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Abstract

Fully understanding narratives often requires
identifying events in the context of whole
documents and modeling the event relations.
However, document-level event extraction is a
challenging task as it requires the extraction
of event and entity coreference, and captur-
ing arguments that span across different sen-
tences. Existing works on event extraction
usually confine on extracting events from sin-
gle sentences, which fail to capture the rela-
tionships between the event mentions at the
scale of a document, as well as the event argu-
ments that appear in a different sentence than
the event trigger. In this paper, we propose
an end-to-end model leveraging Deep Value
Networks (DVN), a structured prediction al-
gorithm, to efficiently capture cross-event de-
pendencies for document-level event extrac-
tion. Experimental results show that our ap-
proach achieves comparable performance to
CRF-based models on ACEOQS, while enjoys
significantly higher computational efficiency.

1 Introduction

Narratives are account of a series of related events
or experiences (Urdang, 1968). Extracting events
in literature can help machines better understand
the underlying narratives. A robust event extraction
system is therefore crucial for fully understanding
narratives.

Event extraction aims to identify events composed
of a trigger of pre-defined types and the correspond-
ing arguments from plain text (Grishman et al.,
2005). To gain full information about the extracted
events, entity coreference and event coreference
are important, as demonstrated in Figure 1a. These
two tasks require document-level modeling. The
majority of the previous event extraction works fo-
cus on sentence level (Li and Ji, 2014; Huang et al.,
2020; Lin et al., 2020). Some later works leverage
document-level features, but still extract events at
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(b) Cross-event Dependencies Example.

Figure 1: (a) demonstrates why coreference resolution
is essential for event extraction. In the second sentence,
without entity coreference, an event extraction system
cannot identify which real-world entity does He refer
to. Similarly, incidence and shot will be incorrectly
linked to two different real-world events without event
coreference. (b) shows the importance of cross-event
dependencies. The local trigger classifier falsely clas-
sifies death as type DIE. Instead, it is an EXECUTE
event as a person’s life is taken away by an authority.
A structured prediction model that learns cross-event
interactions can potentially infer the correct event type
for death given the previous SENTENCE event is often
carried out by authorities.

the scope of sentence (Yang and Mitchell, 2016;
Zhao et al., 2018b; Wadden et al., 2019). More
recently, Du and Cardie (2020) and Du et al. (2020)
treat document-level event extraction as a template-
filling task. Li et al. (2020a) performs event men-
tion extraction and the two coreference tasks in-
dependently using a pipeline approach. However,
none of the previous works learn entity and event
coreference jointly with event mention extraction.
We hypothesize that joint learning event mention
extraction, event coreference, and entity corefer-
ence can result in richer representations and better
performance.
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Moreover, learning cross-event dependencies is cru-
cial for event extraction. Figure 1b shows a real
example from the ACEO5 dataset on how learning
dependencies among event mentions can help cor-
rect errors made by local trigger classifiers. How-
ever, efficiency is a challenge when modeling such
dependencies at the scale of document. While some
works attempted to capture such dependencies with
conditional random field or other structured predic-
tion algorithms on hand-crafted features (Li et al.,
2013; Lin et al., 2020), these approaches subject to
scalablility issue and require certain level of human
efforts. In this work, we study end-to-end learning
methods of an efficient energy-based structured pre-
diction algorithm, Deep Value Networks (DVN),
for document-level event extraction.

The contribution of this work is two-fold. First, we
propose a document-level event extraction model,
DEED (Document-level Event Extraction with
DVN). DEED utilizes DVN for capturing cross-
event dependencies while simultaneously handling
event mention extraction, event coreference, and
entity coreference. Using gradient ascent to pro-
duce structured trigger prediction, DEED enjoys
a significant advantage on efficienty for capturing
inter-event dependencies. Second, to accommodate
evaluation at the document level, we propose two
evaluation metrics for document-level event extrac-
tion. Experimental results show that the proposed
approach achieve comparable performance with
much better training and inference efficiency than
strong baselines on the ACEQS dataset.

2 Related Works

In this section, we summarize existing works on
document-level information extraction and event
extraction, and the application of structured predic-
tion to event extraction tasks.

Document-level Information Extraction Infor-
mation extraction (IE) is mostly studied at the
scope of sentence by early works. (Ju et al., 2018;
Qin et al., 2018; Stanovsky et al., 2018). Recently,
there has been increasing interest in extracting in-
formation at the document-level. Jia et al. (2019)
proposed a multiscale mechanism that aggregates
mention-level representations into entity-level rep-
resentations for document-level N-ary relation ex-
traction. Jain et al. (2020) presented a dataset for
salient entity identification and document-level N-
ary relation extraction in scientific domain. Li et al.
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(2020b) utilized a sequence labeling model with
feature extractors at different level for document-
level relation extraction in biomedical domain. Hu
et al. (2020) leveraged contextual information of
multi-token entities for document-level named en-
tity recognition. A few studies which tackled
document-level event extraction will be reviewed
in Section 2.

Document-level Event Extraction Similar to
other IE tasks, most event extraction methods make
predictions within sentences. Initial attempts on
event extraction relied on hand-crafted features and
a pipeline architecture (Ahn, 2006; Gupta and Ji,
2009; Li et al., 2013). Later studies gained sig-
nificant improvement from neural approaches, es-
pecially large pre-trained language models (Wad-
den et al., 2019; Nguyen et al., 2016; Liu et al.,
2018; Lin et al., 2020; Balali et al., 2020). Re-
cently, event extraction at the document level gains
more attention. Yang et al. (2018) proposed a two-
stage framework for Chinese financial event extrac-
tion: 1) sentence-level sequence tagging, and 2)
document-level key event detection and heuristic-
based argument completion. Zheng et al. (2019)
transforms tabular event data into entity-based di-
rected acyclic graphs to tackle the argument scat-
tering challenge. Du and Cardie (2020) employed
a mutli-granularity reader to aggregate representa-
tions from different levels of granularity. However,
none of these approaches handle entity coreference
and event coreference jointly. Our work focus on
extracting events at the scope of document, while
jointly resolving both event and entity coreference.

Structured Prediction on Event Extraction
Existing event extraction systems integrating struc-
tured prediction typically uses conditional random
fields (CRFs) to capture dependencies between pre-
dicted events (Xu et al., 2019; Wang et al., 2018).
However, CRF is only applicable to modeling lin-
ear dependencies, and has scalablility issue as the
computation cost at least grows quadratically in the
size of label. Another line of solutions incorporated
beam search with structured prediction algorithms.
Li et al. (2013) leveraged structured perceptron to
learn from hand-crafted global features. Lin et al.
(2020) adopted hand-crafted global features with a
global scoring function and uses beam search for in-
ference. While these structured prediction methods
can model beyond linear dependencies and alle-
viate the scalability issue, it requires pre-defined



orders for running beam search. In contrast, our
method addresses the above two issues by adopting
an efficient stuctured prediction algorithm, Deep
Value Networks, which runs linear in the size of
label and does not require pre-defined order for
decoding.

3 Document-level Event Extraction

3.1 Task Definition

The input to the document-level event extraction
task is a document of tokens D = {dy, d1, ..., dp, },
with spans S = {so, s1, ...S, } generated by iterat-
ing k-grams in each sentence (Wadden et al., 2019).
Our model aims to jointly solve event mention ex-
traction, event coreference, and entity coreference.

Event Mention Extraction refers to the subtask
of 1) identifying event triggers in D by predicting
the event type for each token d;. 2) Then, given
each trigger, corresponding arguments in S and
argument roles are extracted. This task is similar to
the sentence-level event extraction task addressed
by previous studies (Wadden et al., 2019; Lin et al.,
2020). The difference is that we require extract-
ing full spans of all name, nominal, and pronoun
arguments, while these works focus on extracting
head spans of name arguments. Entity Corefer-
ence aims to find which entity mentions refer to
the same entity. Our model predicts the most likely
antecedent span s; for each span s;. Event Coref-
erence is to recognize event mentions that are co-
referent to each other. Similar to entity coreference,
we predict the most likely antecedent trigger d;
for each predicted trigger d;. Entity Extraction is
performed as an auxiliary subtask for richer repre-
sentations. Each entity mention corresponds to a
span s; in S.

3.2 Task Evaluation

Evaluation metrics used by previous sentence-
level event extraction studies (Wadden et al., 2019;
Zheng et al., 2019; Lin et al., 2020) are not suit-
able for our task as event coreference and entity
coreference are not considered. Du and Cardie
(2020) evaluates entity coreference using bipartite
matching. However, it does not consider event
coreference and less informative arguments (nomi-
nal and pronoun). As a solution, we propose two
metrics: DOCTRIGGER and DOCARGUMENT, to
properly evaluate event extraction at the document
level. The purpose is to conduct evaluation on
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Figure 2: Use swap noise to enable DVN to continue
learning from the oracle value function even when the
local trigger classifier overfits on the training set.

event coreference clusters and argument corefer-
ence clusters. DOCTRIGGER considers trigger
span, event type, and event coreference. Triggers
in the same event coreference chain are clustered
together. The metric first aligns gold and predicted
trigger clusters, and computes a matching score
between each gold-predicted trigger cluster pair. A
predicted trigger cluster gets full score if all the
associated triggers are correctly identified. To en-
force the constraint that one gold trigger cluster
can only be mapped to at most one predicted trig-
ger cluster, Kuhn—Munkres algorithm (Kuhn, 1955)
is adopted. DOCARGUMENT considers argument
span, argument role, and entity coreference. We de-
fine an argument cluster as an argument with its co-
referent entity mentions. Similar to DOCTRIGGER,
DOCARGUMENT uses Kuhn—Munkres algorithm
to align gold and predicted argument clusters, and
compute a matching score between each argument
cluster pair. An event extraction system should
get full credits in DOCARGUMENT as long as it
identifies the most informative co-referent entity
mentions and does not predict false positive co-
referent entity mentions.! Details of the evaluation
metric are included in Appendix C.

4 Proposed Approach

We develop a base model that makes independent
predictions for each subtask under a multi-task IE
framework. The proposed end-to-end framework,
DEED, then incorporates DVN into the base model
to efficiently capture cross-event dependencies.

4.1 Base Model

Our BASE model is built on a span-based IE frame-
work, DYGIE++ (Wadden et al., 2019). DYGIE++
learns entity classification, entity corefernce, and
event extraction jointly. The base model extends

"'We set the weights for name, nominal, and pronoun to be
1, 0.5, and 0.25, inspired by Chen and Ng (2013).



the entity coreference module of DYGIE++ to han-
dle event coreference.

Encoding Ideally, we want to encode all tokens
in a document D = {d;,ds, ..., dy, } with embed-
dings that covers the context of the entire docu-
ment. However, due to hardware limitation for
long documents, each document is split into multi-
sentences. Each multi-sentence corresponds to a
chunk of consecutive sentences. We obtain rich
contextualized embeddings for each multi-sentence
of tokens e = {eq, ez, ..., e, } using BERT-BASE
(Devlin et al., 2019).

Span Enumeration Conventional event extrac-
tion systems use BIO tag scheme to identify the
starting and ending position of each trigger and
entity. Nevertheless, this method fails to handle
nested entities. As a solution, we enumerate all
possible spans to generate event mention and en-
tity mention candidates from uni-gram to k-gram.”
Each span s; is represented by corresponding head
token ey, tail token e; and the distance embed-
dings cp, ¢, denoted as x; = [ep,, e¢, cp ], follow-
ing Wadden et al. (2019).

Classification We use task-specific feed-forward
networks (FFN) to compute the label probabili-
ties. Trigger extraction is performed on each to-
ken y,"" = FFN'"(e;), while entity extraction
is done on each span y¢"™ = FEN®"(x;). For ar-
gument extraction, event coreference, and entity
coreference, we score each pair of candidate spans
yy, = FEN!([z;, z;]), where ¢ refers to a specific
task. Cross-entropy loss is used to learn trigger
extraction, argument extraction as follows

t
t 1 o tx t
£h=57 > vt logy,

=1

, where y%* denotes the ground truth labels, N*
denotes the number of instances, and ¢ denotes
different tasks.

For entity coreference and event coreference, BASE
optimizes marginal log-likelihood for all correct
coreferent spans given candidate spans.

N
cr=tog][ X vy

i=1j € COREF(4)

2k is empirically determined to be 12.
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where COREF (7) denotes the gold set of spans
coreferent with candidate span ¢, and ¢ denotes
different tasks. The total loss function for BASE is
the weighted sum of all tasks:

EBASE _ Zﬁtﬁt
t

B¢ is the loss weight for task t.

4.2 Cross-event Dependencies

A main issue for document-level event extraction
is the increased complexity for capturing event de-
pendencies. Due to larger number of events at the
scope of document, efficiency is a key challenge to
modeling inter-event interactions. We incorporate
DVN (Gygli et al., 2017) into BASE to solve this
issue given its advantage in computation efficiency.

Deep Value Networks DVN is an energy-based
structured prediction architecture v(x, y; 6) param-
eterized over 6 that learns to evaluate the compat-
ibility between a structured prediction y and an
input . The objective of v(x, y; ) is to approx-
imate an oracle value function v*(y,y*), a func-
tion which measures the quality of the output y
in comparison to the groundtruth y*, s.t.Vy €
V,v(x,y;0) v*(y,y*). The final evaluation
metrics are usually used as the oracle value func-
tion v*(y, y*). For simplicity, we drop the param-
eter notion 6 , and use v(x,y) to denote DVN
instead.

~
~

The inference aims to find § = argmax,v(z,y)
for every pair of input and output. A local optimum
of v(x, y) can be efficiently found by performing
gradient ascent that runs linear in the size of label.
Given DVN’s higher scalability compared with
other structured prediction algorithms, we leverage
DVN to capture cross-event dependencies.

Deep Value Networks Integration Local trig-
ger classifier predicts the event type scores for each
token independently. DVN takes in predictions
from local trigger classifiers y"*9 and embeddings
of all tokens e as inputs. Structured outputs "9
should correct errors made by the local trigger clas-
sifier due to uncaptured cross-event dependencies.
§'"9 is obtained by performing h-iteration updates
on local trigger predictions y'"*9 using gradient
ascent,’

3We set h=20 for best empirical performance.
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Yyt =Pyy' + a@v(e, y"))

~

9 =y, (1)
where y' = y!"9, o denotes the inference learn-
ing rate, and Py denotes a function that clamps
inputs into the range (0,1). The most likely

event type for token 7 is determined by comput-
Atm'g)

Y;

End-to-end DVN Learning We train DEED in
an end-to-end fashion by directly feeding the lo-
cal trigger predictions to both DVN and the oracle
value function. The trigger classification F7 metric
adopted by previous works (Wadden et al., 2019;
Lin et al., 2020) is used as the oracle value func-
tion v* (y%9, y'9*). To accommodate continuous
outputs, v*(y'"9, y'"9*) needs to be relaxed. We
relaxed the output label for each token from [0, 1]
to (0, 1). Union and intersection set operations for
computing the F scores are replaced with element-
wise minimum and maximum operations, respec-
tively. The relaxed oracle value function is denoted
as V" (Yirig, Yiri g). The loss function for the trigger
DVN is the following:

ing argmax(

[:DVN — Z 72* (yt'rig’ ytrig*) IOg v(e, ytrig)

ytr'bg

—(1=u"(y"", ") log(1 - v(e, y'™)).
@3

The total loss function for training DEED end-to-
end is the summation of BASE loss and DVN loss,

EDEED — EBASE + [/DVN‘

Noise Injection However, in this training setup,
DVN observes a large portion of high scoring ex-
amples at the later stage of training process when
the local trigger classifier starts to overfit on the
training examples. A naive solution is feeding ran-
dom noise to train DV N in addition to the outputs
of local trigger classifier. Yet, the distribution of
these noise are largely distinct from the output of
trigger classifier, and therefore easily distinguish-
able by DVN. Thus, we incorporate swap noise
into the local trigger predictions, where s% of the
local trigger outputs 4" are swapped, as depicted

40

in Figure 2.* This way, noisy local trigger predic-
tions have similar distributions to the original trig-
ger predictions. We also hypothesize that higher-
confident predictions are often easier to identify,
and swapping higher-confident trigger predictions
may not help DVN learn. We experimented swap-
ping only the lower-confident trigger predictions.

S Experiments

5.1 Experimental Setup

Our models are evaluated on the ACEQO5 dataset,
containing event, relation, entity, and coreference
annotations. Experiments are conducted at the doc-
ument level instead of sentence level as previous
works (Wadden et al., 2019; Lin et al., 2020).

5.2 Baselines and Model Variations

We compare DEED with three baselines: (1) BASE,
the base model described in Section 4.1; (2) BCRF
extends BASE by adding a CRF layer on top of
the trigger classifier; (3) OnelE™ is a pipeline com-
posed of the joint model presented in Lin et al.
(2020) and coreference modules adapted from
BASE. Lin et al. (2020) is the state-of-the-art
sentence-level event extraction model that utilizes
beam search and CRF with global features to model
cross sub-task dependencies. For fair comparison,
all models are re-trained using BERT-BASE (Devlin
et al., 2019) as the encoder.

In addition to the original DEED model, we con-
sider three variations of it, as discussed in Sec-
tion 4.2. DEED w/RN incorporates random noise
while learning DVN, whereas DEED w/SN inte-
grates swap noise. DEED w/SNLC is an extension
of DEED w/SN, where swap noise is only applied
to lower-confident trigger predictions.

5.3 Overall Results

The overall results are summarized in Table 1. To
measure the overall performance, a combined score
(Comb.) is computed by multiplying DOCTRIG-
GER F} and DOCARGUMENT Fj;. DEED and
BCRF achieve huge improvement on all metrics
over BASE, suggesting the importance of cross-
event dependency modeling for our task. Adding
random noise or swap noise to train DVN both
improve upon the vanilla training method. OnelE*
achieves the best DOCARGUMENT performance,

*s is empirically set to 20



DOCTRIGGER DOCARGUMENT
Model Prec. Rec. F1 Prec. Rec. F1 Comb.
BASE 71.25 6094 65.69 43.75 48.65 46.07 17.13
BCRF 71.87 65.18 68.36 49.84 52.16 50.97 34.84
OnelE* 7196 62.04 66.63 49.64 56.58 52.88 35.23
DEED 7097 6290 66.70 46.13 51.34 48.60 32.42
w/ RN 71.69 65.76 68.59 48.52 52.53 5044 34.60
w/ SN 70.87 64.02 67.28 43.76 55.15 48.80 32.83
w/ SNLC 73.89 6498 69.14 48.00 5527 51.38 35.52

Table 1: Experimental results on ACEQ5 using document-level evaluation metrics. RN: random noise; SN: swap
noise; SNLC: swap noise applying to lower-confident predicted triggers.

Model Trig-1 Trig-C Arg-I Arg-C Evt-Co Ent-Co
BCRF 73.92 70.57 51.77 48.31 54.02 74.23
BASE 71.97 68.17 4795 4457 4395 71.88
OnelE* 7391 71.01 57.19 53.89 42.75 77.00
DEED 73.68 69.62 52.35 48.24 5385 75.77
w/RN 7233 68.20 51.33 48.66 49.86 74.39
w/ SN 74.19 69.54 51.27 48.10 48.94 75.60
w/ SNLC 75.06 71.73 55.12 52.09 50.11 76.98

Table 2: A breakdown of evaluation for each component in F1 evaluated on ACEQS. Trig: trigger; Arg: argument;/:
identification; C: classification; Evt-Co: event coreference; Ent-Co: entity coreferecne.

Model Training (sec/ multi-sent) Inference (sec/ doc)

BASE 0.52 1.50
BCRF 2.55 9.10
OnelE* 1.21 15.89
DEED 0.71 1.52

Table 3: Comparison of training and inference time,
evaluated on the training set and the dev set.

while DEED w/SNLC achieves the highest DOC-
TRIGGER score and combined score.

6 Analysis

6.1 Performance of Each Component

To understand the capabilities of each module, we
show an evaluation breakdown on each component
following previous works (Wadden et al., 2019;
Lin et al., 2020) in Table 2.° Both BCRF and
DEED obtain significant performance gain over
BASE across all tasks. In terms of trigger-related
tasks, Trig-I and Trig-C, DEED w/SNLC achieves
the highest scores. Yet, BCRF performs the best
on Evt-Co. This explains the close performance
of DEED w/SNLC and BCRF on DOCTRIGGER,

SThese studies focus on extracting head span of name
argument, while we extract full span of all types of arguments.
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as shown in Table 1. In terms of argument-related
tasks, OnelE* achieves the best performance on
Arg-I and Arg-C. This suggests that cross-subtask
modeling can be important to improve argument
extraction. Arg-I and Arg-C are much lower than
the reported scores by previous studies (Wadden
et al., 2019; Lin et al., 2020). This suggests the
difficulty of extracting full span of pronoun and
nominal arguments.

6.2 Computation Time

Table 3 describes the computation time of different
models. DEED only requires slightly more compu-
tation time in both training and inference time than
BASE. By contrast, compared to BCRF, DEED
is ~3.5x faster in training time and ~6x faster in
inference time. This demonstrates the efficiency
of our approach given the little increase in com-
putation time and the significant performance gain
comparable to BCRF detailed in Tables 1 and 2.
We also added experiments with OnelE" as a ref-
erence, but the comparison focuses on end-to-end
frameworks.



Training Method  Loss (Cross Entropy)

Original 0.3613
RN 0.7451
SN 0.2393
SNLC 0.2298

Table 4: The average DVN loss of different DEED
training methods on the test set. The lower the loss,
the closer between DV N and the oracle value function.

6.3 Value Function Approximation

To show that the performance gain of DEED is
resulted from improved capabilities of DVN in
judging the structure of predicted triggers, we in-
vestigate how close DVN approximates the oracle
value function under different training settings. We
use cross entropy loss as the distance function be-
tween the output of DVN and and output of the
oracle value function on the test set. The lower
the loss is, the closer between the output of DVN
and the output of the oracle value function. Ta-
ble 4 shows the approximation results. The SNLC
variation (swap noise applying to lower-confident
predicted triggers) yields the lowest loss comparing
to the base model and other variations. Along with
the results shown in Table 2, we show that lower
DVN loss results in better trigger scores. This
demonstrates that integrating noise into DV N train-
ing procedure is effective in learning better DVN
and obtaining better overall performance.

6.4 Error Analysis

We manually compared gold and predicted labels of
event mentions on the ACEO5 test set and analyzed
the mistakes made by our model. These errors are
categorized as demonstrated in Figure 3.

Annotation Ambiguity

Cross-Event Dependencies

Conceptual Events

Weak Textual Evidence

Figure 3: Distribution of errors made by DVN on the
ACEDS test set.

Annotation ambiguity A significant portion of
the false positive errors are caused by the ambiguity
of the task. Such ambiguity can result in disagree-
ment between human annotators. For example,

Lebanese Prime Minister Rafiq Hariri submit-
ted his resignation Tuesday and it was accepted
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by President Emile Lahoud.

In the sentence above, the trigger label for token
resignation should be END-POSITION, according
to the annotation guideline. Yet, it is not annotated
as a trigger in gold annotation. In other cases, two
sentences with similar structures contain inconsis-
tent gold annotation, such as:

Separately, former WorldCom CEO Bernard
Ebbers failed on April 29 to make a first repay-
ment of 25 million dollars ...

Former senior banker Callum McCarthy be-
gins what is one of the most important jobs in
London ’s financial world in September

The two examples above share similar context.
However, the former in the first sentence is not
involved with any event, whereas the former in the
second sentence is annotated as an END-POSITION
typed trigger.

Conceptual Events Another common source of
false positive errors is extracting “conceptual”
events, which did not happen or may happen in
the future. For instance,

... former WorldCom CEO Bernard Ebbers

failed on April 29 to make a first repayment of 25
million dollars ...

Our model predicts the word repayment as an
TRANSFER-MONEY, which is true if it indeed hap-
pened, except it failed, as indicated in the beginning
of the sentence. To handle this type of error, models
need to be aware of the tense and whether there is
a negative sentiment associated with the predicted
events.

Weak Textual Evidence Our model commonly
made false negative errors in cases where the tex-
tual information is vague.

But both men observed an uneasy truce over

US concerns about Russian aid to the nuclear
program of Iran ...

In the above sentence, DVN fails to identify the
token aid as a trigger of type TRANSFER-MONEY.
In fact, it is hard to determine whether the aid is
monetary or military given the context of the whole
document. In this case, models have to be aware of
information from other sources, such as knowledge
bases or other news articles.

Cross-event Dependencies Although our model
is able to correct many mistakes made by BASE that
requires modeling of cross-event dependencies, as



\ Within sentence  Cross sentence

Basp Correct | 161 126
Incorrect | 71 45
ppgp | Correct | 166 136
Incorrect | 66 35

Table 5: Trigger predictions comparison between

BASE and DEED. Cross sentence refers to triggers with
co-referent triggers that lie in different sentences.

demonstrated in Table 5, there are still a few cases
where our model fails.

... after the city ’s bishop committed sui-
cide over the 1985 blasphemy law . Faisalabad
’s Catholic Bishop John Joseph , who had been
campaigning against the law , shot himself in the
head outside a court in Sahiwal district when the
judge ... himself in the head outside a court

In the above example, DV N correctly predict sui-
cide as a DIE typed trigger, but falsely predict shot
as type ATTACK instead of type DIE. If our model
could capture the interactions between suicide and
shot, it would be able to process this situation.
There is still room to improve in cross-event depen-
dency modeling.

7 Conclusion

In this paper, we investigate document-level event
extraction that requires joint modeling of event
and entity coreference. We propose a document-
level event extraction framework, DEED, which
uses DVN to capture cross-event dependencies,
and explore different end-to-end learning methods
of DVN. Experimental results show that DEED
achieves comparable performance to competitive
baseline models, while DEED is much favorable in
terms of computation efficiency. We also found that
incorporating noise into end-to-end DVN training
procedure can result in higher DVN quality and
better overall performance.

8 Ethics

Biases have been studied in many information ex-
traction tasks, such as relation extraction (Gaut
et al., 2020), named entity recognition (Mehrabi
etal., 2020), and coreference resolution (Zhao et al.,
2018a). Nevertheless, not many works investi-
gate biases in event extraction tasks, particularly
ACEQS.

We analyze the portion of male pronouns (he, him,
and his) and female pronouns (she and her) in the

43

ACEQS dataset. In total, there are 2780 male pro-
nouns, while only 970 female pronouns appear in
the corpus. We would expect the trained model to
perform better when extracting events where male
arguments are involved, and make more mistakes
for event involving female arguments due to the
significant imbalance between male and female en-
tity annotation. After analyzing the performance
of DEED w/ SNLC on the test set, we found that
it scores 54.90 and 73.80 on Arg-C F for male
and female pronoun arguments, respectively. Sur-
prisingly, our model is better at identifying female
pronoun arguments than male pronoun arguments.

While our proposed framework may not subject to
gender biases in ACEOQS, whether such issue can
occur when our model is deployed for public use
is unknown. Rigorous studies on out-of-domain
corpus is needed to answer this question.
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A Data Statistics

The statistics of ACEQ5 are shown in Table 6.We
observe that the event coreference annotation is
very sparse.

Split  Docs Events Entities Ent-C  Evt-C
Train 529 4202 47569 6814 482
Dev 28 450 3423 553 45
Test 40 403 3673 577 58

Table 6: Data statistics of ACE0S5. Ent-C and Evt-C
denote the number of entity and event coreference clus-
ters, respectively.

B Implementation Details

We adopted part of the pre-processing pipelines
from Wadden et al. (2019) for data cleaning and
dataset splitting.

BASE, BCRF, and DVN are optimized with
BERTADAM for 250 epochs with batch size of 16.
BERT-BASE is fine-tuned with learning rate of le-
4 and no decay, while the other components are
trained with learning rate of 1e-3 and weight decay
of le-2. Training is stopped if the dev set Arg-
C I score does not improve for 15 consecutive
epochs. OnelE" is trained with the default parame-
ters described in Lin et al. (2020). All experiments
are conducted on a 12-CPU machine running Cen-
tOS Linux 7 (Core) and NVIDIA RTX 2080 with
CUDA 10.1.

C Document-level Evaluation Metrics

D Development Set Performance
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Algorithm 1 Document-level Trigger Evaluation
Metric
1: function DOCTRIGGER(gold events G, pre-
dicted events P)

2: Let match = false-alarm = miss = hit = 0
3: Let M be a trigger matching matrix.
4: for g in G.triggers do
5: for p in P.triggers do
6: if | SAMEEVENTTYPE(g, p) then
7: match =0
8: else
9: match = Trig-1(p, g)
10: end if
11: M]g.idx, p.idx] = match
12: end for
13: end for
14: assignments = KUHN-MUNKRES(M)
15: for ¢, j in assignments do
16: if G.triggers[¢] is null then
17: false-alarm +=1
18: else if P.triggers[] is null then
19: miss +=1
20: else
21: match += M [i][J]
22: hit +=1
23: end if
24: end for
25: return (match, false-alarm, miss, hit)

26: end function




Model Trig-I Trig-C Arg-1 Arg-C Evt-Co Ent-Co

BASE 74.63 7049 5682 5241 30.64 6731
BCRF 76.53  72.89 59.62 5447 33.16 68.72
OnelE* 76.78 7356 63.12 59.32  35.81 70.78
DEED 7711 7231 6242 5580 3190  69.57

w/ RN 75774 7094 6145 5518 3488  68.56
w/ SN 7781 7453 6190 5552 38,55  69.48
w/SNLC 76.76 72.13 62.78 5745 3132  70.78

Table 7: A breakdown of evaluation on the dev set for each model. The corresponding test set performance is
shown in Table 2.

Algorithm 2 Document-level Argument Evalua-
tion Metric
1: function DOCARGUMENT(gold events G, pre-
dicted events P)

2: Let match = false-alarm = miss = hit = 0
3: Let M be an argument matching matrix.
4: for g in G.arguments do
5: for p in P.arguments do
6: MTz, j] = ARGMATCH(g, p)
7: end for
8: end for
9: assignments = KUHN-MUNKRES(M)
10 for i, j in assignments do
11: if G.arguments[¢] is null then
12: false-alarm +=1
13: else if P.arguments|j] is null then
14: miss +=1
15: else
16: match += M [i][j]
17: hit +=1
18: end if
19: end for
20: return (match, false-alarm, miss, hit)

21: end function

Algorithm 3 Argument match called by Algo-
rithm 2
1: function ARGMATCH(gold argument cluster
g, predicted argument cluster p)

BMA = BESTMATCHEDARGUMENT(p,g)
w = GETWEIGHT(BMA) © The weights
for name, nominal, pronoun are 1, 0.5, 0.25.
8: false-alarm = |p — g| > Set operation
9: return w x (1 — f"lsj';"l“””)
10: end function

2: if not SAMEROLE(g, p) or not

3: not SAMEEVENTTYPE(g, p) then
4: return 0

5: end if

6:

7:
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