
An Unsupervised method for OCR Post-Correction and Spelling
Normalisation for Finnish

Quan Duong,♣ Mika Hämäläinen,♣,♦ Simon Hengchen♠
firstname.lastname@{helsinki.fi;gu.se}

♣University of Helsinki, ♦Rootroo Ltd, ♠University of Gothenburg

Abstract

Historical corpora are known to contain er-
rors introduced by OCR (optical charac-
ter recognition) methods used in the dig-
itization process, often said to be degrad-
ing the performance of NLP systems. Cor-
recting these errors manually is a time-
consuming process and a great part of the
automatic approaches have been relying
on rules or supervised machine learning.
We build on previous work on fully auto-
matic unsupervised extraction of parallel
data to train a character-based sequence-
to-sequence NMT (neural machine trans-
lation) model to conduct OCR error cor-
rection designed for English, and adapt
it to Finnish by proposing solutions that
take the rich morphology of the language
into account. Our new method shows
increased performance while remaining
fully unsupervised, with the added bene-
fit of spelling normalisation. The source
code and models are available on GitHub1

and Zenodo2.

1 Introduction

Nature language processing (NLP) is arguably
tremendously difficult to tackle in Finnish, due to
an extremely rich morphology. This difficulty is
reinforced by the limited availability of NLP tools
for Finnish in general, and perhaps even more so
for historical data by the fact that morphology has
evolved through time – some older inflections ei-
ther do not exist anymore, or are hardly used in
modern Finnish. As historical data comes with its
own challenges, the presence of OCR errors makes

1Source Code, https://github.com/ruathudo/
post-ocr-correction

2Trained models, https://doi.org/10.5281/
zenodo.4242890

the data even more burdensome to modern NLP
methods.

Obviously, this problematic situation is not
unique to Finnish. There are several other lan-
guages in the world with rich morphologies and
relatively poor support for both historical and
modern NLP. Such is the case with most of the lan-
guages that are related to Finnish like Erzya, Sami
and Komi, these Uralic languages are severely en-
dangered but have valuable historical resources in
books that are not yet available in a digital format.
OCR remains a problem especially for endangered
languages (Partanen, 2017), although OCR quality
for such languages can be improved by limiting
the domain in which the OCR models are trained
and used (Partanen and Rießler, 2019).

Automated OCR post-correction is usually
modelled as a supervised machine learning prob-
lem where a model is trained with parallel data
consisting of OCR erroneous text and manually
corrected text. However, we want to develop a
method that can be used even in contexts where
no manually annotated data is available. The most
viable recent method for such a task is the one
presented by Hämäläinen and Hengchen (2019).
However, their model works only on correcting in-
dividual words without considering the context in
sentences, and as it focuses on English, it com-
pletely ignores the issues rising from a rich mor-
phology. Extending their approach, we introduce
a self-supervised model to automatically gener-
ate parallel data which is learned from the real
OCRed text. Later, we train sequence-to-sequence
(seq2seq) NMT models on character level with
context information to correct OCR errors. The
NMT models are based on the Transformer algo-
rithm (Vaswani et al., 2017), whose detailed com-
parison is demonstrated in this article.

https://github.com/ruathudo/post-ocr-correction
https://github.com/ruathudo/post-ocr-correction
https://doi.org/10.5281/zenodo.4242890
https://doi.org/10.5281/zenodo.4242890


2 Related work

As more and more digital humanities (DH) work
start to use the large-scale, digitised and OCRed
collections made available by national libraries
and other digitisation projects, the quality of OCR
is a central point for text-based humanities re-
search. Can one trust the output of complex NLP
systems, if these are fed with bad OCR? Beyond
the common pitfalls inherent to historical data (see
Piotrowski (2012) for a very thorough overview),
some works have tried to answer the question
stated above: Hill and Hengchen (2019) use a sub-
set of 18th-century corpus, ECCO3 as well as its
keyed-in counterpart ECCO-TCP to compare the
output of common NLP tasks used in DH and con-
clude that OCR noise does not seem to be a large
factor in quantitative analyses. A conclusion sim-
ilar to previous work by Rodriquez et al. (2012) in
the case of NER and to Franzini et al. (2018) for
authorship attribution, but in opposition to Mutuvi
et al. (2018) who focus on topic modelling for his-
torical newspapers and conclude that OCR does
play a role. More recently and still on historical
newspapers, van Strien et al. (2020) conclude that
while OCR noise does have an impact, its effect
widely differs between downstream tasks.

It has become apparent that OCR quality for
historical texts has become central for funding
bodies and collection-holding institutions alike.
Reports such as the one put forward by Smith
and Cordell (2019) rise OCR initiatives, while
the Library-of-Congress-commissioned report by
Cordell (2020) underlines the importance of OCR
for culturage heritage collections. These reports
echo earlier work by, among others, Tanner et al.
(2009) who tackle the digitisation of British news-
papers, the EU-wide IMPACT project4 that gath-
ers 26 national libraries, or Adesam et al. (2019)
who set out to analyse the quality of OCR made
available by the Swedish language bank.

OCR post-correction has been tackled in pre-
vious work. Specifically for Finnish, Drobac
et al. (2017) correct the OCR of newspapers using
weighted finite-state methods, accordance with,
Silfverberg and Rueter (2015) do the same for
Finnish (and Erzya). Most recent approaches rely
on the machine translation (MT) of “dirty” text

3Eighteenth Century Collections Online,
https://www.gale.com/primary-sources/
eighteenth-century-collections-online

4http://www.impact-project.eu

into “clean” texts. These MT approaches are
quickly moving from statistical MT (SMT) – as
previously used for historical text normalisation,
e.g. the work by Pettersson et al. (2013) – to NMT:
Dong and Smith (2018) use a word-level seq2seq
NMT approach for OCR post-correction, while
Hämäläinen and Hengchen (2019), on which we
base our work, mobilised character-level NMT.
Very recently, Nguyen et al. (2020) use BERT em-
beddings to improve an NMT-based OCR post-
correction system on English.

3 Experiment

In this section, we describe our methods for auto-
matically generating parallel data that can be used
in a character-level NMT model to conduct OCR
post-correction. In short, our method requires only
a corpus with OCRed text that we want to auto-
matically correct, a word list, a morphological an-
alyzer and any corpus of error free text. Since we
focus on Finnish only, it is important to note that
such resources exist for many endangered Uralic
languages as well as they have extensive XML
dictionaries and FSTs available (see (Hämäläinen
and Rueter, 2018)) together with a growing num-
ber of Universal Dependencies (Nivre et al., 2016)
treebanks such as Komi-Zyrian (Lim et al., 2018),
Erzya (Rueter and Tyers, 2018), Komi-Permyak
(Rueter et al., 2020) and North Sami (Sheyanova
and Tyers, 2017).

3.1 Baseline

We design the first experiment based on the pre-
vious work (Hämäläinen and Hengchen, 2019),
who train a character-level NMT system. Their
research indicates that there is a strong seman-
tic relationship between the correct word to its
erroneous forms and we can generate OCR er-
ror candidates using semantic similarity. To be
able to train the NMT model, we need to extract
the parallel data of correct words and their OCR
errors. Accordingly, we trained the Word2Vec
model (Mikolov et al., 2013) on the Historical
Newspaper of Finland from 1771 to 1929 using the
Gensim library (Řehůřek and Sojka, 2010). Af-
ter obtaining the Word2Vec model and its trained
vocabulary, we extract the parallel data by us-
ing the Finnish morphological FST, Omorfi (Piri-
nen, 2015), provided in the UralicNLP library
(Hämäläinen, 2019) and – following Hämäläinen
and Hengchen (2019) – Levenshtein edit distance

https://www.gale.com/primary-sources/eighteenth-century-collections-online
https://www.gale.com/primary-sources/eighteenth-century-collections-online
http://www.impact-project.eu


(Levenshtein, 1965). The original approach used a
lemma list for English for the data extraction, but
we use an FST so that we can distinguish morpho-
logical forms from OCR errors. Without the FST,
different inflectional forms would also be consid-
ered to be OCR errors, which is particularly coun-
terproductive with a highly-inflected language.

We build a list of correct Finnish words by lem-
matisating all words in the Word2Vec model’s vo-
cabulary: if the lemma is present in the Finnish
Wiktionary lemma list,5 it is considered as correct
and saved as such. Next, for each word in this
“correct" list, we retrieve the most similar words
from the Word2Vec model. Those similar words
are checked to see whether they exist in the cor-
rect list or not and separated into two different
groups of correct words and OCR errors. No-
tice that not all the words in the error list are the
wrong OCR format of the given correct word, and
thus need to be filtered out. Following Hämäläi-
nen and Hengchen (2019), we calculate the Lev-
enshtein edit distance scores of the OCR errors to
the correct word and empirically set a threshold of
4 as the maximum distance to accept as the true
error form of that given word. As a result, for each
given correct word, we have a set of similar cor-
rect words including the given one and a set of er-
ror words. From the two extracted groups, we do
pairwise mapping to have one error word as train-
ing input and one correct word as the target output.
Finally, the parallel data is converted into a char-
acter level format before feeding it to the NMT
model for training. For example: j o l e e n → j
o k e e n (“into a river") pair has the first word is
incorrect and the second one is the right form. We
follow Hämäläinen and Hengchen (2019) and use
OpenNMT (Klein et al., 2017) with default set-
tings, i.e. bi-directional LSTM with global atten-
tion (Luong et al., 2015). We train for 10,000 steps
and keep the last checkpoint as a baseline, which
will be referred to as “NATAS" in the remainder
of this paper.

3.2 Methods

In the following subsections we introduce a dif-
ferent method to create a parallel dataset and ap-
ply a new sequence to the sequence model to train
the data. The baseline approach presented above
might introduce noise when we are unable to con-
fidently know that the error word is mapped cor-

5https://fi.wiktionary.org/wiki/Wikisanakirja:Etusivu

rectly to the given correct word, especially in the
case of semantically similar words that have simi-
lar lengths. Another limitation of the baseline ap-
proach is that NMT model usually requires more
variants to achieve better performance – some-
thing limited by the vocabulary of the Word2Vec
model, which is trained with a frequency thresh-
old so as to provide semantically similar words.
To solve these problems we artificially introduce
OCR-like errors in a modern corpus, and thus
obtain more variants of the training word pairs
and less noise in the data. We further specialise
our approach by applying the Transformer model
with context and non-context words experiments
instead of the default OpenNMT algorithms for
training. In the next section, we detail our imple-
mentation.

3.2.1 Dataset Construction
For the artificial dataset, we use the Yle News cor-
pus6 which contains more than 700 thousand ar-
ticles written in Finnish from 2011 to 2018. All
the articles are stored in a text file. Punctuation
and characters not present in the Finnish alphabet
are removed before tokenisation. After cleaning,
we generate an artificial dataset by two different
methods: random generator and a trained OCR er-
ror generator model.

Random Generator As previously stated, we
will use a random generator to sample an OCR
error word. In OCR text, an error normally hap-
pens when a character is misrecognized or ig-
nored. This behavior causes some characters in
the word to be missed, altered or introduced. The
wrong characters will take a small ratio in the text.
Thus, we design algorithm 1 to produce similar er-
rors in the modern corpus.

For each word in the dataset, we will intro-
duce errors to that word by deleting, replacing
and adding characters randomly with a threshold
of noise rate 0.07. The valid characters to be
changed, added or removed must be in the Finnish
alphabet, we do not introduce special characters as
errors. The idea is that we select a random charac-
ter position in the string with a probability smaller
than noise rate multiplied with length of the string
to restrict the percentage of errors in the word.
This mean with the long word (eg. 15 characters),
there will be always an error proposed. This pro-
cess is repeated for each action of deleting, replac-

6http://urn.fi/urn:nbn:fi:lb-2019030701



Algorithm 1 Random errors generator
1: procedure RANDOMERROR(Word,NoiseRate)
2: Alphas = "abcdefghijklmnopqrstuvwxyzäåö"
3: for Action in [delete, add, replace] do
4: generate Rand is a random number between 0 and 1
5: if Rand < NoiseRate×WordLength then
6: Select a random character position P in Word
7: if character P is in Alphas then
8: Do the Action on P with Alphas
9: end if

10: end if
11: end for
12: end procedure

ing, adding, thus a word could either have all kinds
of errors or none if the random rate is bigger than
threshold. A longer word is likely to have more
errors than a shorter one.

Trained Generator Similarly to the random
generator, we will modify the correct word into an
erroneous form, but with a different approach. In-
stead of pure randomness, we build a model to bet-
ter simulate OCR erroneous forms. The hypothe-
sis is that if the artificial errors introduced to words
have the same pattern as found in the real OCRed
text, it would be more effective when applying the
resulting model back to the real dataset. For ex-
ample, the letter “i” and “l” are more likely to be
misrecognized than “i” and “g” by the OCR en-
gine.
To build the error generation model, we use the
extracted parallel dataset from the NATAS experi-
ment. However, the source and target for the NMT
model are reversed to have correctly spelled words
as the input and erroneous words as the output
from the training. By trying to predict an OCR
erroneous form for a given correct spelling, the
model can learn an error pattern that mimics the
real OCRed text. OpenNMT uses cross entropy
loss by default, which causes an issue when ap-
plied to solve this problem. In our experiments,
the model eventually predicted an output identical
to the source because it is the most optimal way
to reduce the loss. If we want to generate differ-
ent output for the input, there is a need to penal-
ize the model when having the same prediction as
the input. To solve the problem, we built a sim-
ple RNN translation model with GRU (gated re-
current unit) layers and a custom loss function as
shown in Equation 2. The loss function is built

up from cross entropy cost function in Equation 1,
where H = {h(1), ..., h(n)} is a set of predicted
outcomes from the model and T = {t(1), ..., t(n)}
is the set of targets. We calculate normal cross en-
tropy of predicted output Ŷ and the labels Y for
finding an optimal way to mimic the target Y , on
the other hand, the inverted cross entropy between
Ŷ and the inputs X is to punish the model if the
outcomes are identical to the inputs.

The model’s encoder and decoder each have
one embedding layer with 128 dimensions and
one GRU layer of 512 hidden units. The input
sequences are encoded to have the source’s con-
text, this context is then passed through the de-
coder. For each next character of the output, the
decoder concatenates the source’s context, hid-
den context and character’s embedded vector. The
merged vectors then are passed through a linear
layer to give the prediction. The model is trained
by teacher enforcing technique with the rate 0.5.
This means for the next input character, we either
select the top one from the previous output or use
the already known next one from the target label.

3.2.2 Models
Parallelisation and long memorisation are weak-
ness characteristic of RNNs in NMT (Bai et al.,
2018). Fortunately, Transformer proved to be
much faster (mainly due to the absence of recur-
sion), and since they process sequences as a whole
they are shown to “remember" information bet-
ter through their multi-head attention mechanism
and positional embedding (Vaswani et al., 2017).
Transformer has been shown to be extremely ef-
ficient in various tasks (see e.g. BERT (Devlin
et al., 2018)), which is why we apply this model
to our problem. Our implementation of the Trans-



cross_entropy(H,T ) = − 1

n

n∑
i=1

t(i) lnh(i) + (1− t(i)) ln(1− h(i))

loss = cross_entropy(Ŷ , Y ) + 1÷ cross_entropy(Ŷ , X)

(1)

(2)

former model is based on (Vaswani et al., 2017)
and uses the Pytorch framework.7 The model con-
tains 3 encoder and decoder layers, each of which
has 8 heads of self-attention. We also imple-
ment a learned positional encoding and use Adam
(Kingma and Ba, 2014) as the optimizer with a
static learning rate of 5 · 10−4 which gave a bet-
ter convergence compared to the default value of
0.001 based on our experiment. Following prior
work, cross entropy was again used as the loss
function.

Our baseline NATAS only has fixed training
samples extracted from the Word2Vec model. In
this experiment, we design a dynamic data loader
which generates new erroneous words for every
mini-batch while training, allowing the model to
learn from more variants at every iteration. As
was mentioned in the introduction, we train con-
textualized sequence-to-sequence character-based
models. Instead of feeding a single error word to
the model as the input, we combine it with the con-
text words before and after it in sequence. We only
consider the correct form of that error word as the
label, and are not predicting the context words.
The input includes the error (target) word in the
middle and its two sides context make up a win-
dow of odd number of words. Hence, a valid win-
dow sliding over the corpus must have an odd size,
for instance 3, 5, etc. The way we construct the in-
put and gold label is presented as follows:

• The window size of n words is selected. The
middle word is considered the target word

• The words on left and right of the target are
context words

• The input sequence is converted in proper
format, for example with window n=5:
<sos> l e f t <sep> c o n t
e x t <ctx> f a r g e t <ctx>
r i g h t <sep> c o n t e x t
<eos> <pad>, where:

– <sos> indicates the start of a sequence;
– <sep> is the separator for the context

words;
7https://pytorch.org/

– <ctx> separates left and right context
with the target;

– <eos> indicates the end of a sequence;
– <pad> indicates the padding if needed

for mini-batch training.

Following the previous section, the “target”
word is generated by creating artificial errors in
two different ways: using random generator, and
a trained generator. For instance, the word “tar-
get” in the example above is modified to “farget”,
and the model is trained to predict the output “tar-
get”. The gold label is also formatted in the same
format, but without any context words. In this
case, the label should have this form: <sos> t
a r g e t <eos>. After having the pairs of
input and label formatted properly, we feed them
into the Transformer model with a batch size of
256 – a balance between the speed and accuracy
in our case. In this experiment, we evaluate our
model with 3 different window sizes: 1, 3, and
5, with the window size of 1 as a special case:
there are no context words, and the input is <sos>
f a r g e t <eos>. For every window size
we train with two different error generators (Ran-
dom and Trained), and have thus 6 models in total.
These models are named hereafter TFRandW1,
TFRandW3, TFRandW5, TFTrainW1, TF-
TrainW3, and TFTrainW5, where TF stands for
Transformer, Rand is for the random generator,
Train is for the trained generator and Wn for
a window of n words. We proceeded with the
training until the loss converged. All models con-
verged after around 20 epochs. The losses for the
Train models are ∼ 0.064 and those for Rand
are slightly lower, with ∼ 0.059.

4 Evaluation

We evaluate all proposed models and the NATAS
baseline on the Ground Truth Finnish Fraktur
dataset8 made available by the National Library of
Finland, a collection of 479 journal and newspaper
pages from the time period 1836 - 1918 (Kettunen

8“OCR Ground Truth Pages (Finnish Frak-
tur) [v1](4.8 GB)", available at https://digi.
kansalliskirjasto.fi/opendata

https://digi.kansalliskirjasto.fi/opendata
https://digi.kansalliskirjasto.fi/opendata


et al., 2018). The data format is constructed as
a csv table with 471,903 lines of words or char-
acters and there are four columns of ground truth
(GT) aligned with the output coming from 3 differ-
ent OCR methods TESSERACT, OLD and FR11
(Kettunen et al., 2018).

Despite the existence of character-level bench-
marks for OCR post-correction (e.g. Drobac et al.
(2017)), we elect to evaluate models on the more
realistic setting of whole words. We would like
to note that Finnish has very long words, and as
a result this metric is actually tougher. In the
previous section, our models are trained without
non-alphabet characters, so all the tokens which
have non-alphabet will be removed. We also re-
moved the blank lines which have no result from
OCR. After having the ground truth and OCR
text cleaned, the number of tokens for each OCR
method (TESSERACT, OLD, FR11) are 458,799,
464,543 and 470,905 with accuracies of 88.29%,
75.34% and 79.79% respectively. The OCR words
will be used as input data for the evaluation of our
post-correction systems. The translation processes
apply for each OCR method separately with the in-
put tokens formatted based on the model’s require-
ment. In NATAS, we used OpenNMT to translate
with the default settings. In Transformer models
with context, we created a sliding window over
the rows of the OCRed text. For the non-context
model, we only need a single token for source in-
put. These models do the translation with beam
search k = 3 and the highest probability sequence
is chosen as the output. The result is shown in Ta-
ble 1.

Models TESSERACT
(88.29)

OLD
(75.34)

FR11
(79.79)

NATAS 63.35 61.63 64.95
TFRandW1 69.78 67.33 71.64
TFRandW3 70.02 67.45 71.69
TFRandW5 71.24 68.35 72.56
TFTrainW1 70.22 68.30 72.22
TFTrainW3 71.19 69.25 73.14
TFTrainW5 71.24 69.30 73.21

Table 1: Models accuracy on word level for all
three OCR methods (%)

4.1 Error Analysis
From the result in Table 1, we can see all the mod-
els could not make any improvement on OCR text.
However, there is clearly an advantage of using an

artificial dataset and Transformer model for train-
ing, which has a 7 percentage points higher ac-
curacy compared to NATAS. After analyzing the
result, we found that there are many interesting
cases where the output words are considered as er-
rors when compared to the ground truth directly
but they are still correct. The difference is that
the ground truth has been corrected by maintain-
ing the historical spelling, but as our model has
been trained to correct words to a modern spelling,
these forms will appear as incorrect when com-
pared directly with the ground truth. However,
our models still corrected many of them right, but
just happened to normalize the spelling to modern
Finnish at the same time. As examples, the word
lukuwuoden (“academic year") is normalized to
lukuvuoden, and the word kortt (“card") is nor-
malized to korrti, which are the correct spellings
in modern Finnish. So, the problem here is that
many words have acquired a new spelling in mod-
ern Finnish but are seen as the wrong result if com-
pared to the ground truth, which affects the real ac-
curacy of our models. In the 19th century Finnish
text, the most obvious difference compared to
modern Finnish is the variation of w/v, where most
of the words containing v are written as w in old
text, whereas in modern Finnish w is not used in
any regular word. Kettunen and Pääkkönen (2016)
showed in their experiments that the number of to-
kens containing letter w contribute to 3.3% of all
tokens and 97.5% of those tokens is missrecog-
nized by FINTWOL – a morphological analyzer.
They also tried to replace the w with v and the
unrecognized tokens decreased to 30.6%. These
numbers are significant which give us an idea to
apply it on our results to get a better evaluation.
Furthermore, there is another issue for our models
when they try to make up the new words which do
not exist in Finnish vocabulary. For example the
word samppaajaa is likely created from the word
samppanjaa (“of Champagne") which must be the
correct one. To solve these issues, we suggested a
fixing pipeline for our result:

1. Check if the words exist in Finnish vocabu-
lary using Omorfi with UralicNLP, if not then
keep the OCRed words as the output.

2. Find all words containing letter v, replace by
letter w.

After the processing with the strategy above, we
get updated results which can be found in Tables 2,



3, and 4.

Models
Post

processed
accuracy

Error
words

accuracy

Correct
words

accuracy

NATAS 74.71 16.54 82.43
TFRandW1 80.49 16.13 89.03
TFRandW3 80.79 16.94 89.26
TFRandW5 81.89 17.02 90.49
TFTrainW1 83.05 17.11 91.79
TFTrainW3 83.96 18.15 92.68
TFTrainW5 84.00 18.02 92.75

Table 2: Models accuracy post-processing for
Tesseract (88.29%)

Models
Post

processed
accuracy

Error
words

accuracy

Correct
words

accuracy

NATAS 71.19 30.66 84.45
TFRandW1 75.10 28.14 90.47
TFRandW3 75.40 28.26 90.83
TFRandW5 76.26 28.63 91.85
TFTrainW1 78.19 35.07 92.30
TFTrainW3 79.26 36.03 93.41
TFTrainW5 79.17 35.41 93.50

Table 3: Models accuracy post-processing for
OLD (75.34%)

Models
Post

processed
accuracy

Error
words

accuracy

Correct
words

accuracy

NATAS 75.06 36.52 84.81
TFRandW1 79.66 36.04 90.71
TFRandW3 80.06 37.00 90.96
TFRandW5 81.09 38.04 91.99
TFTrainW1 82.39 43.39 92.26
TFTrainW3 83.50 45.17 93.21
TFTrainW5 83.34 44.01 93.30

Table 4: Models accuracy post-processing for
FR11 (79.79%)

The results in Tables 2, 3 and 4 show a vast
improvement for all models with the accuracy in-
creased by 10-12 percentage points. In Tesseract,
where the original OCR already has a very high
quality with an accuracy of about 88%, there is no
gain for all models. The best model in this case
is TFTrainW5 with 84% accuracy. The reason for
the models’ worse performance is that they intro-

duced more errors on the already correct words by
OCR than fixing actual error words. While the
ratio of fixing the error words (18.02%) is much
higher than the ratio of confounding the correct
words (7.25%), however, due to the number of cor-
rect words taking a much larger part in the cor-
pus, the overall accuracy is decreased. In the OLD
setting with accuracy of about 75%, 5 out of 7
models have successfully improved the accuracy
of the original text. The highest number comes
to TFTrainW3 which outperforms OLD by 3.92
percentage points, and following closely is TF-
TrainW5 with an accuracy of 79.17%. In OLD,
we see better error words corrected (36.03%) com-
pared to Tesseract. The accuracy of the TF-
TrainW5 model for the already corrected words is
also slightly higher with 93.5% versus Tesseract
92.75%. The last OCR method for evaluation is
FR11 (79%), where – just like in OLD – 5 out of
7 models surpass the OCR result. Again, the TF-
TrainW3 gives the highest number with 3.71 per-
centage points improvement on the OCRed text.
While the TFTrainW3 shows surprisingly good re-
sults on fixing the wrong words with 45.17% ac-
curacy, the TFTrainW5 performs slightly better at
handling the right words. Common to all our pro-
posed models, the window size of 1 somewhat un-
surprisingly performs worse within both the Rand
and Train variants.

5 Conclusion and Future work

In this paper, we have shown that creating and us-
ing an artificial error dataset clearly outperforms
the NATAS baseline (Hämäläinen and Hengchen,
2019), with a clear advantage for the Train over
the Rand configuration. Another clear conclusion
is that a larger context window results in increas-
ing the accuracy of the models. Comparing the
new results for all three OCR methods, we see the
models are most effective with FR11 when the ra-
tio of fixing wrong words (45.17%) is high enough
to overcome the issue of breaking the right words
(6.7%). Our methods also work very well on OLD
with ability to fix 36.03% of wrong words and
handle more than 93% of right words correctly.
However, our models are not compelling enough
to beat the accuracy achieved by Tesseract, a con-
clusion we see as further work.

In spite of the effectiveness of the post-
correction strategy, it does not guarantee that all
the words with w/v replaced are correct, nor that



UralicNLP manages to recognize all the existing
Finnish words. For example: the wrong OCR
word mcntoistamuotiscn was fixed to metoistavuo-
tisen which is the correct one according to the gold
standard, but UralicNLP has filtered it out due to
not considering that is the valid Finnish word. This
is true, as the first syllable kol was dropped out
due to a line break in the data, and without the
line break, the word would be kolmetoistavuotisen
(“13 years old"). This means that in the future,
we need to develop better strategies more suitable
to OCR contexts for telling correct and incorrect
words apart.

This implies that in reality the corrected cases
can be higher if we don’t revert the already nor-
malized w/v words. In addition, if there is a bet-
ter method to ensure a word is valid in Finnish,
the result could be improved. Thus, our evaluation
provides an overall view of how the Transformer
and Trained Error Generator models with context
words could improve the post OCR correction no-
tably. Our methods also show that using artificial
dataset from a modern corpus is very beneficial to
normalize the historical text.

Importantly, we would like to underline that our
method does not rely on huge amounts of hand an-
notated gold data, but can rather be applied for as
long as one has access to an OCRed text, a vocabu-
lary list, a morphological FST and error-free data.
There are several endangered languages related to
Finnish that already have these aforementioned re-
sources in place. In the future, we are interested in
trying our method out in those contexts as well.

References
Yvonne Adesam, Dana Dannélls, and Nina Tahmasebi.

2019. Exploring the quality of the digital historical
newspaper archive KubHist. Proceedings of DHN.

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. 2018.
An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling.

Ryan Cordell. 2020. Machine learning and libraries:
a report on the state of the field. Technical report,
Library of Congress.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
deep bidirectional transformers for language under-
standing.

Rui Dong and David Smith. 2018. Multi-input atten-
tion for unsupervised OCR correction. In Proceed-
ings of the 56th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Pa-
pers).

Senka Drobac, Pekka Sakari Kauppinen, and Bo Kris-
ter Johan Linden. 2017. OCR and post-correction of
historical Finnish texts. In Proceedings of the 21st
Nordic Conference on Computational Linguistics,
NoDaLiDa, 22-24 May 2017, Gothenburg, Sweden.
Linköping University Electronic Press.

Greta Franzini, Mike Kestemont, Gabriela Rotari,
Melina Jander, Jeremi K Ochab, Emily Franzini,
Joanna Byszuk, and Jan Rybicki. 2018. Attribut-
ing authorship in the noisy digitized correspondence
of Jacob and Wilhelm Grimm. Frontiers in Digital
Humanities, 5:4.

Mika Hämäläinen and Simon Hengchen. 2019. From
the paft to the fiiture: a fully automatic NMT and
word embeddings method for OCR post-correction.
In Proceedings of the International Conference on
Recent Advances in Natural Language Processing
(RANLP 2019), pages 431–436.

Mika Hämäläinen and Jack Rueter. 2018. Advances
in synchronized xml-media wiki dictionary develop-
ment in the context of endangered uralic languages.
In Proceedings of the XVIII EURALEX International
Congress: Lexicography in Global Contexts.

Mika Hämäläinen. 2019. UralicNLP: An NLP library
for Uralic languages. Journal of Open Source Soft-
ware, 4(37):1345.

Mark J Hill and Simon Hengchen. 2019. Quanti-
fying the impact of dirty OCR on historical text
analysis: Eighteenth century collections online as a
case study. Digital Scholarship in the Humanities,
34(4):825–843.

Kimmo Tapio Kettunen, Jukka Kervinen, and Jani
Mika Olavi Koistinen. 2018. Creating and using
ground truth ocr sample data for finnish historical
newspapers and journals. In Proceedings of the Dig-
ital Humanities in the Nordic Countries 3rd Con-
ference, CEUR Workshop proceedings, pages 162–
169. Technical University of Aachen. Digital Hu-
manities in the Nordic Countries ; Conference date:
07-03-2018 Through 09-03-2018.

Kimmo Tapio Kettunen and Tuula Anneli Pääkkönen.
2016. Measuring lexical quality of a historical
finnish newspaper collection – analysis of garbled
ocr data with basic language technology tools and
means. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation
(LREC 2016).

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander M. Rush. 2017. Open-
NMT: Open-Source Toolkit for Neural Machine
Translation. In Proc. ACL.

http://arxiv.org/abs/1803.01271
http://arxiv.org/abs/1803.01271
https://blogs.loc.gov/thesignal/2020/07/machine-learning-libraries-a-report-on-the-state-of-the-field/
https://blogs.loc.gov/thesignal/2020/07/machine-learning-libraries-a-report-on-the-state-of-the-field/
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.26615/978-954-452-056-4_051
https://doi.org/10.26615/978-954-452-056-4_051
https://doi.org/10.26615/978-954-452-056-4_051
https://doi.org/10.21105/joss.01345
https://doi.org/10.21105/joss.01345
https://doi.org/10.18653/v1/P17-4012
https://doi.org/10.18653/v1/P17-4012
https://doi.org/10.18653/v1/P17-4012


Vladimir I. Levenshtein. 1965. Двоичные коды с ис-
правлением выпадений, вставок и замещений
символов. Доклады Академий Наук СССР,
63(4):845–848.

KyungTae Lim, Niko Partanen, and Thierry Poibeau.
2018. Multilingual dependency parsing for low-
resource languages: Case studies on North Saami
and Komi-Zyrian. In Proceedings of LREC 2018.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. arXiv preprint
arXiv:1508.04025.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Stephen Mutuvi, Antoine Doucet, Moses Odeo, and
Adam Jatowt. 2018. Evaluating the impact of OCR
errors on topic modeling. In International Con-
ference on Asian Digital Libraries, pages 3–14.
Springer.

Thi Tuyet Hai Nguyen, Adam Jatowt, Nhu-Van
Nguyen, Mickael Coustaty, and Antoine Doucet.
2020. Neural machine translation with bert for post-
ocr error detection and correction. In Proceedings
of the ACM/IEEE Joint Conference on Digital Li-
braries in 2020, pages 333–336.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajic, Christopher D Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, et al. 2016. Universal dependencies
v1: A multilingual treebank collection. In Proceed-
ings of the Tenth International Conference on Lan-
guage Resources and Evaluation (LREC’16), pages
1659–1666.

Niko Partanen. 2017. Challenges in ocr today: Re-
port on experiences from INEL. In Электронная
Письменность Народов Российской Федера-
ции: Опыт, Проблемы И Перспективы, pages
263–273.

Niko Partanen and Michael Rießler. 2019. An OCR
system for the unified northern alphabet. In The fifth
International Workshop on Computational Linguis-
tics for Uralic Languages.

Eva Pettersson, Beáta Megyesi, and Jörg Tiedemann.
2013. An SMT approach to automatic annotation of
historical text. In Proceedings of the workshop on
computational historical linguistics at NODALIDA
2013.

Michael Piotrowski. 2012. Natural language process-
ing for historical texts. Synthesis lectures on human
language technologies, 5(2):1–157.

Tommi A Pirinen. 2015. Development and use of com-
putational morphology of Finnish in the open source
and open science era: Notes on experiences with

Omorfi development. SKY Journal of Linguistics,
28:381–393.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50.

Kepa Joseba Rodriquez, Mike Bryant, Tobias Blanke,
and Magdalena Luszczynska. 2012. Comparison of
named entity recognition tools for raw OCR text. In
KONVENS, pages 410–414.

Jack Rueter, Niko Partanen, and Larisa Ponomareva.
2020. On the questions in developing computational
infrastructure for komi-permyak. In Proceedings of
the Sixth International Workshop on Computational
Linguistics of Uralic Languages, pages 15–25.

Jack Rueter and Francis Tyers. 2018. Towards an
Open-Source Universal-Dependency Treebank for
Erzya. In Proceedings of the Fourth International
Workshop on Computatinal Linguistics of Uralic
Languages.

Mariya Sheyanova and Francis M. Tyers. 2017. Anno-
tation schemes in North Sámi dependency parsing.
In Proceedings of the 3rd International Workshop
for Computational Linguistics of Uralic Languages.

Miikka Silfverberg and Jack Rueter. 2015. Can mor-
phological analyzers improve the quality of optical
character recognition? In Septentrio Conference Se-
ries, 2, pages 45–56.

David A. Smith and Ryan Cordell. 2019. A research
agenda for historical and multilingual optical char-
acter recognition. Technical report, Northeastern
University.

Daniel van Strien, Kaspar Beelen, Mariona Coll Ar-
danuy, Kasra Hosseini, Barbara McGillivray, and
Giovanni Colavizza. 2020. Assessing the impact of
ocr quality on downstream nlp tasks. In ICAART (1),
pages 484–496.

Simon Tanner, Trevor Muñoz, and Pich Hemy Ros.
2009. Measuring mass text digitization quality and
usefulness. D-lib Magazine, 15(7/8):1082–9873.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

https://repository.library.northeastern.edu/collections/neu:cj82sz060
https://repository.library.northeastern.edu/collections/neu:cj82sz060
https://repository.library.northeastern.edu/collections/neu:cj82sz060

	Introduction
	Related work
	Experiment
	Baseline
	Methods
	Dataset Construction
	Models


	Evaluation
	Error Analysis

	Conclusion and Future work

