion to produce novel content, such as stories or
poems. Co-creative tasks require an ability to not
only prompt the language model but to guide the
generation with, for example, style, context, or
topic constraints.

Conditional generation is a family of text genera-
tion methods that attempt to provide controllability
by either directly modifying the model to accept
control signals or posing constraints in the gener-
ation process. Conditional text generation tech-
niques add an extra input feature (Ficler and Gold-
berg, 2017) and fine-tuning with additional infor-
mation embedded (Fang et al., 2021; Hosseini-Asl

62

Mark O. Riedl
Georgia Institute of Technology
North Ave NW, Atlanta, GA 30332
riedl@cc.gatech.edu

etal., 2020; Keskar et al., 2019; Khalifa et al., 2020;
Hu et al., 2017; Wu et al., 2020; Ficler and Gold-
berg, 2017; Chan et al., 2020), or by sideloading
additional discriminators along with a pre-trained
model, without changing base model parameters
holisticly (Dathathri et al., 2020; Madotto et al.,
2020; Duan et al., 2020; Mai et al., 2020).

We seek “plug-and-play” approaches to control-
lable text generation wherein new language models
can be slotted into existing generative systems; new
language models are being developed and it be-
comes intractable to update and retrain controlled
generation architectures. Plug-and-play techniques
such as (Krause et al., 2020; Pascual et al., 2020)
aim to only intervene with the outputs—a vector
of logits—of a generative language model. This
becomes especially important as the latest iteration
of very large pre-trained language models such as
GPT-3 (Brown et al., 2020) restrict access to the
hidden states and layer weights of models. As
language models improve, they can be easily in-
corporated into existing, controllable generation
frameworks.

We present Plug-and-Blend ', an efficient plug-
and-play generative framework for controllable text
generation that (a) works with the logit outputs
of any language model; (b) facilitates fine con-
trol of generated sentences by allowing continuous
bias towards specific control codes; and (c) allows
multiple control codes representing style and topic
constraints to be provided in overlapping contexts.
These control codes can be blended together to
generate content that meets multiple style or topic
constraints. We describe that these key capabilities
empower latent space walking in the hyperspace
of generated sentences, and show a simple con-
tent planning technique that utilizes this feature to
generate paragraphs regarding user intentions in a
co-authoring. We present our work in the context

'Code available at https://github.com/
xxbidiao/plug-and-blend

Proceedings of the 3rd Workshop on Narrative Understanding, pages 62—71
June 11, 2021. ©2021 Association for Computational Linguistics

https://github.com/xxbidiao/plug-and-blend
https://github.com/xxbidiao/plug-and-blend

10 sentence story
Topic: sports, lines 1-5
Topic: science, lines 5-10

Generative

Blending generative model

John realized that
basketballs fall to the
ground like apples

Language
.. v T 3 Mgode?
John was playing
|| Context basketball
Planner N——
User 0 e
Control codes 30% science
Control
Model

Figure 1: Illustration of overall a

of automated story generation wherein a human
author provides a prompt as well as a high-level
control specification for topics.

2 Related Work
2.1 Plug-and-Play Conditional Generation

Researchers aim for "plug-and-play" (PnP) frame-
works (Dathathri et al., 2020) which can be used
along an existing generative LM (referred to as
the “base LM”) with minimum or no interference
between the PnP components and the base LM.

Comparing to non-plug-and-play methods
("white-box" approaches), these frameworks can
be roughly classified into three categories. Gray-
box approaches access and modify some non-input-
output layer computations, usually the hidden rep-
resentation, hence “plugging” an additional model
in the middle of the base LM (Dathathri et al., 2020;
Madotto et al., 2020; Duan et al., 2020; Mai et al.,
2020). Black-box approaches including “Prompt
Engineering” that aim to change the prompts fed
into the base LM at inference time (Wallace et al.,
2019; Li and Liang, 2021). Guided generation
targets at building a controllable “guiding” model
that shifts the output from base LM at inference
time (Krause et al., 2020; Pascual et al., 2020).

The generation model we propose is an extension
of GeDi (Krause et al., 2020). Adding to the com-
plete decoupling of generation and controlling, we
enhanced it with additional capabilities to support
multi-topic generation with continuous weighting,
supporting the downstreaming applications while
keeping its capability to transfer to different base
LMs.

2.2 Controllable Story Generation

Neural story generation systems train or fine-tune
a language model on story data. Sampling from
a language model trained on story data tends to
63

rchitecture of our framework

result in text output that looks like stories as well.
However, sampling from Py(x;|z<;) (See Section
3) is uncontrolled in the sense that one does not
have any influence over the output after the initial
context prompt.

A number of story generation systems have at-
tempted to condition the generation with some form
of high-level plan. Storytelling systems such as
(Akoury et al., 2020; Yao et al., 2019) embeds topic
constraints directly into the model. These system
extract a set of topics from a dataset that must be
incorporated into the story. PlotMachines (Rashkin
et al., 2020) allows a human user to specify topics
that can be incorporated into a story in any order.
Wang et al. (2020) generate a story by interpolating
between a start event and an end event in a slot
filling fashion, targeted the same goal. Our work
differs in two ways. First, we allow blending of
topics such that a single line in a story can meet
more than one topic provided by a human user. Sec-
ond, we have developed a black-box plug-and-play
system that works with different LMs.

3 Preliminaries

Generative Language Models (LMs), specifically
continuation models, take a context (‘“prompt”) and
generate a continuation by predicting the next to-
kens. This is achieved by optimizing the model
parameters 6 that best estimates the probability
density of a sequence of word tokens x1.7 =

{z1,..., 27} represented as an auto-regressive fac-
torization
T
Py (xr:r) = [[Po (i | 2) - (1
t=1

By iteratively predicting a distribution on the next
token given the previous tokens, a continuation can
be generated by repeatedly sampling Py (x; | x<¢)

2

and attach the selected token back to the “previous
tokens for the next step.

Sequences generated this way are not controlled;
To control the generated sequence, an attribute
represented as a class variable (Keskar et al., 2019)
that could describe sentiment or topics can be intro-
duced to equation (1) to form a Class-Conditional
Language Model (CC-LM):

2

P9 l‘lT‘C

HPG $t|x<ta)

where c represents the class variable, or “control
code”, that describes an attribute of the sequence
x1.7. However, since ¢ and x1.7 are entangled in
equation (2), naively optimizing Py requires a new
CC-LM to be trained.

To decouple the conditional generation compo-
nent, ¢, from the unconditional part, Pr s (z1.7),
(Krause et al., 2020) proposed the GeDi framework
and an algorithm to enable a separate controlling
model to guide the generation process of a base lan-
guage model. Instead of tackling Py (1.7 | ¢) di-
rectly, they train a contrastive discriminator model
on the side to estimate

t
Py(c|x14) = aP(c H (j | v<j,¢) (3)

where « is the normalization constant «
V(Cweion oy P (&) Py (2 | 7<5,¢)), and ¢
and ¢ are contrastive control codes (¢ and not-c).
At the decoding stage of the generation process,
one can guide the generation by using Py (¢ | z1.¢)
as a posterior to the output probability distribution
of the base LM:

P (x| x<t,0)

Py (ﬂ?t ’ x<t) Py (C ’ xt7x<t)w

“4

where w is a parameter for control strength, with
larger values biasing generation more strongly to-
wards c. CC-LMs trained this way do not require
access to any internal data of the base LM, and
works independently of it.

4 The Plug-and-Blend Framework

Our Plug-and-Blend framework consists of two
components (See figure 1): (1) a blending gener-
ative Model that is responsible for plug-and-play
controlled continuations using the control specifi-
cations; and (2) a planner that plans and assigns
control specifications based on control sketches.

64

A control sketch is a high-level specification of
what topics should be present in the story and what
portions of the story each topic should approxi-
mately appear in. This provides a human co-creator
the ability to guide the generator loosely, with a
broad range per topic, or tightly, with a narrow
range per topic. We envision a co-creative loop
wherein the human user provides a control sketch
and iteratively updates the control sketch based on
generation results, refining the topics and refining
the ranges for the topics. The user interface for
eliciting control sketches from a human is outside
the scope of this paper and experiments about the
co-creative loop are left for future work. The next
sections provide the algorithmic support for control
sketches.

4.1 Blending Generative Model

The blending generative model generates the sen-
tence continuation. It consists of two parts, a
(1) plug-and-play language model and (2) a con-
trol model. Given a prompt x.¢, the plug-and-
play language model produces a vector of logits
Pr (z¢ | x<¢). The control model biases the out-
put of the language model toward particular to-
kens associated with the topics of the control codes
¢ € C based on the desired strengths of each topic
wreo € Q. Together the two models iteratively
find the best token x; that reflects both natural lan-
guage composition and control bias presented by ¢
and w. A larger w} means more steering towards
the topic represented by control code c.

Inspired by the application of generative adver-
sarial networks to latent space walking, we treat
Py (c| z¢, <) (described in section 3) as a heuris-
tic of direction that increases P (z; | x<¢,c) in a
|V'|-dimensional latent space, where V is the lan-
guage model’s vocabulary. For example, consider
two different control codes ¢; and ¢y instantiating
equation (4). To apply both control codes in the
generation process, we use the heuristic

P (x| x<t,c1,02) X Ppas (x4 | x<t) X

Y Py (co | wpyway)™?

&)

Py (e1 | @, xer)”

to combine the effect of both posterior distributions
into one universal posterior. w; and wo in this case
represents control strength for each control code, ¢y
and cy respectively, and can be different, enabling
continuous blending between topics. This process
can be repeated with a set of control codes C' =
{c1,...,cn} with weights Q = {wq,...,wy}.

Formally, at the decoding stage of the genera-
tion process, a control model compute controlled
probability using the following equation:

P (x| 2<,C) =

Pras (o | w<e) [Po(¢" | arace) ©
creC

where the control strengths of individual control
codes are normalized with) w} = w, where w is
total control strength.? This can be efficiently com-
puted by batching input sequences appended by
different control codes, with little overhead com-
pared to the original GeDi (Krause et al., 2020)
framework.

4.2 Planner

The human user provides a high-level control
sketch of the story, consisting of the number of
sentences, IV, a set of topics, C, and a range of
lines to which to apply the topic, r := (s,) where
s < e. See figure 2 for example sketches. Sketches
can have their range r overlap such that multiple
topics can be applied to the same lines of the story.

Given the control sketch, the planner produces
a control configuration C),, §2,, for each sentence
position n = {0, ..., N — 1}. The control config-
uration for each sentence is passed to the blending
generative model along with previous generated
sentences as prompt.

We interpret a control sketch as story arc on a
specific topic, which typically contains a transition,
an engagement and a phase-out, the planner should
give highest control strength to the midpoint of the
area, m := (s + e)/2, and lower strength towards
the start and end of the span of the area; We capture
this as a Gaussian distribution.

Formally, the following equation translates the
sketch into a control configuration for each position
n € N:

w:n = f(N(m,(c/(e —s+€)))(n—m) (7)

where f(-) indicates probability density function,
€ is an infinitesimal, and o is a tunable parameter
representing overall transition smoothness, where
higher o grants smoother transitions in the cost
of reduced topic engagement for midpoint. Since
there can be multiple control sketches and they can
be of the same control code, we apply each individ-
ual sketch in the order they are presented and nor-
malize after each application so that X,w, = 1.

This is not the only way to formalize this heuristic; We
found this to be effective and efficient.

65

S Experiments

For our experiments, we use the GPT2-large model
fine-tuned on ROCStories (Mostafazadeh et al.,
2016) as our base language model. Fine-tuning
GPT2 on ROCStories results in a model that gen-
erates short stories about common everyday situ-
ations. We pair the language model with a pre-
trained GeDi (which in turn is based on GPT-
2-medium) trained on AG-news?® as the guiding
model. Across all setups, at generation time, we
use greedy decoding with repetition penalty de-
scribed in Keskar et al. (2019), and only use the
first sentence generated as the output, discarding
every token after it if any.

Since there is no ground truth for any generated
sequence, metrics such as BLEU and other n-gram-
based metrics are not applicable. This poses a
unique challenge in evaluating our system, limiting
us to unsupervised metrics. In this section, we
report evaluation of our blending generative model
from two aspects:

* Fluency: measuring how our generated se-
quence forms natural language; and

* Control fidelity: measuring how our generated
sequence respects the requested control codes
and strength.

5.1 Blending Fluency

To evaluate fluency of sequences generated by our
blending generation model, we use perplexity of
base language model. The intuition is that if gener-
ated sentences have low average perplexity when
evaluated by the base LM then they are consistent
with sentences we would find in the English lan-
guage, as represented by the data used to train the
base LM. This in turn results in fluent-appearing
sentences.

To generate sequences from our model, we used
100 sentences from a held-out evaluation set of
ROCStories not seen at fine-tuning time. ROC-
Stories contains five-sentence stories; we always
pick the first sentence. That sentence becomes our
prompt and is paired with all possible combinations
of two topic choices chosen from “Business”, “Sci-
ence”, “Sports”, or “World”. These are the topics
that the GeDi model are optimized for. Our control
sketch gives equal blending weighting for all topics.
We vary the control strength using the following

*http://groups.di.unipi.it/~gulli/AG_
corpus_of_news_articles.html

http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html

Perplexity

20

T T T T T T
15 2.0 2.5 3.0 35 4.0

Control strength

T T T
0.0 0.5 1.0

Figure 2: Perplexity (lower is better) of generated se-
quences with 2 topics. Baseline performance set at 1z
of (Krause et al., 2020)-suggested control strength.

increments: [0,0.5,1,1.5,2, 3, 4]x, where 0 repre-
sents an uncontrolled base LM and 4z represents
400% of the control strength hyperparameter used
by Krause et al. (2020).

Figure 2 shows the average perplexity of gener-
ated sequences, measured by the Base LM. We
observe that average perplexity increases with
stronger control, signaling a departure of generated
sequences from what the base LM would generate,
and a potential decrease in fluency. This is to be
expected as the control is biasing the generated text
more and more toward the use of words that are
consistent with a particular topic and away from
general word frequency. While perplexity increase
is more or less linear in the range of 0 to 2x strength,
once above 2x strength, it can be better described
as exponential, hinting a stabler capability to gener-
ate fluent sentences in the region of 0 to 2x control
strength.

5.2 Control Fidelity

Control fidelity is how well the generator responds
to multiple control codes applied at once (see
Krause et al. (2020) for experiments applying one
control code at a time; we do not replicate them
in this paper). For story generation, multiple con-
trol codes can be applied to the same sentence in a
story at different weights. We perform experiments
in a latent space walking setting, to measure con-
tent changes of generated sentences under the same
prompt, same control codes but different relative
control strength, in an unsupervised way.

Given a particular prompt line in a story and two
control topics ¢; and co, we re-generate the same
line multiple times under different control strengths

66

for each topic. Specifically we set w., to 0%, 25%,
50%, 75% or 100% and w., = 1 —w, to represent
a range of different possible blends of topics in
the same line. See table 1 for an example. Since
we know the control parameters used to generate
these sentences, in which ¢; receives more and
more control strength relative to co, we expect to
see sentences that are increasingly about topic c;
and decreasingly about topic co. These sentences
do not comprise a story sequence, but are different
alternative sentences for the same line in a story
under different topic control specifications.

To determine whether a given generated sentence
was representative of a topic, we score each gen-
erated sentence with an off-the-shelf BART-based
zero-shot classifier (Wolf et al., 2020)* with ¢; and
c2, in raw text form, as possible classes. We then
compare the order of the sentences as determined
by the classifier to the ground truth order of increas-
ing control strength of c;. We report the correla-
tion of order between these two sequences using
Kendall’s 7-a metric. A perfectly strictly increas-
ing classifier score will grant a 7-a score of 1 for
a sequence. If the sentences have some reordering
based on classification score, 7-a is reduced. A
score of O indicates a random ordering and and a
score of —1 indicates a sequence that is exactly in
opposite order. Table 1 shows the classifier scores
for the possible next sentences under different con-
trol strengths; the classifier scores are not mono-
tonically decreasing, resulting in a 7-a score of
0.8.

Figure 3 shows a heat-map of the average 7-a
score of sequences of sentences generated with dif-
ferent control code pairs and different total control
strength (percentages). For each combination of
parameters, 100 sequences of 5 sentences are gen-
erated and evaluated. Comparing to the baseline,
which is the evaluation metric applied to order-
randomized stories in ROCStories dataset, we ob-
serve universal statistical significance (p < .01) in
improvement in 7-a metric. That is, without a con-
trol bias, rank ordering is random. As we increase
the total control strength, the rank order of gener-
ated sentences more closely matches the ground
truth order.

Some topic combinations (For example, Science-
Sports) work better than others (For example,
Science-World); the “World” category appears to
include a lot of overlapping vocabulary usage with

*pipeline("zero-shot-classifier")

Prompt: The people gathered to protest the court’s ruling last week.

c1 = Sports | c2 = Business Generated Sentence Classifier score

Wey Weo C1 C2

100% 0% Coach Leeman was in a wheelchair and had been taken to hospi- 86% 14%
tal for treatment.

75% 25% Coach Reebok was one of them. 65% 35%

50% 50% The players were joined by a few of them. 84% 16%

25% 75% The company Fhat owns the team was fined $1 ,000 for ylolatmg 379% 63%
a rule prohibiting employees from using their own equipment.
Bankruptcy Judge William H. said that the bank had failed to

0% 100% pay its creditors and was in default on $1 billion of loans it owed || 24% 76%
them.

Comparing column 1 with column 4, Kendall’s 7-a = 0.8 for this generated sequence.

Table 1: An example sequence of sentences generated for evaluation of control fidelity. The first two columns
indicate the requested control strengths for two topics, sports and business. The generated sentence results from
the prompt and the control weights (all numbers are 2z the default control strength). The last two columns indicate
the probability that each line is either Sports or Business based on a BART-based topic classifier. We expect to see
the classifier score for ¢; decrease as the classifier score for c¢o increases.

the other categories. Note that a perfect Kendall’s
7-a of 1.0 is likely impossible because our zero-
shot topic classifier will introduce some noise to
the ranking. However, the results show us that
the plug-and-blend technique (a) significantly in-
creases the likelihood that topics will be incorpo-
rated into sentences, and (b) is sensitive to blended
topics.

Figure 4 shows the same experiment as above,
but with a non-fine-tuned version of GPT2-large.
This shows that the plug-and-blend technique
works on language models that haven’t been fine-
tuned on ROCStories. The prompts are still se-
lected from ROCStories, however, for comparison,
but are not as representative of the untuned model.
In this condition, the text generated will not read as
sentences in stories. We observe similar improve-
ments over the baseline, demonstrating the ability
of our method in keeping the strong adaptation
capability.

5.3 Planner Experiments

In this section, we qualitatively demonstrate the ca-
pability of our pipeline by analyzing the generated
paragraphs using simulated user inputs described
as sets of control sketches.

Table 2 (left column) shows three sets of control
sketches with overlapping topic ranges. For exam-
ple, sketch 1 requests a 10-line story that covers the
topic of sports for the first 6 lines and covers the
topic of science for the last 6 lines (topics overlap
in the middle). For each control sketch we generate
10-line stories (N = 10) using the hyper-parameter
o =1 (see Equation 7). We use a neutral prompt
consisting of only the word “Recently” as the con-

67

text to generate the first line or if the generator ever
generates an empty line. The remainder of lines
use up to 2 sentences generated for the previous
context.

Table 2 (right column) shows the generated sto-
ries for each control sketch. We bold the sentence
where it is most clear that the topic has changed.
Figure 5 shows how the heuristic transforms each
control sketch into bias weights. The figure shows
we, for ¢; = Sports showing how the planner de-
creases the probability density bias for the topic
(the probability density for the second topic, we,,
is the mirror image).

With slight differences in the input control
sketches, we observe very different generated sto-
ries, with the transition between sports and science
happening later. One can see from Figure 5 why
this would be the case: the probability density for
the first topic becomes increasingly stronger for the
first lines of the story as the control sketch requests
the second topic later.

Because each sentence is biased by the previous
sentences in addition to the control sketch, the sen-
tence where the topic appears to switch often comes
later than the point of earliest topic overlap. The
requirement that each sentence continue the previ-
ous context creates a sense of momentum from the
previous context and thus from the previous topic.

Incoherent transitions may still happen. In the
story in Table 2 for sketch 3 shows one such inco-
herent transition due to the generation of an end-
of-text token. Our implementation uses the initial
prompt in this case, causing a portion of the story to
not be contextualized by the earlier story sentences.
Our ROCStories-tuned language model, based on

@{ 1 2 -4

ai -4 2 0

ca{ -3 -4 o

& & & &

(a) Baseline on order-shuffled

stories in ROCStories dataset. (b) Total control strength 1.

(c) Total control strength 2x. (d) Total control strength 4.

Figure 3: average 7-a (higher meaning better control fidelity) under different Total control strength for the tuned
model with topics: (c1) Business, (c2) Science, (c3) Sports, (c4) World, comparing to uncontrolled baseline. Heat

map strength is given as percentages (—100% . ..100%).

ity

perplex:

20 2
trol strength

&

IS
i3
%

(a) Perplexity of generated se-

quences (b) Total control strength 1x.

(c) Total control strength 2x. (d) Total control strength 4x.

Figure 4: Experiment results for the untuned model. Refer to Figure 3a for baseline comparison.

5-sentence stories, tends to predict end-of-text ear-
lier than models trained on longer stories.

6 Discussion

Our experiments suggest that there is a trade-off
between control fidelity and fluency. As Figures 2
and 3 show, a higher total control strength results in
overall better 7-a scores, meaning more sensitivity
and ability to correctly differentiate between topic
blends, but worse perplexity, risking less fluent lan-
guage. In practice, an iterative deepening algorithm
where multiple control strengths are used to gen-
erate multiple candidate sentences per line, can be
used. Control strength modifiers of 1z, 2z, 3z, 4z,
etc. can be tried and the best generated sentence, as
measured by perplexity (or any other task-specific
metric), is selected. This can, just like how mul-
tiple control codes are handled, be implemented
very efficiently.

The current planner is heuristic. Empirically we
find the heuristic to create good blends. We envi-
sion a planner that can be parameterized and learn
from demonstrations. Reinforcement learning, in
which the context and control sketches work as
world states, can choose control configurations as
actions. Feedback (reward) from the user would
be necessary. This would incorporate the plug-and-
blend technique into a human-in-the-loop creative

1.04 —— Sketch 1
—— Sketch 2

—— Sketch 3

Control Strength

o
IS
L

0.21

0.0

Sentence index

Figure 5: Control strength generated by the planner for
the first control code used for each control sketch in
Table 2. The control strength for the second control
code is the mirror of each.

process wherein the generator learns blending pref-
erences from the human creator (Guzdial et al.,
2018).

In this paper we have made no assumptions
about how control sketches are acquired from the
human user. We envision a processes whereby the
human co-creator has an idea of what the final
product—in this case a story—should be and can
express that vision at the level of how topics man-
ifest through the story. Supporting a co-creative

68

Control Sketches Generated Paragraph

Sketch 1
c1 = Sports, {0 — 5}
co = Science, {4 — 10}

She had a lot of fun doing it!

Jackie Robinson was playing in the NBA.

He had just been drafted by the Cleveland Cavaliers.

He decided to play for a team that was trying to win a championship.

"I’'m gonna go out there and beat them," he said "They’re going to be great."

"Yeah, they’re good," he said "they’ll be great."

He added that his wife had been working on the project for about a year.

He was happy to see her progress.

She was able to get some work done and she started getting more comfortable with it.

She also got her own computer, which is now in the living room.

Sketch 2
c1 = Sports, 0 — 5
¢o = Science, 5 — 10

excited about it!

game.

Jackie Robinson was playing in the NBA.

He had just played basketball for a few years.

He was looking forward to his first game of the season.

He decided to play with his friends and play against them in the court.

He got a lot of feedback from everyone who played against him, including some that were very

I was really happy when I saw how he played.

I also had to admit that my favorite player was the guy who beat me in the finals.

The computer game Super Mario 64 is a great game, but it’s not perfect.

I played it on my laptop and found that I couldn’t play it properly because of some bugs.
The problem was that the graphics were bad, so I had to use an emulator instead of playing the

Sketch 3
c1 = Sports, 0 — 5
¢ = Science, 6 — 10

Jackie Robinson was playing in the NBA.

He had just played basketball for a few years.

He was looking forward to his first game of the season.

He decided to play with his friends and play against them in the court.

He had a lot of fun playing against them, but he didn’t want to lose any time.

So he played with his friends for about an hour before going home and playing again.
He was very happy when they got home and started playing again!

I think it’s a good idea to have some fun with your kids, especially if you’re not too busy.
I’'m sure that you’ll enjoy this post as much as I did!

my daughter was diagnosed with a rare form of cancer.

Table 2: Generated Examples with different Control-Sketches. Sentences in bold show a topic transition.

human-AlI interaction, the human user can update
the control sketch and re-generate parts (or all) of
the story by changing the range of topics or choos-
ing different topics. The control model will need to
support different topics at different levels of gran-
ularity; currently the control model only supports
four topics, which is sufficient for conducting ex-
periments to characterize the plug-and-blend tech-
nique but not for full co-creativity.

7 Conclusions

In this paper, we present Plug-and-Blend, a plug-
and-play framework that enhances a base LM,
enables controllable generation with continuous-
weighted control codes, along with capability of
generating paragraphs based on control sketches,
all without access to internal knowledge of this
base LM. These capabilities will fuel a new gener-
ation of controllable generation applications with
the key assets of decoupling between the control-
lable component and the generative component,
and easiness of adapting to new advancements in
the field of generative LMs.

69

8 Acknowledgment

This material is based upon work supported by
the Office of Naval Research (ONR) under Grant
#N00014-14-1-0003.

References

Nader Akoury, Shufan Wang, Josh Whiting, Stephen
Hood, Nanyun Peng, and Mohit Iyyer. 2020. STO-
RIUM: A Dataset and Evaluation Platform for
Machine-in-the-Loop Story Generation. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
6470-6484, Online. Association for Computational
Linguistics.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language Models are Few-Shot
Learners.

https://doi.org/10.18653/v1/2020.emnlp-main.525
https://doi.org/10.18653/v1/2020.emnlp-main.525
https://doi.org/10.18653/v1/2020.emnlp-main.525
https://arxiv.org/abs/2005.14165v4
https://arxiv.org/abs/2005.14165v4

Alvin Chan, Yew-Soon Ong, Bill Pung, Aston
Zhang, and Jie Fu. 2020. CoCon: A Self-
Supervised Approach for Controlled Text Genera-
tion. arXiv:2006.03535 [cs]. ArXiv: 2006.03535.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane
Hung, Eric Frank, Piero Molino, Jason Yosinski, and
Rosanne Liu. 2020. Plug and Play Language Mod-
els: A Simple Approach to Controlled Text Genera-
tion. International Conference on Learning Repre-
sentations, (2020). ArXiv: 1912.02164.

Yu Duan, Canwen Xu, Jiaxin Pei, Jialong Han, and
Chenliang Li. 2020. Pre-train and Plug-in: Flexible
Conditional Text Generation with Variational Auto-
Encoders. Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
(2020):253-262. ArXiv: 1911.03882.

Le Fang, Tao Zeng, Chaochun Liu, Liefeng Bo, Wen
Dong, and Changyou Chen. 2021. Transformer-
based Conditional Variational Autoencoder for Con-
trollable Story Generation. arXiv:2101.00828 [cs].
ArXiv: 2101.00828.

Jessica Ficler and Yoav Goldberg. 2017. Controlling
Linguistic Style Aspects in Neural Language Gen-
eration. Proceedings of the Workshop on Stylistic
Variation, (2017):94-104. ArXiv: 1707.02633.

Matthew Guzdial, Nicholas Liao, and Mark Riedl.
2018. Co-Creative Level Design via Machine Learn-
ing. Fifth Experimental Al in Games Workshop.
ArXiv: 1809.09420.

Ehsan Hosseini-Asl, Bryan McCann, Chien-Sheng Wu,
Semih Yavuz, and Richard Socher. 2020. A Simple
Language Model for Task-Oriented Dialogue. Ad-
vances in Neural Information Processing Systems,
33.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan
Salakhutdinov, and Eric P. Xing. 2017. Toward Con-
trolled Generation of Text. In Proceedings of the
34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Re-
search, pages 1587-1596, International Convention
Centre, Sydney, Australia. PMLR.

Nitish Shirish Keskar, Bryan McCann, Lav R. Varsh-
ney, Caiming Xiong, and Richard Socher. 2019.
CTRL: A Conditional Transformer Language Model
for Controllable Generation. arXiv:1909.05858 [cs].
ArXiv: 1909.05858.

Muhammad Khalifa, Hady Elsahar, and Marc Dymet-
man. 2020. A Distributional Approach to Controlled
Text Generation. arXiv:2012.11635 [cs]. ArXiv:
2012.11635.

Ben Krause, Akhilesh Deepak Gotmare, Bryan Mc-
Cann, Nitish Shirish Keskar, Shafiq Joty, Richard
Socher, and Nazneen Fatema Rajani. 2020. GeDi:
Generative Discriminator Guided Sequence Genera-
tion. arXiv:2009.06367 [cs]. ArXiv: 2009.06367.

70

Xiang Lisa Li and Percy Liang. 2021. Prefix-Tuning:
Optimizing Continuous Prompts for Generation.
arXiv:2101.00190 [cs]. ArXiv: 2101.00190.

Andrea Madotto, Etsuko Ishii, Zhaojiang Lin, Sumanth
Dathathri, and Pascale Fung. 2020. Plug-and-Play
Conversational Models. arXiv:2010.04344 [cs].
ArXiv: 2010.04344.

Florian Mai, Nikolaos Pappas, Ivan Montero, Noah A.
Smith, and James Henderson. 2020. Plug and Play
Autoencoders for Conditional Text Generation. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6076-6092, Online. Association for Computa-
tional Linguistics.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James Allen. 2016. A Cor-
pus and Evaluation Framework for Deeper Under-
standing of Commonsense Stories. Proceedings of
the 2016 Conference of the North {A}merican Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 839-
849. ArXiv: 1604.01696.

Damian Pascual, Beni Egressy, Florian Bolli, and
Roger Wattenhofer. 2020. Directed Beam Search:
Plug-and-Play Lexically Constrained Language
Generation. arXiv:2012.15416 [cs]. ArXiv:
2012.15416.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Lan-
guage Models are Unsupervised Multitask Learners.
page 24.

Hannah Rashkin, Asli Celikyilmaz, Yejin Choi, and
Jianfeng Gao. 2020. PlotMachines: Outline-
conditioned generation with dynamic plot state
tracking. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 4274-4295, Online. Associa-
tion for Computational Linguistics.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gard-
ner, and Sameer Singh. 2019. Universal Adver-
sarial Triggers for Attacking and Analyzing NLP.
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), (2019):2153—
2162. ArXiv: 1908.07125.

Su Wang, Greg Durrett, and Katrin Erk. 2020. Nar-
rative Interpolation for Generating and Understand-
ing Stories. arXiv:2008.07466 [cs]. ArXiv:
2008.07466.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,

http://arxiv.org/abs/2006.03535
http://arxiv.org/abs/2006.03535
http://arxiv.org/abs/2006.03535
http://arxiv.org/abs/1912.02164
http://arxiv.org/abs/1912.02164
http://arxiv.org/abs/1912.02164
http://arxiv.org/abs/1911.03882
http://arxiv.org/abs/1911.03882
http://arxiv.org/abs/1911.03882
http://arxiv.org/abs/2101.00828
http://arxiv.org/abs/2101.00828
http://arxiv.org/abs/2101.00828
http://arxiv.org/abs/1707.02633
http://arxiv.org/abs/1707.02633
http://arxiv.org/abs/1707.02633
http://arxiv.org/abs/1809.09420
http://arxiv.org/abs/1809.09420
https://proceedings.neurips.cc//paper_files/paper/2020/hash/e946209592563be0f01c844ab2170f0c-Abstract.html
https://proceedings.neurips.cc//paper_files/paper/2020/hash/e946209592563be0f01c844ab2170f0c-Abstract.html
http://proceedings.mlr.press/v70/hu17e.html
http://proceedings.mlr.press/v70/hu17e.html
http://arxiv.org/abs/1909.05858
http://arxiv.org/abs/1909.05858
http://arxiv.org/abs/2012.11635
http://arxiv.org/abs/2012.11635
http://arxiv.org/abs/2009.06367
http://arxiv.org/abs/2009.06367
http://arxiv.org/abs/2009.06367
http://arxiv.org/abs/2101.00190
http://arxiv.org/abs/2101.00190
http://arxiv.org/abs/2010.04344
http://arxiv.org/abs/2010.04344
https://doi.org/10.18653/v1/2020.emnlp-main.491
https://doi.org/10.18653/v1/2020.emnlp-main.491
https://www.aclweb.org/anthology/N16-1098
https://www.aclweb.org/anthology/N16-1098
https://www.aclweb.org/anthology/N16-1098
http://arxiv.org/abs/2012.15416
http://arxiv.org/abs/2012.15416
http://arxiv.org/abs/2012.15416
https://doi.org/10.18653/v1/2020.emnlp-main.349
https://doi.org/10.18653/v1/2020.emnlp-main.349
https://doi.org/10.18653/v1/2020.emnlp-main.349
http://arxiv.org/abs/1908.07125
http://arxiv.org/abs/1908.07125
http://arxiv.org/abs/2008.07466
http://arxiv.org/abs/2008.07466
http://arxiv.org/abs/2008.07466

Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020.
HuggingFace’s Transformers: State-of-the-art Nat-
ural Language Processing. arXiv:1910.03771 [cs].
ArXiv: 1910.03771.

Zeqiu Wu, Michel Galley, Chris Brockett, Yizhe Zhang,
Xiang Gao, Chris Quirk, Rik Koncel-Kedziorski,
Jianfeng Gao, Hannaneh Hajishirzi, Mari Ostendorf,
and Bill Dolan. 2020. A Controllable Model of
Grounded Response Generation. arXiv:2005.00613
[cs]. ArXiv: 2005.00613.

Lili Yao, Nanyun Peng, Ralph Weischedel, Kevin
Knight, Dongyan Zhao, and Rui Yan. 2019. Plan-
And-Write: Towards Better Automatic Storytelling.
Proceedings of the AAAI Conference on Artificial In-
telligence, 33(1):7378-7385. ArXiv: 1811.05701.

71

http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/2005.00613
http://arxiv.org/abs/2005.00613
http://arxiv.org/abs/1811.05701
http://arxiv.org/abs/1811.05701

