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Abstract

Being able to generate accurate word
alignments is useful for a variety of tasks.
While statistical word aligners can work
well, especially when parallel training
data are plentiful, multilingual embed-
ding models have recently been shown to
give good results in unsupervised scenar-
ios. We evaluate an ensemble method for
word alignment on four language pairs and
demonstrate that by combining multiple
tools, taking advantage of their different
approaches, substantial gains can be made.
This holds for settings ranging from very
low-resource to high-resource. Further-
more, we introduce a new gold alignment
test set for Icelandic and a new easy-to-use
tool for creating manual word alignments.

1 Introduction

Word alignment, the task of finding corresponding
words in a bilingual sentence pair (see Figure 1),
was a key component of statistical machine trans-
lation (SMT) systems. While word alignments
are not necessary for neural machine translation
(NMT), various MT methods incorporating word
alignment have been found to achieve significant
improvements in performance. Alkhouli et al.
(2018) and Liu et al. (2016) use alignments as a

Figure 1: A simple example of English-Icelandic
word alignments. Corresponding words are con-
nected by edges.

prior; Arthur et al. (2016) augment NMT systems
with discrete translation lexicons that encode low-
frequency words; Press and Smith (2018) infer a
correspondence between words in sentence pairs
before encoding/decoding and, as demonstrated
by Poncelas et al. (2019), back-translated data cre-
ated using SMT systems, requiring word align-
ments, can be valuable to augment NMT systems.
Word alignments have also been utilized to im-
prove automatic post-editing (Pal et al., 2017) as
well as to preserve markup in machine-translated
texts (Müller, 2017).

Various other subfields of NLP make use of
word alignments. Shi et al. (2021) show that by
simply pipelining word alignment with unsuper-
vised bitext mining, bilingual lexicon induction
(BLI) quality can be improved significantly. For
BLI, Artetxe et al. (2019) use an unsupervised MT
pipeline, also employing word alignments. Kurfalı
and Östling (2019) use word alignments to filter
noisy parallel corpora, and Paetzold et al. (2017)
include word alignment as a part of their pipeline
to align monolingual comparable documents.

There is a variety of word aligners available.
Giza++ (Och and Ney, 2003) and fast_align
(Dyer et al., 2013) are easy to use implementations
of the IBM models (Brown et al., 1993). Other
statistical aligners, such as eflomal (Östling and
Tiedemann, 2016), have also been shown to be fast
and give competitive results. SimAlign (Masoud
et al., 2020) takes advantage of the rising avail-
ability of contextualized embeddings and lever-
ages them by extracting alignments from similar-
ity matrices.

In this work, we present CombAlign, an ensem-
ble of these four tools (Giza++, fast_align, eflo-
mal, and SimAlign). As they are based on differ-
ent approaches, and all able to attain a fairly high
F1-score, it is reasonable to expect that combining
their results in a sensible way could give better re-
sults than using any one of the individual systems.



Recently, the first reported results in SMT
and NMT for Icelandic were published (Jónsson
et al., 2020) within the context of an Icelandic na-
tional language technology programme (Nikulás-
dóttir et al., 2020). Icelandic is a morphologically
rich West Germanic language with relatively few
speakers, for which a substantial amount of lan-
guage resources has been made available in recent
years. However, no previous work has been con-
ducted on word alignments for Icelandic. While
testing our methods on four language pairs, we fo-
cus in particular on the effects of different align-
ment methods on the English-Icelandic (en-is) lan-
guage pair. For finding the best hyperparameters
for our ensemble, we thus do a grid search using
an en-is development set.

Our main contribution is showing that it is pos-
sible to obtain high-quality word alignments us-
ing a combination of selected tools, outperform-
ing all of the individual word alignment tools. We
show this for four language pairs, with more de-
tailed scrutiny of the results for one of them, en-is.
Furthermore, we:

• publish a new gold standard word alignment
reference set for en-is.

• make available a graphical tool, AlignMan,
for manually curating word alignments.1

• make the source code available for running
the alignment tools and extracting combined
alignments from them.2

2 Related Work

The most common statistical word alignment tools
are based on the IBM models (Brown et al.,
1993). These include fast_align (Dyer et al.,
2013), Giza++ (Och and Ney, 2003) and eflomal
(Östling and Tiedemann, 2016), all used in this
work. The five IBM models use lexical translation
probabilities and probability distributions with the
different models adding or emphasizing different
features to tackle weaknesses of the other models.
While fast_align builds on IBM model 2, Giza++
iterates on a number of the models in sequence,
as well as using an HMM model. eflomal uses a
Bayesian model with Markov Chain Monte Carlo
inference on the IBM models.

Several studies on word alignments in relation
to neural models have been published. Liu et al.

1https://github.com/steinst/AlignMan
2https://github.com/steinst/CombAlign

(2016) show that attention can be seen as a re-
ordering model as well as an alignment model,
and Ghader and Monz (2017) investigate the dif-
ferences between attention and alignment. Zenkel
et al. (2019) apply stochastic gradient descent to
directly optimize the attention activations towards
a given target word, resulting in accurate word
alignments, and Garg et al. (2019) extract discrete
alignments from the attention probabilities learnt
during regular NMT training and leverage them
to optimize towards translation and alignment ob-
jectives. Most of these systems require parallel
data for training, but SimAlign (Masoud et al.,
2020) takes advantage of the rising availability of
contextualized embeddings and leverages them by
extracting alignments from similarity matrices in-
duced from the embeddings, with no need for any
external data.

Ensemble methods are common in NLP and, in
many cases, have been shown to give more accu-
rate results than using just one single approach.
They have been used, for example, for classi-
fying patent applications (Benites et al., 2018),
for spellchecking (Stefanescu et al., 2011), POS-
tagging (Henrich et al., 2009) and sentiment anal-
ysis (Araque et al., 2017). For word alignments,
Tufiş et al. (2006) have previously used a union
of two different alignment approaches, each pro-
ducing distinct alignments. One of their align-
ers was an implementation of the IBM models,
and the other used translation lexicons and phrase
boundaries to detect alignments. Their combined
aligner outperformed both individual systems, and
its results produced approximately 10% fewer er-
rors than the better individual aligner.

3 Data

For evaluation, we use gold standard word align-
ments for four language pairs: Czech, German,
French and Icelandic, all paired with English (en-
cs, en-de, en-fr and en-is, respectively). For
the methods trained on parallel data, Giza++,
fast_align and eflomal, we use a subset of 512k
sentences from Europarl (Koehn, 2005), except in
the case of Icelandic as detailed in Section 3.1.
Further information on the test sets is given in Ta-
ble 1.

3.1 Icelandic Data

No gold standard word alignments have previ-
ously been made available for Icelandic. In order



Lang. Gold Sent. Edges
Pair Standard Pairs
en-cs Mareček

(2008)
2,501 67,424

en-de Europarl3 508 10,534
en-fr Och and Ney

(2000)
447 17,438

en-is new 384 5,517

Table 1: Gold standard alignments used for evalu-
ation. The en-is gold standard contains further 220
sentence pairs that were used as a development set
for grid search.

Figure 2: A screenshot from AlignMan. The pro-
gram reads in text files with parallel sentences.
The user can edit the sentences, discard them or
create edges between words by moving the cursor
to select corresponding words and then saving the
alignment. It supports up to two users and can ex-
port a union or intersection of their alignments in
two different formats.

to test our approach and other alignment meth-
ods on Icelandic, we thus compiled development
and test sets. For that purpose, we created a sim-
ple graphical tool for performing manual word
alignment, AlignMan, which is available under an
Apache2 licence. A screen shot from AlignMan
can be seen in Figure 2.

Two annotators manually aligned 604 sen-
tences, a random sample from the ParIce en-is par-
allel corpus (Barkarson and Steingrímsson, 2019).
They then reviewed the other annotator’s work in
order to eliminate mistakes. The two annotations
were then combined. All 1-to-1 alignments that

3https://www-i6.informatik.
rwth-aachen.de/goldAlignment/

the annotators agreed upon were marked as ‘sure’
alignments and all other alignments made by ei-
ther one or both of the annotators were marked as
‘possible’ alignments. The set was then split in
two, with 220 sentences in a dev-set and 384 sen-
tences in a test-set. The gold alignments are avail-
able for download from the CLARIN repository4

where further information on the criteria for build-
ing the corpus is available.

When parallel data was required to train the
word aligners, sentence pairs from the ParIce cor-
pus were used.

4 Methodology

In order to find the best settings for each aligner,
we carry out a grid search. We run Giza++,
fast_align and eflomal using different setups. For
SimAlign, we use two different contextual embed-
ding models and run them with different hyper-
parameters. We are thus working with five differ-
ent aligners/alignment models. Finally, we pro-
ceed to find the best ensemble for different levels
of parallel data availability.

4.1 Experimental Setup

By default, Giza++ runs IBM models 1, 3 and 4 as
well as an HMM model, while fast_align is based
on IBM model 2. We use default settings for these
two aligners as well as for eflomal and compared
their results after processing their output with dif-
ferent heuristics. These aligners are not trained
on other word alignments, but rather on sentence-
aligned parallel texts. They use an expectation
maximization algorithm, iteratively learning from
the parallel sentences; starting by initializing the
model, then applying it to the data and setting the
most probable alignments. After filling in gaps
and collecting counts for particular word transla-
tions a new probability distribution is estimated.
These steps are iterated until convergence.

Because the aligners learn probabilities from
the data they run on, they should be better able to
induce lexical translation probabilities and prob-
ability distributions when the size of the data in-
creases, which in turn should lead to an increase
in quality. In order to study this effect, we ran
the aligners with varying numbers of sentences.
The data we use for the experiments is described
in Section 3.

4http://hdl.handle.net/20.500.12537/
103



Giza++
All settings default
fast_align
Heuristics intersection, union,

gd, gdf, gdfa
eflomal
Heuristics intersection, union,

gd, gdf, gdfa
SimAlign
Models BERT, XLM-R
Tokenization Word, BPE
Heuristics Argmax, Itermax, Match
Distortion [0.02, 0.03, ..., 0.09, ..., 0.15]
Null extension [0.85, 0.90, 0.95, 0.96, 0.97,

0.98, 0.99, 1.0]

Table 2: Hyperparameters for the different align-
ers. Shown in bold are the ones giving the highest
F1-score.

Giza++ only outputs one set of alignments after
each run, but for fast_align and eflomal we output
alignments for both directions, source→target lan-
guage and target→source, and then generate align-
ments from these using different alignment heuris-
tics: intersection and union, as well as grow-diag
(gd), grow-diag-final (gdf) and grow-diag-final-
and (gdfa).

With SimAlign, we induce alignments from two
different contextualized embedding models, mul-
tilingual BERT (mBert) (Devlin et al., 2019), and
XLM-R (Conneau et al., 2020), and run experi-
ments both for whole words and byte-pair encod-
ings (BPE) (Sennrich et al., 2016). The align-
ments are obtained from similarity matrices us-
ing three different methods: Match, a graph-based
method that identifies matches in a bipartite graph;
Argmax, which aligns two words if the target word
is the most similar to the source word, or vice
versa; and Itermax, which applies Argmax iter-
atively and is thus better able to find alignment
edges when one word aligns with two or more
words in the other language. We did a grid search
on the en-is development set, calculating the best
scores using these methods and two other hyper-
parameters: distortion correction and null exten-
sions, which set a threshold for when to remove
edges and create null alignments. Different set-
tings in our grid search are shown in Table 2.

For each of the alignment tools, we selected
the hyperparameters giving the highest F1-score.

Then another grid search was carried out to find
how best to combine the results. For that we
had two parameters: combination of alignment
tools, with 3 to 5 aligners/alignment models in
each ensemble; and different parameters to join
the alignments: with unionall, which ac-
cepts all alignments of the systems in the sug-
gested ensemble, and different levels of intersec-
tion, from intersectmin2 that requires two
aligners to agree for an edge to be accepted,
to intersectmin5 where all aligners have to
agree on each edge.

Finally, in order to examine whether our ensem-
ble method is applicable to other language pairs,
we test it on three of the test sets used in Masoud
et al. (2020) and compare our results to theirs.

5 Experiments and Results

As described in Section 4.1, we identified the op-
timal settings and post-processing heuristics for
each tool using grid search on the dev-set (see Ta-
ble 2). We used these settings to obtain scores on
our test-set, as shown in Tables 3 and 4.

5.1 Individual Aligners

While we use the same setting for each tool
throughout, after having executed the grid search,
the results of the ensemble differs in relation to
how much data is being aligned. Relying at least in
part on lexical translation probabilities, fast_align
and Giza++ require a substantial amount of data
before they become fairly accurate, while eflo-
mal seems to be less susceptible to paucity of
data. Figure 3 shows how F1 increases for each
system when evaluated on the Icelandic test set,
when more parallel sentences are added for train-
ing. The aligners always learn from at least 384
test sentences, and up to an additional 3.6 mil-
lion sentences. Table 3 shows precision, recall,
F1-score and number of edges, i.e. individual
word alignments, produced by eflomal, Giza++,
and fast_align, when run with varying numbers of
sentence pairs. Rather accurate from the start, the
main advantage of training eflomal on more data is
to get higher recall and more edges, while Giza++
and fast_align always output a similar number of
edges, but both precision and recall rise when
more sentence pairs are added.

SimAlign does not need any parallel data to
learn from, and unlike the other aligners the re-
sults do not change when there is more data to



eflomal Giza++ fast_align
intersect intersect

Samples Prec. Rec. F1 Edges Prec. Rec. F1 Edges Prec. Rec. F1 Edges
0 .85 .76 .80 3803 .62 .74 .67 5387 .73 .67 .70 4005
1000 .87 .81 .84 4003 .64 .74 .68 5247 .78 .71 .74 3979
2000 .87 .83 .85 4098 .64 .75 .69 5223 .80 .73 .76 3978
4000 .87 .85 .86 4229 .64 .74 .68 5143 .82 .75 .78 3978
8000 .87 .87 .87 4320 .65 .74 .69 5117 .83 .76 .80 3976
16000 .88 .89 .88 4432 .67 .77 .72 5089 .85 .78 .81 3998
32000 .88 .90 .89 4507 .70 .79 .74 5072 .87 .80 .83 4008
64000 .88 .92 .9 4561 .72 .82 .77 5051 .88 .82 .85 4034
128000 .88 .93 .91 4622 .75 .85 .80 5019 .89 .84 .87 4086
256000 .88 .93 .91 4654 .78 .87 .82 5000 .90 .85 .88 4139
512000 .88 .93 .91 4667 .81 .89 .85 4982 .90 .86 .88 4151
1024000 .88 .94 .91 4713 .83 .91 .86 4951 .91 .87 .89 4165
2048000 .88 .94 .90 4722 .84 .91 .87 4927 .91 .86 .89 4139
3600000 .88 .94 .91 4745 .85 .92 .88 4913 .91 .86 .89 4115

Table 3: Precision, recall, F1-scores and number of edges for each of the IBM model-based aligners,
with various numbers of parallel sentences added for training the aligners.

align. However, the tokenization used (BPE or
the original word forms) and how the alignments
are obtained from the similarity matrix, has a sub-
stantial effect on the resulting alignments, as seen
in Table 4. The table shows that ArgMax gives
a substantially higher precision than IterMax and
Match, but since IterMax has higher recall, the F1-
scores are quite close.

5.2 Ensembles

As can be seen in Table 3, eflomal does not need
much training data to reach high precision. Thus,
it should not be surprising that in low-resource
scenarios a combination of eflomal with the two

unsupervised SimAlign models gives the best re-
sults. When more data is available, the other two
IBM-model based aligners become more accurate,
and as a consequence, more useful in an ensemble.

We thus report on two different ensembles: En-
sembleSmall, comprised of three aligners which
is better in cases where there is scarce data, and
EnsembleLarge which uses all five aligners. Our
ensemble strategy is simple: for both ensembles
we only require a majority vote on each align-
ment. For EnsembleSmall we thus require 2 out
of 3 aligners to suggest an alignment candidate for
it to be accepted. EnsembleSmall uses the align-
ments produced by SimAlign’s IterMax, which
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Figure 3: F1 for word alignments generated using different alignment tools as a function of the number
of sentence pairs used for training. F1 for SimAlign-mBERT is 0.86 and 0.90 for SimAlign-XLM-R.



SimAlign
Model Tok. H. Pr. Rc. F1 Edg.
mBERT BPE AM .85 .84 .84 4468

IM .74 .91 .82 5717
M .66 .92 .77 6590

word AM .88 .84 .86 4145
IM .79 .90 .84 5111
M .75 .91 .82 5463

XLM-R BPE AM .88 .90 .89 4599
IM .78 .94 .86 5615
M .69 .96 .80 6618

word AM .92 .88 .90 4165
IM .85 .93 .89 4925
M .78 .94 .86 5473

Table 4: Precision, F1-measure and number of
edges for different setups of SimAlign. All these
settings use 0.09 for distortion. The heuristics are:
AM=ArgMax, IM=IterMax, M=Match.

has higher recall, an advantage when only one of
the aligners in the ensemble is allowed to miss
an alignment. EnsembleLarge requires 3 out of
5 aligners to agree and uses SimAlign’s ArgMax,
which has more precision. Figure 4 shows how the
F1-scores for the two ensembles rise with more
data, and how EnsembleLarge, being more re-
liant on data, needs only tens of thousands of sen-
tence pairs to outperform EnsembleSmall which
obtains higher F1-scores in very low-resource set-
tings. In contrast, EnsembleLarge, always having
higher precision as shown in Table 5, produces
fewer edges.

Our combination is based on a majority vote
and the ensemble obtaining the highest F1-score
is selected. Accordingly, it is possible to obtain
higher precision using other combinations in situ-
ations where precision is critical and recall is not
as important. This could be realised by setting a
higher requirement for agreement between align-
ers, raising the precision even further, but at the
price of retrieving fewer edges and thus a lower
F1-score. For higher recall, lowering the agree-
ment requirements works, although at the cost of
some precision. Table 5 shows the combinations
giving the best precision and F1-score, as well as
recall and number of edges suggested by the sys-
tem.

CombAlign
Samples Ensemble Prec. Rec. F1 Edges
0 EnsSm .92 .92 .92 4410

EnsLa .93 .81 .87 3743
1000 EnsSm .92 .93 .92 4458

EnsLa .94 .84 .89 3819
2000 EnsSm .91 .93 .92 4459

EnsLa .95 .85 .90 3852
4000 EnsSm .91 .93 .92 4506

EnsLa .95 .86 .90 3866
8000 EnsSm .91 .94 .92 4529

EnsLa .95 .87 .91 3933
16000 EnsSm .91 .94 .93 4569

EnsLa .96 .88 .92 3970
32000 EnsSm .91 .95 .93 4591

EnsLa .96 .90 .93 4025
64000 EnsSm .91 .95 .93 4624

EnsLa .96 .91 .93 4070
128000 EnsSm .91 .95 .93 4635

EnsLa .96 .92 .94 4147
256000 EnsSm .91 .95 .93 4656

EnsLa .96 .92 .94 4178
512000 EnsSm .91 .95 .93 4648

EnsLa .96 .93 .94 4220
1024000 EnsSm .91 .95 .93 4653

EnsLa .96 .94 .95 4249
2048000 EnsSm .90 .95 .93 4679

EnsLa .96 .94 .95 4266
3600000 EnsSm .90 .95 .93 4681

EnsLa .96 .94 .95 4265

Table 5: Precision, recall, F1-scores and number
of edges for different setups of the CombAlign en-
semble.

5.3 Utilizing the Word Alignments

As noted in Section 1, word alignments can be
used for many different purposes, sometimes us-
ing SMT systems as intermediaries. In order to
see whether our alignments are beneficial for SMT
systems, we trained three Moses models, keeping
all components of the training process the same,
except for word alignments. For training, we used
the data and filtering methods described in Jóns-
son et al. (2020).

Our baseline system uses the default Moses
settings, with Giza++ for word alignments. We
trained two other models, CombAlignF1: using
the settings giving the highest F1-score as detailed
in Section 5.2; and CombAlignRec: where we are
still using the five aligners in the ensemble, but are
more lenient and only require two or more of the
five aligners to be in agreement. We did this as
our highest scoring ensemble, CombAlignF1, gen-
erates 15% fewer edges than Giza++ and, for this
task, recall is likely to be important. By relaxing
the demands for agreement between the aligners,
we raise recall while still only generating a similar
number of edges between words as Giza++.
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Figure 4: F1 score for aligner ensembles. EnsembleSmall uses three alignment models and Ensemble-
Large uses all five alignment models, as described in Section 5.2.

We compared these three systems in the follow-
ing manner. First, we examined the phrase tables
generated during training. The baseline system
creates a phrase table with 3,496K lines, Comb-
AlignF1 has 1,319K lines and CombAlignRec has
1,774K lines. Manual inspection shows that the
removed lines are almost always faulty so this
pruning should not have negative effects on the
system. Second, we tested the systems, using the
three test sets from Jónsson et al. (2020), calcu-
lated the BLEU scores and manually inspected and
evaluated the differences in translation.

BLEU scores for CombAlignF1 were almost the
same as for the baseline system, with a difference
ranging from 0.01 to 0.11 for the three test sets.
CombAlignRec had slightly better scores, scoring
0.4 to 0.95 higher BLEU than the baseline system.

We then manually compared a random sample
of 450 translated sentences from the baseline sys-
tem and CombAlignRec. 46% of the outputs were
exactly the same; 14% had multiple faults for both
systems and were deemed equally bad; 17% of
the sentences were translated better by the base-
line system and 23% had better translations pro-
duced by CombAlignRec. We categorized the er-
rors made by the systems and while the sample
size is quite small, and there is no clear distinc-
tion between the systems, CombAlignRec seems
to be more likely to have errors when there are
multiple numerical tokens in the sentence to trans-
late, possibly because they may be treated like
rare words. Moreover, CombAlignRec seems less
likely to have words missing in the translated out-
put and it seems more likely to make a more ap-
propriate lexical choice, both in terms of content

words and verb inflections. A more thorough in-
vestigation is needed to understand why this is the
case.

5.4 Other Language Pairs

In order to show that the ensemble methods work
for other languages than Icelandic, we ran an ex-
periment on three test sets. Table 6 shows the re-
sults and a comparison to the previous best, as re-
ported on in Masoud et al. (2020).

In this experiment, we used two settings for
the IBM-model based alignment tools: only run-
ning on the test-set data, and running with ad-
ditional parallel data of 512K sentence pairs for
training each language pair. Although the results
for CombAlign always outperform the individual
aligners, the difference is not always as large as for
the en-is language pair. This may possibly be ex-
plained by the fact that the contextualized embed-
dings have more data on the other languages and
thus give better predictions than when predicting
Icelandic, or that the parallel training data is not
in the same domain as the test sets, while the Ice-
landic test sets contained sentence pairs sampled
from the parallel corpus (ParIce) used for training.

For the best-scoring ensembles, we used Sim-
Align’s Itermax when the statistical aligners used
parallel data as well as when no additional data
was used. This was due to Itermax giving the high-
est F1-score for these language pairs. This was not
true for Icelandic, possibly because the contextual
models were trained on less Icelandic data and so
have more ‘knowledge’ of these other languages
than it has of Icelandic.



Method cs-en en-fr en-de
Train. data (K) 0 512 0 512 0 512
eflomal .79 .86 .82 .91 .61 .73
fast_align .66 .78 .73 .86 .52 .70
Giza++ .71 .81 .69 .89 .55 .73
SimAlign:
XLM-R .87 .93 .78
SimAlign:
BERT .87 .94 .81
Previous work .87 .94 .81
CombAlign .89 .91 .95 .95 .80 .83

Table 6: Word alignment F1-scores for cs-en, en-
fr and en-de language pairs, with or without using
training data.

6 Conclusion and future work

We have shown that using a very simple combi-
nation method for word alignment, it is possible
to increase the accuracy substantially, both in low-
and high-resource settings.

We evaluated on four language pairs, en-cs, en-
de, en-fr and for the first time en-is, for which we
manually created a new gold standard word align-
ment reference set. In order to do that we created
and published a graphical tool for manual word
alignments.

While our method uses minimal data process-
ing, some pre-processing like POS-tagging and
lemmatizing may raise the accuracy even further,
especially in the case of a morphologically rich
language like Icelandic. A comparison of typi-
cal misalignments per aligner is also likely to be
beneficial, as knowing these properties might help
in combining the aligners more effectively. The
mBERT and XLM-R models we employ through
SimAlign give good results, but there may still
be room for improvement, for instance by pre-
training these models on more Icelandic texts,
which are scarce in the multilingual training cor-
pus. It may also be worth considering to train a
bilingual word embedding model and use that for
alignment instead of, or in combination with, the
other contextualized embedding models.

In the paper, we reported on preliminary re-
sults from training an SMT system using our word
alignments. We plan to investigate whether the
slightly better SMT output will be more beneficial
for back-translations to augment NMT systems,
following Poncelas et al. (2019). We also plan to
compare BLI quality using the setup in (Artetxe

et al., 2019) and the same setup using our align-
ments. Furthermore, we intend to apply our align-
ments to training alignment-assisted NMT trans-
former models, by adding an alignment attention
layer as described in (Alkhouli et al., 2018).
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