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Abstract

Accurate translation requires document-
level information, which is ignored by
sentence-level machine translation. Recent
work has demonstrated that document-level
consistency can be improved with auto-
matic post-editing (APE) using only target-
language (TL) information. We study an
extended APE model that additionally in-
tegrates source context. A human evalua-
tion of fluency and adequacy in English—
Russian translation reveals that the model
with access to source context significantly
outperforms monolingual APE in terms of
adequacy, an effect largely ignored by auto-
matic evaluation metrics. Our results show
that TL-only modelling increases fluency
without improving adequacy, demonstrat-
ing the need for conditioning on source
text for automatic post-editing. They also
highlight blind spots in automatic meth-
ods for targeted evaluation and demonstrate
the need for human assessment to evaluate
document-level translation quality reliably.

1 Introduction

Neural machine translation (NMT) has signif-
icantly improved the state of the art in MT
(Sutskever et al., 2014; Bahdanau et al., 2015;
Vaswani et al., 2017) on the sentence level. How-
ever, accurate translation requires looking at larger
units than individual sentences (Hardmeier, 2014),
and context-aware NMT has recently become a
popular research direction (Miculicich et al., 2018;
Scherrer et al., 2019; Junczys-Dowmunt, 2019).
One approach to discourse-level processing in
NMT is automatic post-editing of the output of
a sentence-level system. DocRepair (Voita et al.,
2019a) is a monolingual sequence-to-sequence
model to correct inconsistencies in groups of adja-
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cent sentence-level translations, showing improve-
ments for specific discourse-level phenomena such
as the generation of inflections in elliptic sentences.

The hypotheses explored in this work are (1)
that the coherence of the translation can be further
improved by exploiting context in the source lan-
guage, and (2) that the omission of source context
disproportionately affects adequacy in a way that is
not measured adequately by the existing automatic
evaluation procedures.

Our post-editing model is a document-level adap-
tation of Transference (Pal et al., 2019), a suc-
cessful three-way transformer architecture from
the WMT 2019 Automatic Post-Editing (APE)
task (Chatterjee et al., 2019). To keep the model
from over-correcting the hypothesis, we use data
weighting (Junczys-Dowmunt, 2018) and a conser-
vativeness penalty (Junczys-Dowmunt and Grund-
kiewicz, 2016). We evaluate on the same training
and evaluation sets as Voita et al. (2019a), includ-
ing a general test set validated by BLEU score and
contrastive sets for several discourse phenomena.

Our experimental results confirm both hypothe-
ses. Despite similar BLEU, human evaluation
demonstrates that our Transference model signif-
icantly outperforms DocRepair in terms of ade-
quacy, whilst both models show a comparable im-
provement in fluency over a baseline without APE.
The automatic evaluation on discourse-specific test
sets suggests that source-side information is partic-
ularly useful for predicting omitted verb phrases;
however, even the targeted discourse-specific eval-
uation does not reflect the adequacy gain found
by human evaluators. This is especially true since
some of the discourse-specific test sets of Voita
et al. (2019a) have a very narrow focus on prob-
lems for which source context is unlikely to help.

2 Transference

Transference (Pal et al., 2019) (Figure 1) is a multi-
source transformer (Vaswani et al., 2017) architec-



ture which exploits both source src and the MT out-
put mt to predict the reference ref. It is composed
of (1) a source encoder (ency,.) to generate the src
representation, (2) a second encoder (encgrc—mr)
which is a standard transformer decoder architec-
ture without mask to produce the representation
of mt incorporating src information, and (3) a de-
coder (dec,,f) which captures the final representa-
tion from encg_.,,; via cross-attention.

output
eNCsrc—>mt decref
Transformer Transformer
eNCqc Decoder Decoder
Transformer without with
Encoder Masking Masking
src mt ref

Figure 1: Transference architecture for multi-
source document-level repair model.

If document-level APE is trained on a small sub-
set of the parallel data, or only synthetic data, and
therefore presumably weaker as a general model
of translation than the sentence-level main model,
we need to control how aggressively APE can mod-
ify mt to prevent over-correction. We adopt two
strategies from the APE literature to achieve this. A
conservativeness penalty (Junczys-Dowmunt and
Grundkiewicz, 2016), denoted ¢, penalises the
score of each prediction that is not in src or mt.
Formally, let V., = V. UV, be the subset of the
full vocabulary V that occurs in an input segment.
Given a |V|-sized vector of candidates A, at time
step t, the score of each candidate v is defined as:

h(v)—c ifveV\V,
u(v) = { htEv; otherwis\e.

Second, similar to Lopes et al. (2019), we ap-
ply a data weighting strategy during training. We
assign each training sample a weight that is de-

fined as BLEUgyootm (mt, ref) (Lin and Och, 2004)
to upweight samples that require little post-editing.

(1)

3 Data and Preprocessing

We use all of the English-to-Russian data released
by Voita et al. (2019a)!, including: (1) 6M context-

Imttps://github.com/lena-voita/good-
translation-wrong—-in-context

Model Deixis Lex.c. EllLinfl. EIL.VP BLEU
Results reported by Voita et al. (2019a):

Baseline 50.0 459 530 284 3241
DocRepair 91.8 806 864 752 34.60
Our experiments:

DocRepair 88.6 705 838 69.0 32.69
DocRepair (+P)  87.6 67.6 822 71.8 32.38
Transference 86.8 629 81.6 730 30.56
Transference (+P) 87.8 654  84.8 82.8 32.53

Experiments marked +P use the ParData corpus.

Table 1: BLEU score on general test set and accu-
racy on contrastive test sets (deixis, lexical consis-
tency, ellipsis (inflection), and VP ellipsis).

agnostic and 1.5M context-aware (4 consecutive
sentences in each sample) data from the OpenSub-
titles2018 corpus (Lison et al., 2018); (2) Russian
monolingual data in 30M groups of 4 consecutive
sentences gathered by Voita et al. (2019a). We
reuse the synthetic training data for APE gener-
ated by Voita et al. (2019a), treating Russian mono-
lingual data as ref, a sentence-level English back-
translation as src, and the Russian roundtrip transla-
tion as mt. The evaluation data consists of general
test sets extracted from the training data and four
contrastive test sets to evaluate specific contextual
phenomena.

The four contrastive test sets have a narrow fo-
cus on specific discourse-level phenomena. The
“Deixis” set targets consistent use of formal and
informal second-person pronouns (T-V distinction)
in Russian (however without regard to the social
acceptability of the selected form). “Lexical cohe-
sion” targets the consistent transliteration of proper
names into Cyrillic script. These two sets are inde-
pendent of source context by design, as the model
is only evaluated on the generation of consistent
repetitions of a form it has committed to, regard-
less of its adequacy in the context. The “Ellipsis
VP” set targets elliptic verb phrases, where Rus-
sian requires the production of a lexical verb form
not found in English. The “Ellipsis inflection” set
tests the generation of noun inflections in sentences
where the governing verb has been elided.

The training data is tokenised and truecased with
Moses (Koehn et al., 2007), and encoded using
byte-pair encoding (Sennrich et al., 2016b) with
source and target vocabularies of 32000 tokens.
Like Voita et al. (2019a), we report lowercased,
tokenised BLEU (Papineni et al., 2002) with multi-
bleu.perl from the Moses toolkit.
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4 Model

The sentence-level baselines (EN—RU) and model
used for RU—EN back-translation are Transformer
base models (Vaswani et al., 2017).

For document-level APE, DocRepair is a Trans-
former base model that operates on groups of adja-
cent sentences, mapping from mt to ref. We use the
Nematus toolkit (Sennrich et al., 2017) for DocRe-
pair and our implementation of the Transference
architecture, using the same configuration as Pal
et al. (2019).% Detailed hyperparameters are listed
in Appendix A. We train our document-level mod-
els on the 30M pairs of synthetic data. For some
models, we also include the subset of the parallel
data (1.5M pairs) for which context sentences are
available, referred to as ParData. The mt part of
ParData is generated by randomly sampling 20
translations with our EN—RU baseline system.

In preliminary experiments, adding noise to the
training data improved model generalisation. We
generated noise with two strategies. Following
Voita et al. (2019a), mt in both synthetic data and
ParData is randomly selected from 20 translations,
and noise is added by making random token substi-
tutions with probability of 10%. Following Edunov
et al. (2018), noise is added to the src in synthetic
data by three operations: (1) replacing a token; (2)
deleting a token; (3) swapping adjacent token pairs,
with a probability of 10%.

5 Automatic evaluation

Table 1 shows the results in terms of accuracy on
the contrastive test sets and BLEU on the general
test set. For DocRepair, we were unable to repli-
cate the exact results of Voita et al. (2019a). Our
conclusions are based on our own implementation.

On the general test set, trained on only synthetic
training data, Transference achieves about 2 BLEU
points less than DocRepair. We suspect that this
derives from the mismatch of the training and test
data for Transference. Specifically, during train-
ing, the “source” seen by Transference is the result
of noisy back-translation from Russian, whereas
at test time, the source is an original English sen-
tence. When ParData is included, Transference
and DocRepair achieve comparable BLEU.

In accuracy on the test sets for T/V pronouns
(“deixis”) and transliteration consistency (“lexical

2Code available at https://github.com/
zippotju/Context-Aware-Bilingual-Repair-
for-Neural-Machine-Translation

cohesion”), Transference does not improve over
DocRepair, which is unsurprising considering how
those test sets are constructed. However, adding
source knowledge does improve results on both el-
lipsis test sets, for VP ellipsis even without adding
the ParData data. The improvement is generally
greater for VP ellipsis than for noun inflection.

6 Human evaluation

To gain a better picture of the merits of the differ-
ent systems, we conducted a manual evaluation.
We randomly selected 720 sentences from the gen-
eral test set and 100 sentences from the discourse
test set and had them evaluated separately for ade-
quacy and fluency by two native speakers of Rus-
sian. To avoid priming between the fluency and
adequacy conditions, the test set was split between
the annotators, and no sentence was annotated for
adequacy and fluency by the same annotator. To
determine the inter-annotator agreement, there are
100 overlapping sentences for two annotators. Ta-
ble 5 shows inter-annotator agreement results while
Table 4 shows the intra-annotator agreement. Ac-
cording to Landis and Koch (1977), all groups of
human evaluation results are fair (x > 0.2).

The sentences were presented to the annotators
in random order along with 3 sentences of pre-
ceding context. The sentence to be evaluated was
highlighted, and the Russian translations of the
three systems (Baseline, DocRepair (+ParData)
and Transference (+ParData)) were displayed next
to each other, ordered randomly. In the adequacy
condition only, the English source text was also
shown. The annotators received instructions ac-
cording to Table 2 and were told to assign the same
rank if two translations were of equal quality. Once
the annotation was complete, the rankings were
converted into pairwise comparisons. Duplicate
assessments from the inter- and intra-annotator sets
were counted once if their annotations agreed, and
discarded if they disagreed.

Table 3 shows the outcome of pairwise compar-
isons between the systems, including the number of
times the output of one system was preferred over
that of the other by the annotator. The results were
tested for significance with a sign test. We find the
same pattern of results for both test sets. In the Flu-
ency evaluation, both monolingual DocRepair and
bilingual Transference significantly improve over
the Baseline. The comparison between DocRepair
and Transference is not significant in this condi-
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Adequacy: Please rank the three translations according to
how adequately the translation of the last sentence reflects the
meaning of the source, given the context.

Fluency: Please rank the three translations according to how
fluent the last sentence is, in terms of grammaticality, natural-
ness and consistency, taking into account the context of the
previous sentences.

Table 2: Instructions to human annotators

Preference
System A System B A B Ties
Fluency
General corpus:
Baseline DocRepair 30<62 612 (p<0.005)
Baseline Transference 51<89 547 (p<0.005)
DocRepair Transference 70 78 542 (n.s.)
Discourse corpus:
Baseline DocRepair 12<28 138 (p <0.05)
Baseline Transference 15<34 120 (p<0.01)
DocRepair Transference 23 25 121 (n.s.)
Adequacy
General corpus:
Baseline DocRepair 24 31 655 (n.s.)
Baseline Transference 34 <67 592 (p < 0.005)
DocRepair Transference 39<66 592 (p <0.05)
Discourse corpus:
Baseline DocRepair 16 20 140 (n.s.)
Baseline Transference 9<46 117 (p<0.001)
DocRepair Transference 11<43 117 (p <0.001)

n.s. = not significant
Significance threshold: p < 0.05

Table 3: Human evaluation results. Winning sys-
tems in pairwise comparisons marked in bold.

tion. In the Adequacy evaluation, the comparison
between DocRepair and the Baseline is not signif-
icant, but Transference significantly outperforms
both DocRepair and the Baseline, demonstrating
that knowledge of the source is essential for APE
to improve the accuracy of the translations.

One of the evaluators provided qualitative com-
ments on 32 pairs of DocRepair and Transference
outputs sampled from those sentences for which
the two systems were ranked differently in the hu-
man evaluation. The comments show that both

Per annotator:

Annotator 1 91.1%
Annotator 2 83.9%
Per dataset:

Fluency General 90.0%
Fluency Discourse  86.7%
Adequacy  General 90.0%
Adequacy Discourse  78.3%

Table 4: Intra-annotator agreement of human eval-
uation

K Pct.
Fluency General 0.234 5
Fluency Discourse  0.352 55
Adequacy  General 0.301 27
Adequacy Discourse  0.471 93

Table 5: Inter-annotator agreement in terms of Co-
hen’s k¥ (Cohen, 1960). The last column shows
the percentile of our k value in the context of a
series of similar evaluations carried out at WMT
2012-2016 (Bojar et al., 2016, Table 4).

systems tend to produce imperfect output for the
same sentences, but the winning system often man-
ages to fix errors partially. Both systems make a
wide range of errors in terms of morphology and
lexical choice, but the source information permits
Transference to correct certain recurring problems
more reliably, such as agreement errors, mistransla-
tions of proper names (e.g., Lena as Sarah), or the
incorrect use or omission of subjunctive mood in
conditional sentences.

7 Related Work

Our work draws on two strands of research: auto-
matic post-editing and context-aware MT.

Automatic post-editing has a long history in
MT (Knight and Chander, 1994), with regular
shared tasks (Bojar et al., 2015, 2016, 2017). Neu-
ral multi-source APE systems as first proposed
by Pal et al. (2016) and Junczys-Dowmunt and
Grundkiewicz (2016), some of them including
source language information (Junczys-Dowmunt
and Grundkiewicz, 2017; Chatterjee et al., 2017; Li-
bovicky and Helcl, 2017), have come to dominate
APE. We take inspiration from the top-performing
systems at the WMT19 shared task for architec-
tures and training/decoding tricks (Chatterjee et al.,
2019), and make heavy use of synthetic training
data (Sennrich et al., 2016a; Junczys-Dowmunt and
Grundkiewicz, 2016; Freitag et al., 2019).

Neural context-aware MT can be achieved by
integrating context into the main translation model
(Jean et al., 2017; Tiedemann and Scherrer, 2017;
Bawden et al., 2018, inter alia). Two-stage models
with a sentence-level first pass and document-level
second pass have been explored for scenarios with
asymmetric training data. Voita et al. (2019b) intro-
duces a two-pass model where, unlike in APE, the
second-pass is tightly integrated with the first-pass
model, reusing its hidden representations. Apart



from Voita et al. (2019a), the model closest to
ours is by Junczys-Dowmunt (2019), who explored
document-level APE, but only manually evaluated
its efficacy as part of a large model ensemble.

8 Conclusion

Our human evaluation shows that monolingual
APE oriented towards consistency beyond the sen-
tence level improves fluency, but not adequacy,
while multi-source APE with source context im-
proves both adequacy and fluency. This shortcom-
ing of monolingual APE in terms of adequacy was
not easily visible with a consistency-focused auto-
matic evaluation, highlighting the need for human
evaluation to avoid such blind spots and reinforcing
earlier findings about the inadequacy of automatic
evaluation methods for discourse-level MT (Guil-
lou and Hardmeier, 2018).

Clearly, a two-stage process with sentence-level
translation and multi-sentence APE is a viable
approach in asymmetric data settings with little
document-level parallel data. However, we still
required some actual document-level parallel data,
and were unable to match the success of monolin-
gual repair when using only synthetic data. Ex-
ploring the data requirements of document-level
APE, and devising ways to reduce them, are worth
further study.
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A Appendix

A.1 Hyperparameter Search and Validation
Performance

The following hyperparameters were manually
tuned:

* The percentage of ParData mixed with the
synthetic training data. of Transference.

* The conservativeness penalty.

* The decision whether to add the conservative-
ness penalty to the probability estimates or to
the logits of the model.

The tuning bounds are shown in Table 7 in curly
braces for each tuned hyperparameter. After 18
hyperparameter search trials, the best-performing
models were selected considering both BLEU score
on the general validation set and the accuracy on
the contrastive validation sets. The validation re-
sults are shown in Table 6, and the hyperparameter
configurations in Table 7.

Model Deixis Lex.c. CE.loss BLEU
DocRepair 89.0 68.0 582 32.01
DocRepair (+ParData) 88.8 68.8 563 31.63
Transference 86.0 622 61.0 30.37

Transference (+ParData) 85.4 64.8 50.7 31.99

Table 6: Validation performance of tested systems
(CE represents Cross Entropy).

A.2 Training Time and Model Size

The two sentence-level baselines and the DocRe-
pair model have approximately 72 million param-
eters each. The baseline systems are trained for
around 72 hours each on a GeForce GTX 1080 Ti
GPU. DocRepair and DocRepair (+ParData) are
trained for approximately 216 hours on four TI-
TAN X (Pascal) GPUs and 192 hours on a GeForce
RTX 2080 Ti GPU, respectively.

The Transference model has around 119 million
parameters. Transference and Transference (+Par-
Data) were trained for around 192 and 288 hours,
respectively, on three GeForce GTX 1080 Ti GPUs.



DocRepair Transference Tuning bounds
Common hyperparameters
Embedding layer size 512
Hidden state size 512
Tied encoder/decoder embeddings yes no
Tie decoder embeddings yes
Loss function per-token cross-entropy
Label smoothing 0.1
Optimizer Adam
Learning schedule Transformer
Warmup steps 8000
Gradient clipping threshold 1.0
Maximum sequence length 500
Token batch size 15000
Length normalization alpha 0.6
Encoder depth 6
Decoder depth 6
Feed forward num hidden 2048
Number of attention heads 8
Embedding dropout 0.1
Residual dropout 0.1
ReL.U dropout 0.1
Attention weights dropout 0.1
Beam size 4
Percentage of ParData in training 0.3 {0.2,0.3,0.4}
Transference-specific hyperparameters
Tied second encoder/decoder embeddings yes
Second encoder depth 6
Conservativeness penalty (0.2, probability) {0.1,0.2,0.3} x

{probability, logit}

Table 7: Hyperparameter configurations for best-performing DocRepair and Transference models, and

hyperparameter tuning bounds.
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