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Abstract

This paper presents EstBERT, a large pre-
trained transformer-based language-specific
BERT model for Estonian. Recent work has
evaluated multilingual BERT models on Es-
tonian tasks and found them to outperform
the baselines. Still, based on existing studies
on other languages, a language-specific BERT
model is expected to improve over the multi-
lingual ones. We first describe the EstBERT
pretraining process and then present the mod-
els’ results based on the finetuned EstBERT
for multiple NLP tasks, including POS and
morphological tagging, dependency parsing,
named entity recognition and text classifica-
tion. The evaluation results show that the mod-
els based on EstBERT outperform multilin-
gual BERT models on five tasks out of seven,
providing further evidence towards a view that
training language-specific BERT models are
still useful, even when multilingual models are
available.1

1 Introduction
Pretrained language models, such as BERT (Devlin
et al., 2019) or ELMo (Peters et al., 2018), have become
the essential building block for many NLP systems.
These models are trained on large amounts of unanno-
tated textual data, enabling them to capture the general
regularities in the language and thus can be used as a
basis for training the subsequent models for more spe-
cific NLP tasks. Bootstrapping NLP systems with pre-
training is particularly relevant and holds the greatest
promise for improvements in the setting of limited re-
sources, either when working with tasks of limited an-
notated training data or less-resourced languages like
Estonian.

Since the first publication and release of the large
pretrained language models on English, considerable
effort has been made to develop support for other lan-
guages. In this regard, multilingual BERT models, si-
multaneously trained on the text of many different lan-
guages, have been published, several of which also in-

1The model is available via HuggingFace Transformers
library: https://huggingface.co/tartuNLP/EstBERT

clude the Estonian language (Devlin et al., 2019; Con-
neau et al., 2019; Sanh et al., 2019; Conneau and Lam-
ple, 2019). These multilingual models’ performance
was recently evaluated on several Estonian NLP tasks,
including POS and morphological tagging, named en-
tity recognition, and text classification (Kittask et al.,
2020). The overall conclusions drawn from these ex-
periments are in line with previously reported results
on other languages, i.e., for many or even most tasks,
multilingual BERT models help improve performance
over baselines that do not use language model pretrain-
ing.

Besides multilingual models, language-specific
BERT models have been trained for an increasing
number of languages, including for instance Camem-
BERT (Martin et al., 2020) and FlauBERT (Le et al.,
2020) for French, FinBERT for Finnish (Virtanen et al.,
2019), RobBERT (Delobelle et al., 2020) and BERTJe
(de Vries et al., 2019) for Dutch, Chinese BERT (Cui
et al., 2019), BETO for Spanish (Cañete et al., 2020),
RuBERT for Russian (Kuratov and Arkhipov, 2019)
and others. For a recent overview about these efforts
refer to Nozza et al. (2020). Aggregating the results
over different language-specific models and compar-
ing them to those obtained with multilingual models
shows that depending on the task, the average improve-
ment of the language-specific BERT over the mul-
tilingual BERT varies from 0.70 accuracy points in
paraphrase identification up to 6.37 in sentiment clas-
sification (Nozza et al., 2020). The overall conclu-
sion one can draw from these results is that while
existing multilingual BERT models can bring along
improvements over language-specific baselines, using
language-specific BERT models can further consider-
ably improve the performance of various NLP tasks.

Following the line of reasoning presented above, we
set forth to train EstBERT, a language-specific BERT
model for Estonian. In the following sections, we first
give details about the data used for BERT pretrain-
ing and then describe the pretraining process. Finally,
we will provide evaluation results on the same tasks
as presented by Kittask et al. (2020) on multilingual
BERT models, which include POS and morphological
tagging, named entity recognition and text classifica-
tion. Additionally, we also train a dependency parser
based on the spaCy system. Compared to multilingual

https://huggingface.co/tartuNLP/EstBERT


models, the EstBERT model achieves better results on
five tasks out of seven, providing further evidence for
the usefulness of pretraining language-specific BERT
models. Additionally, we also compare with the Esto-
nian WikiBERT, a recently published Estonian-specific
BERT model trained on a relatively small Wikipedia
data (Pyysalo et al., 2020). Compared to the Estonian
WikiBERT model, the EstBERT achieves better results
on six tasks out of seven, demonstrating the positive
effect of the amount of pretraining data on the general-
isability of the model.

2 Data Preparation

The first step for training the EstBERT model involves
preparing a suitable unlabeled text corpus. This section
describes both the steps we took to clean and filter the
data and the process of generating the vocabulary and
the pretraining examples.

2.1 Data Preprocessing

For training the EstBERT model, we used the Esto-
nian National Corpus 2017 (Kallas and Koppel, 2018),2

which was the largest Estonian language corpus avail-
able at the time. It consists of four sub-corpora: the Es-
tonian Reference Corpus 1990-2008, the Estonian Web
Corpus 2013, the Estonian Web Corpus 2017, and the
Estonian Wikipedia Corpus 2017. The Estonian Ref-
erence corpus (ca 242M words) consists of a selection
of electronic textual material, about 75% of the corpus
contains newspaper texts, the rest 25% contains fiction,
science and legislation texts. The Estonian Web Cor-
pora 2013 and 2017 make up the largest part of the
material and they contain texts collected from the In-
ternet. The Estonian Wikipedia Corpus 2017 is the Es-
tonian Wikipedia dump downloaded in 2017 and con-
tains roughly 38M words. The top row of the Table 1
shows the initial statistics of the corpus.

We applied different cleaning and filtering tech-
niques to preprocess the data. First, we used the cor-
pus processing methods from EstNLTK (Laur et al.,
2020), which is an open-source tool for Estonian natu-
ral language processing. Using the EstNLTK, all XM-
L/HTML tags were removed from the text, also all
documents with a language tag other than Estonian
were removed. Additional non-Estonian documents
were further filtered out using the language-detection
library.3 Next, all duplicate documents were removed.
For that, we used hashing—all documents were lower-
cased, and then the hashed value of each document was
subsequently stored into a set. Only those documents
whose hash value did not yet exist in the set (i.e., the
first document with each hash value) were retained. We
also used the hand-written heuristics,4 developed for
preprocessing the data for training the FinBert model

2https://www.sketchengine.eu/estonian-national-corpus/
3https://github.com/shuyo/language-detection
4https://github.com/TurkuNLP/deepfin-tools

Documents Sentences Words

Initial 3.9M 87.6M 1340M
After cleanup 3.3M 75.7M 1154M

Table 1: Statistics of the corpus before and after the
cleanup.

(Virtanen et al., 2019), to filter out documents with too
few words, too many stopwords or punctuation marks,
for instance. We applied the same thresholds as were
used for Finnish BERT. Finally, the corpus was true-
cased by lemmatizing a copy of the corpus with Es-
tNLTK tools and using the lemma’s casing informa-
tion to decide whether the word in the original corpus
should be upper- or lowercase. The statistics of the cor-
pus after the preprocessing and cleaning steps are in the
bottom row of Table 1.

2.2 Vocabulary and Pretraining Example
Generation

Originally, BERT uses the WordPiece tokeniser, which
is not available open-source. Instead, we used the BPE
tokeniser available in the open-source sentencepiece5

library, which is the closest to the WordPiece algo-
rithm, to construct a vocabulary of 50K subword to-
kens. Then, we used BERT tools6 to create the pretrain-
ing examples for the BERT model in the TFRecord for-
mat. In order to enable parallel training on four GPUs,
the data was split into four shards. Separate pretraining
examples with sequences of length 128 and 512 were
created, masking 15% of the input words in both cases.
Thus, 20 and 77 words in maximum were masked in
sequences of both lengths, respectively.

3 Evaluation Tasks
Before describing the EstBERT model pretraining pro-
cess itself, we first describe the tasks used to both val-
idate and evaluate our model. These tasks include the
POS and morphological tagging, named entity recog-
nition, and text classification. In the following sub-
section, we describe the available Estonian datasets for
these tasks.

3.1 Part of Speech and Morphological Tagging
For part of speech (POS) and morphological tagging,
we use the Estonian EDT treebank from the Univer-
sal Dependencies (UD) collection that contains anno-
tations of lemmas, parts of speech, universal morpho-
logical features, dependency heads, and universal de-
pendency labels. We use the UD version 2.5 to enable
comparison with the experimental results of the multi-
lingual BERT models reported by Kittask et al. (2020).
We train models to predict both universal POS (UPOS)
and language-specific POS (XPOS) tags as well as

5https://github.com/google/sentencepiece
6https://github.com/google-research/bert
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morphological features. The pre-defined train/dev/test
splits are used for training and evaluation. Table 2
shows the statistics of the treebank splits. The accu-
racy of the POS and morphological tagging tasks is
evaluated with the conll18 ud eval script from the
CoNLL 2018 Shared Task.

Train Dev Test

Sentences 31012 3128 6348
Tokens 344646 42722 48491

Table 2: Statistics of the UDv2.5 Estonian treebank.

3.2 Named Entity Recognition
Estonian named entity recognition (NER) corpus
(Tkachenko et al., 2013) annotations cover three types
of named entities: locations, organizations, and per-
sons. It contains 572 news stories published in local
online newspapers Postimees and Delfi, covering lo-
cal and international news on various topics. Table 3
displays statistics of the training, development and test
splits. The performance of the NER models is evalu-
ated with the conlleval script from the CoNLL 2000
shared task.

Tokens PER LOC ORG Total

Train 155981 6174 4749 4784 15707
Dev 32890 1115 918 742 2775
Test 28370 1201 644 619 2464

Table 3: Statistics of the Estonian NER corpus.

3.3 Sentiment and Rubric Classification
Estonian Valence corpus (Pajupuu et al., 2016) consists
of 4085 news extracts from Postimees Daily. All docu-
ments in the corpus are labeled with both sentiment and
rubric classes. There are nine rubrics: Opinion, Esto-
nia, Life, Comments-Life, Comments-Estonia, Crime,
Culture, Sports, and Abroad. The four sentiment la-
bels include Positive, Negative, Neutral, and Ambigu-
ous. We split the data into 70/10/20 training, develop-
ment and test sets, stratified over both rubric and senti-
ment analysis. Table 4 and Table 5 show the statistics
about the sentiment and rubric view of the classification
dataset respectively.

4 Pretraining EstBERT
The EstBERT model was pretrained on the architecture
identical to the BERTBase model with 12 transformer
blocks with 768 hidden units each and 110M trainable
parameters. It was pretrained on the Masked Language
Modeling (MLM) and the Next Sentence Prediction
(NSP) tasks as described by Devlin et al. (2019). In
MLM, the probability of correctly predicting the ran-
domly masked tokens is maximised. Because in the

Train Dev Test Total

Positive 612 87 175 874
Negative 1347 191 385 1923
Neutral 505 74 142 721
Ambiguous 385 55 110 550

Total 2849 407 812 4068

Table 4: Sentiment label statistics of the Estonian Va-
lence corpus.

Train Dev Test Total

Opinion 676 96 192 964
Estonia 289 41 83 413
Life 364 52 101 517
Comments-Life 354 50 102 506
Comments-Estonia 351 50 100 501
Crime 146 21 42 209
Culture 182 27 51 260
Sports 269 39 77 385
Abroad 218 31 64 313

Total 2849 407 812 4068

Table 5: Rubric label statistics of the Estonian Valence
corpus.

transformer architecture, the model can simultaneously
see both the left and the right context of a masked
word, optimizing the MLM gives the model a bidirec-
tional understanding of a sentence, as opposed to only
the left or right context provided by recurrent language
models. The NSP involves optimizing a binary clas-
sification task to predict whether the two sequences in
the input follow each other in the original text or not,
where half of the time, the second sequence is the cor-
rect next sentence and the other half of the time the two
sequences are unrelated. The models were trained on
four NVIDIA Tesla V100 GPUs across two nodes of
the High-performance Computing Center at the Uni-
versity of Tartu (University of Tartu, 2018).

The model was first trained with the sequence length
of 128. Then we evaluated the checkpoints generated
during pretraining on the tasks described in section 3
to choose the final model with that sequence length.
Finally, the chosen model was used as a starting point
for training the longer model with 512 sequence length.
Thus, as a result of pretraining, two EstBERT models,
one with maximum sequence length 128 and the other
with maximum sequence length 512, were obtained.
The following subsections describe these three steps in
more detail.

4.1 Pretraining with Sequence Length 128

The model with the sequence length of 128 was pre-
trained for two phases, both for 900K steps. Although
the number of training steps was chosen following Vir-
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Figure 1: The validation performance on POS tagging and text classification tasks after every 50K checkpoints.

train batch size 32
max seq length 128
max predictions per seq 20
num train steps 900000
num warmup steps 9000
learning rate 1e-4
save checkpoints step 50000

Table 6: Hyperparameters used in the first two pretrain-
ing phases with the sequence length 128.

tanen et al. (2019), coincidentally this (900K steps)
was the maximum number of steps we could fit in the
given GPU time limit of 8 days. Therefore, the model
was trained in two phases, each having 900K steps. A
checkpoint was saved to the disk after every 50K steps.
While the first phase of pretraining started from scratch
with randomly initialised parameters, the second phase
of training was initialised from the first phase’s last
checkpoint. Since the GPU memory availability was
a major issue, the batch size was kept at 32 to avoid the
tensors going beyond the allowed GPU memory size.
The BERTBase uses Adam optimiser with weight de-
cay. For EstBERT, the same optimiser was used with
warmup over the first 1% of steps (9000) to a peak
learning rate of 1e-4. The relevant hyperparameters are
shown in Table 6. The pretraining process took around
192 hours for each phase.

4.2 Pretraining Validation
During pretraining, a checkpoint was saved after every
50K steps for later evaluation. To monitor the pretrain-
ing process, we evaluated the performance of MLM,
NSP, and the evaluation tasks described in section 3 on
all these checkpoints.

For POS and morphological tagging, and named en-
tity recognition, we finetuned EstBERT using scripts
from HuggingFace transformers library.7 A single ran-
domly initialised fully connected classifier layer was
trained on top of the token representations of the last
hidden layer of the EstBERT model. All hyperparam-

7https://github.com/huggingface/transformers/blob/
master/examples/token-classification/run ner.py

eters were kept at their default values, which involves
training for three epochs, using the learning rate of 5e-
5 and batch size of 8. For the rubric and sentiment
classification tasks, we adapted the classifier training
scripts available in google’s BERT repository.8 The in-
put to the single fully-connected classifier layer is the
last hidden representation of the first token [CLS] in
the input sequence. Here again, the classifier layer was
initialised randomly and the default values for hyper-
parameters were used: training for three epochs with
the learning rate 5e-5 and batch size 32. In all tasks,
both the task-specific classification layer as well as the
EstBERT parameters were finetuned.

The validation results of the masked language
model, next sentence prediction accuracy, and all the
evaluation tasks for all the eighteen checkpoints from
stage one and other eighteen models from stage two
were compared to pick the best model. The exam-
ples of validation curves for the UPOS tagging and
the rubric classification tasks are shown in Figure 1.
Although the checkpoint validation results from both
phases showed more or less steady improvement with
the increase of the number of steps trained, we ob-
served that the checkpoint at 750K steps from phase
two performs slightly better on all tasks than the rest of
the checkpoints. Thus, this checkpoint was chosen as a
final model with sequence length 128.

train batch size 16
max seq length 512
max predictions per seq 77
num train steps 600000
num warmup steps 6000
learning rate 1e-4
save checkpoints step 50000

Table 7: Hyperparameters used to pretrain the Est-
BERT model with the sequence length 512.

8https://github.com/google-research/bert/blob/master/
run classifier.py/

https://github.com/huggingface/transformers/blob/master/examples/token-classification/run_ner.py
https://github.com/huggingface/transformers/blob/master/examples/token-classification/run_ner.py
https://github.com/google-research/bert/blob/master/run_classifier.py/
https://github.com/google-research/bert/blob/master/run_classifier.py/


Model UPOS XPOS Morph UPOS XPOS Morph
Seq = 128 Seq = 512

EstBERT 97.89 98.40 96.93 97.84 98.43 96.80

WikiBERT-et 97.78 98.36 96.71 97.76 98.35 96.67
mBERT 97.42 98.06 96.24 97.43 98.13 96.13
XLM-RoBERTa 97.78 98.36 96.53 97.80 98.40 96.69

Table 8: POS and morphological tagging accuracy on the Estonian UD test set. The highest scores in each column
are in bold. The highest overall score of each task is underlined.

4.3 Pretraining with Sequence Length 512
The starting point for training the model with a se-
quence length of 512 was the final model chosen for
the sequence length 128. The longer model was trained
further up to 600K steps. The batch size was reduced to
16 as the size of the tensors would be larger for the se-
quence length 512 compared to 128. The hyperparame-
ters used to train the longer model are shown in Table 7.
During training, checkpoints were again saved after ev-
ery 50K steps, and these were evaluated on all evalua-
tion tasks as previously explained in Section 4.2. Based
on these evaluations, the last checkpoint obtained after
the 600K steps was chosen as the final model with 512
sequence length.

5 Results
The next subsections present the results obtained with
the final EstBERT models with both sequence lengths
on the tasks described in section 3. We follow the same
setup of Kittask et al. (2020) to enable direct compar-
ison with the multilingual models. Some additional
steps were taken to prepare the Estonian Valence cor-
pus. First, all duplicate items, 17 in total, were re-
moved. Also, all items with the Ambiguous label were
removed as retaining them has been shown to lower the
the classification accuracy (Pajupuu et al., 2016). The
same preprocessing was also applied in evaluating the
multilingual BERT models for Estonian (Kittask et al.,
2020).

For finetuning, we used the same scripts from the
HuggingFace transformers repository that were used
for the pretraining validation in section 4.2. The same
scripts were also used to evaluate the multilingual mod-
els by Kittask et al. (2020). For each task, the learning
rate of the AdamW optimiser and the batch size was
tuned on the development set. The learning rate grid
values were (5e-5, 3e-5, 1e-5, 5e-6, 3e-6) and the batch
size grid values were (8, 16). The best model was found
on the development set by using early stopping with the
patience of 10 epochs.

We compare the results of EstBERT with the mul-
tilingual BERT models’ results from Kittask et al.
(2020) and the WikiBERT model trained on the Esto-
nian Wikipedia (Pyysalo et al., 2020). WikiBERT-et
model was finetuned using the same setup described
above.

Model Rubr. Sent. Rubr. Sent.
Seq = 128 Seq = 512

EstBERT 81.70 74.36 80.96 74.50

WikiBERT-et 72.72 68.09 71.13 69.37
mBERT 75.67 70.23 74.94 69.52
XLM-RoBERTa 80.34 74.50 78.62 76.07

Table 9: Rubric (Rubr.) and sentiment (Sent.) classi-
fication accuracy. The highest scores in each column
are in bold. The highest overall score of each task is
underlined.

5.1 POS and Morphological Tagging

The POS and morphological tagging results are sum-
marised in Table 8 that shows the accuracy for uni-
versal POS tags (UPOS), language-specific POS tags
(XPOS), and morphological features. The language-
specific EstBERT outperforms all other models al-
though the difference with the XLM-RoBERTa—
the best-performing multilingual model—and the
WikiBERT-et are quite small.

Similar to multilingual results, using longer se-
quence length on this task with the EstBERT model
does not seem beneficial as the accuracy slightly in-
creases only for XPOS tags but not for others. Over-
all, as the performances on these tasks are already
very high, the absolute performance gains cannot be
large. EstBERT obtains consistent improvements over
mBERT, with the relative error reduction with both
models on all tasks falling between 16-18%. The
relative error reduction of the EstBERT compared to
XLM-RoBERTa is smaller, in the range of 2-5%. The
highest reduction of error of EstBERT compared to
XLM-RoBERTa can be observed on the morphologi-
cal tagging task with the shorter model where the rela-
tive error reduction is 12%. The WikiBERT-et model
achieves almost identical results to XLM-RoBERTa
with both sequence lengths.

5.2 Rubric and Sentiment Classification

The rubric and sentiment classification results are
shown in Table 9. EstBERT outperforms mBERT and
WikiBERT-et on both tasks by a large margin, but
XLM-RoBERTa exceeds EstBERT on sentiment clas-



Model Precicion Recall F1-Score Precision Recall F1-Score
Seq = 128 Seq = 512

EstBERT 89.10 91.15 90.11 88.35 89.74 89.04

WikiBERT-et 89.86 90.83 90.34 88.31 90.96 89.61
mBERT 85.88 87.09 86.51 88.47 88.28 88.37
XLM-RoBERTa 87.55 91.19 89.34 87.50 90.76 89.10

Table 10: NER tagging results. Upper section shows the comparison between different models. The highest scores
in each column are in bold. The highest overall score of each measure is underlined.

Entity EstBERT XLM-RoBERTa WikiBERT-et
Prec Rec F1 Prec Rec F1 Prec Rec F1

PER 94.80 95.77 95.28 96.42 94.45 95.43 94.87 94.45 94.66
ORG 78.38 82.64 80.45 75.48 82.12 78.66 82.25 81.61 81.92
LOC 89.94 91.38 90.66 86.06 93.99 89.85 88.89 92.99 90.89

Table 11: The entity-based scores for the EstBERT, XLM-RoBERTa and the WikiBERT-et models. The best scores
are in bold.

sification. The difference between the two accuracy
scores is relatively small when the model with se-
quence length 128 is used, but it increases when the
longer sequence length is used.

Like XLM-RoBERTa, the EstBERT model with a
shorter sequence length is somewhat better on rubric
classification, and the opposite is true for sentiment
classification. Overall, the differences between the
EstBERT models’ performances with both sequence
lengths are again relatively small.

5.3 Named Entity Recognition
Table 10 shows the entity-based precision, recall,
and F-score of the named entity recognition task.
WikiBERT-et model is the best model in this task, ob-
taining the highest F1-score with both the short and
long models and the overall highest F1-score with
the short model. XLM-RoBERTa achieves the high-
est recall in the short model category but remains be-
low the EstBERT in terms of the F1-score. EstBERT,
WikiBERT-et and XLM-RoBERTa all benefit from us-
ing the smaller sequence length rather than longer,
while mBERT shows the opposite behavior.

Table 11 shows the fine-grained scores of each entity
type for both the EstBERT, XLM-RoBERTa and the
WikiBERT-et shorter model. In alignment with the pre-
vious results in Estonian NER (Tkachenko et al., 2013),
the prediction of the person entities is the most accurate
while the organisation names are the most difficult to
predict. The WikiBERT-et is the best on the two most
difficult entities ORG and LOC, while the EstBERT
model is better than XLM-RoBERTa on these two enti-
ties. The WikiBERT-et is notably the best on the most
challenging organisation entity, improving the preci-
sion over the EstBERT model for almost 4% and over
the XLM-RoBERTa for almost 7%, with a considerably
smaller loss in recall. One reason for the superiority of

the WikiBERT-et model might lie in the fact that the
Wikipedia dataset used to train the WikiBERT-et model
probably contains a much higher proportion of organ-
isation names. Although the datasets used to train the
other two models also contain the Estonian Wikipedia
dataset, it has been diluted in other languages (in case
of XLM-RoBERTa) or genres (in case of EstBERT).
However, this is just a hypothesis at the moment that
has to be studied more in further work.

5.4 Dependency Parsing

Additionally, we also evaluated both the EstBERT,
WikiBERT-et and the XLM-RoBERTa models on the
Estonian dependency parsing task. The data used in
these experiments is the Estonian UDv2.5 described
in section 3.1. We trained the parser available in the
spaCy Nightly version9 that also supports transform-
ers. The models were trained with a batch size of 32
and for a maximum of 20K steps, stopping early when
the development set performance did not improve for
1600 steps. The parser was trained jointly with a tag-
ger component that predicted the concatenation of POS
tags and morphological features. During training, the
model was supplied with the gold sentence and token
segmentations. During evaluation, the sentence seg-
mentation and tokenisation was done with the out-of-
the-box spaCy tokeniser.

The dependency parsing results are in Table 12. In
addition to the transformer-based EstBERT and XLM-
RoBERTa models, the right-most section also displays
the Stanza parser (Qi et al., 2020), trained on the same
Estonian UDv2.5 corpus, obtained from the Stanza web
page.10 We add a non-transformer based baseline for
this task because dependency parsing was not evaluated

9https://pypi.org/project/spacy-nightly/
10https://stanfordnlp.github.io/stanza/models.html

https://pypi.org/project/spacy-nightly/
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Model EstBERT XLM-RoBERTa WikiBERT-et Stanza
DepRel Support Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

UAS 86.07 87.34 86.70 88.02 89.32 88.66 85.97 87.24 86.60 86.69 86.68 86.69
LAS 83.32 84.56 83.94 85.60 86.87 86.23 83.06 84.29 83.67 83.63 83.63 83.63

nmod 4328 81.40 85.65 83.47 83.73 88.49 86.05 80.86 85.42 83.08 82.53 84.27 83.39
obl 4198 80.99 79.78 80.38 83.65 82.66 83.15 80.81 79.47 80.13 79.61 77.78 78.68
advmod 3938 78.01 79.02 78.52 80.43 80.45 80.44 78.08 77.96 78.02 78.93 78.11 78.52
root 3214 90.82 89.61 90.21 91.88 91.91 91.90 90.32 89.73 90.03 90.18 87.46 88.80
nsubj 2682 92.05 93.25 92.65 93.54 94.52 94.03 90.40 92.69 91.53 90.67 89.90 90.28
conj 2476 76.90 78.51 77.70 81.72 83.44 82.57 78.28 78.31 78.30 76.41 78.76 77.57
obj 2437 86.91 88.80 87.84 88.62 90.73 89.66 86.36 87.57 86.96 83.51 84.78 84.14
amod 2411 80.02 84.20 82.05 82.90 86.64 84.73 80.12 83.91 81.97 91.93 89.26 90.57
cc 2029 91.26 90.09 90.67 92.57 91.47 92.02 90.75 89.50 90.12 89.97 88.42 89.19
aux 1372 95.36 95.85 95.60 95.43 95.99 95.71 94.79 95.48 95.13 89.93 95.04 92.42
mark 1277 90.14 90.92 90.53 92.75 93.19 92.97 89.25 89.74 89.50 88.35 89.12 88.73
cop 1202 84.75 87.35 86.03 85.48 87.69 86.57 84.29 87.02 85.63 81.43 86.11 83.70
acl 1063 84.98 85.14 85.06 86.88 87.86 87.37 86.67 85.04 85.85 86.36 80.43 83.29
nsubj:cop 1054 79.98 82.64 81.29 81.16 85.01 83.04 79.34 82.73 81.00 77.78 79.70 78.73
case 908 92.42 92.62 92.52 93.52 93.72 93.62 91.32 92.73 92.02 89.13 91.19 90.15
advcl 857 67.18 65.93 66.55 73.46 71.06 72.24 66.55 66.39 66.47 67.12 63.36 65.19
det 808 83.88 85.02 84.45 87.89 87.13 87.51 82.95 84.28 83.61 80.80 82.80 81.78
parataxis 725 52.96 49.38 51.11 57.50 50.76 53.92 55.59 48.69 51.91 65.45 59.31 62.23
xcomp 641 85.21 87.21 86.20 88.06 88.61 88.34 84.11 86.74 85.41 83.78 83.00 83.39
flat 633 81.44 85.94 83.63 86.64 91.15 88.84 80.09 86.41 83.13 88.60 92.10 90.32
nummod 555 62.88 77.84 69.57 62.00 80.54 70.06 63.12 78.02 69.78 85.53 85.23 85.38
compound:prt 481 86.10 92.72 89.29 88.20 94.80 91.38 85.99 93.14 89.42 85.52 89.60 87.51
appos 376 69.07 71.28 70.16 74.45 80.59 77.39 64.55 73.14 68.58 69.47 72.61 71.00
ccomp 344 82.56 82.56 82.56 87.03 87.79 87.41 80.44 84.88 82.60 81.87 78.78 80.30
acl:relcl 315 80.67 83.49 82.06 79.00 80.00 79.50 79.30 79.05 79.17 61.32 82.54 70.37
csubj:cop 121 80.47 85.12 82.73 75.74 85.12 80.16 79.23 85.12 82.07 72.79 88.43 79.85
csubj 108 81.51 89.81 85.46 80.83 89.81 85.09 84.26 84.26 84.26 84.91 83.33 84.11
discourse 47 37.14 55.32 44.44 36.92 51.06 42.86 34.33 48.94 40.35 81.25 55.32 65.82
orphan 44 20.83 11.36 14.71 37.93 25.00 30.14 20.00 18.18 19.05 45.00 20.45 28.12
compound 43 88.10 86.05 87.06 83.33 81.40 82.35 92.11 81.40 86.42 88.64 90.70 89.66
cc:preconj 39 66.67 71.79 69.14 67.57 64.10 65.79 62.79 69.23 65.85 70.27 66.67 68.42
flat:foreign 37 76.19 43.24 55.17 87.50 56.76 68.85 43.75 18.92 26.42 65.38 45.95 53.97
fixed 31 64.71 70.97 67.69 64.86 77.42 70.59 57.50 74.19 64.79 75.86 70.97 73.33
vocative 9 22.22 22.22 22.22 28.57 22.22 25.00 5.56 11.11 7.41 30.77 44.44 36.36
goeswith 8 100.00 12.50 22.22 25.00 12.50 16.67 33.33 25.00 28.57 0.00 0.00 0.00
dep 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
list 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 12: Dependency parsing results. The best scores over all models are in bold. The best scores comparing the
EstBERT, WikiBERT-et and the Stanza models are underlined.

by Kittask et al. (2020). Overall, the XLM-RoBERTa
model performs the best, both in terms of the UAS and
LAS metrics and the individual dependency relations.
This is especially true for dependency relations with
larger support in the test set. Although in terms of the
UAS and LAS, the EstBERT, WikiBERT-et and Stanza
models seem to perform similarly, a closer look into the
scores of the individual dependency relations reveals
that in most cases, especially with relations of larger
support, the EstBERT model performs the best. There
are few dependency relations where the Stanza sys-
tem’s predictions are considerably more accurate than
the BERT-based models, the most notable of them be-
ing the adjectival modifier (amod) and the numerical
modifier (nummod). Further analyses are needed to
gain more insight into these results.

6 Discussion

This objective of this paper was to describe the process
of pretraining the language-specific BERT model for
Estonian and to compare its performance with the mul-
tilingual BERT models as well as with the smaller Es-
tonian WikiBERT model on several NLP tasks. Over-
all, the pretrained EstBERT was better than the best
multilingual XLM-RoBERTa model on five tasks out
of seven: UPOS, XPOS, and morphological tagging,
rubric classification, and NER. Only in the sentiment
classification and dependency parsing tasks, the XLM-
RoBERTa was better. Compared to WikiBERT-et, the
EstBERT model was better on six tasks out of seven—
the WikiBERT-et model was superior only in the NER
task, predicting ORG entities considerably better than
any other model. We did not observe any consistent
difference between the models of different sequence
lengths, although the model with the sequence length



512 was trained longer. It is possible that the shorter
model was already trained long enough, and the sub-
sequent training of the longer model did not add any
effect in that respect, aside from the fact that it can ac-
cept longer input sequences.

One crucial aspect of this work was obtaining a
large-enough corpus for pretraining the model. We
used the Estonian National Corpus 2017, which was the
largest corpus available at the time. A newer and larger
version of this corpus—the Estonian National Corpus
2019 (Kallas and Koppel, 2019)—has become avail-
able meanwhile. There are also few other resources,
such as the Estonian part of the CoNLL 2017 raw data
(Ginter et al., 2017) and the Oscar Crawl, which prob-
ably partially overlap with each other and with the Es-
tonian National Corpus. Still, these corpora would po-
tentially provide additional data that was currently not
used.

Another challenge was related to finding annotated
datasets for downstream tasks. While the Estonian
UD dataset provides annotations to the common de-
pendency parsing pipeline tasks, datasets for other, es-
pecially semantic NLP tasks, are scarce. We adopted
the Estonian Valence corpus for two-way text classi-
fication. However, the labels of this corpus are semi-
automatically derived from user ratings, and thus the
quality of these annotations cannot be guaranteed. An
Estonian coreference dataset with some simple base-
line results in nominal coreference resolution has re-
cently become available (Barbu et al., 2020), which
gives further opportunities to test out the EstBERT
model in future work.

When preprocessing the data and pretraining the
model, we mostly followed the process of training the
FinBERT model for Finnish (Virtanen et al., 2019). We
also decided to truecase our corpus to reduce the num-
ber of capitalised words in the vocabulary. The Est-
BERT model itself was also pretrained on the truecased
corpus. However, when training the task-based mod-
els for evaluation, the EstBERT was finetuned on the
cased datasets. Thus, truecasing the datasets before
finetuning might have a positive effect on the results.
In order to verify this, the EstBERT-based task-specific
models should be finetuned using the truecased anno-
tated datasets as input, and compared with the results
reported in this paper.

Although we did see some improvements with Es-
tBERT compared to XLM-RoBERTa on the smaller
model for the NER task, the differences in scores were
generally relatively small. However, we have observed
that the annotations of this NER dataset are occa-
sionally erroneous, containing, for instance, label se-
quences (I-PER, I-PER) instead of (B-PER, I-PER).
We have also observed unlabelled entities in the text.
Thus, the small variations in the systems’ results might
not be informative about the systems themselves but
can instead stem from the noise in the data. Although
these annotation errors have been noticeable enough,

the magnitude of these errors has not been quantified.
The differences between the EstBERT and the

XLM-RoBERTa model were, in most cases, relatively
small. In previous experiments with several multilin-
gual BERT models on the same Estonian tasks (Kittask
et al., 2020), the XLM-RoBERTa proved to be the best
multilingual model. This suggests that one option to
obtain an even better Estonian language-specific model
would be to train an Estonian-specific RoBERTa by ini-
tializing the model with the parameters of the XLM-
RoBERTa. Considering that the multilingual RoBERTa
already performs very well on Estonian tasks, finetun-
ing it with more Estonian data would hopefully bias it
even more to the Estonian language while also main-
taining the gains obtained from multilingualism.

7 Conclusion

We presented EstBERT, the largest BERT model pre-
trained specifically on the Estonian language. While
several existing multilingual BERT models include
Estonian, the only language-specific Estonian BERT
model available until now has been trained on the rel-
atively small Wikipedia data. In order to pretrain the
EstBERT model, we used the largest Estonian text cor-
pus available at the time. The EstBERT model was
put to the test by finetuning it for several tasks, includ-
ing POS and morphological annotations, dependency
parsing, named entity recognition, and text classifica-
tion. On five tasks out of seven, the classifiers based on
EstBERT achieved better performance than the mod-
els based on multilingual BERT models, although in
several cases, the gap with the best-performing mul-
tilingual XLM-RoBERTa was relatively small. These
results suggest that training a RoBERTa model for Es-
tonian, initialised with the multilingual model’s param-
eters, might be beneficial. On six tasks out of seven,
the models based on EstBERT achieved better results
than the Estonian BERT model trained on Wikipedia,
suggesting that using more textual data for pretraining
leads to a more generalisable model.
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José Cañete, Gabriel Chaperon, Rodrigo Fuentes, and
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