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Abstract

Quantitative studies of historical syntax
require large amounts of syntactically an-
notated data, which are rarely available.
The application of NLP methods could re-
duce manual annotation effort, provided
that they achieve sufficient levels of accu-
racy. The present study investigates the
automatic identification of chunks in his-
torical German texts. Because no training
data exists for this task, chunks are ex-
tracted from modern and historical con-
stituency treebanks and used to train a
CRF-based neural sequence labeling tool.
The evaluation shows that the neural chun-
ker outperforms an unlexicalized base-
line and achieves overall F-scores between
90% and 94% for different historical data
sets when POS tags are used as feature.
The conducted experiments demonstrate
the usefulness of including historical train-
ing data while also highlighting the impor-
tance of reducing boundary errors to im-
prove annotation precision.

1 Introduction

The analysis of linguistic phenomena in historical
language requires large amounts of annotated data.
For example, to study the development of syntac-
tic phenomena like object order or extraposition
in German, syntactically annotated texts from all
relevant time periods are needed. To date, how-
ever, only very few historical corpora provide an-
notations beyond the morpho-syntactic level, thus
limiting syntactic research to qualitative studies on
small data sets. Using NLP methods for the auto-
matic creation of relevant annotations could sup-
port the annotation process and reduce the nec-
essary manual effort for quantitative studies. But
the application of standard tools to historical data

faces a variety of challenges, as there is less or no
training data, the data is less standardized, etc.

The present study investigates the automatic
recognition of chunks in historical German. Sec-
tion 2 gives a short introduction to the chunk-
ing task and explains peculiarities about chunking
German concerning complex pre-nominal modifi-
cation. Section 3 presents previous approaches to
automatic chunking, which have not yet been ap-
plied to historical data, likely because no manually
annotated data is available. In this study, to address
the lack of chunked historical data, chunks are ex-
tracted from modern and historical constituency
treebanks. Section 4 describes the training data as
well as the additional test data sets before Sec-
tion 5 introduces the selected methods for auto-
matic chunking: a regular expression-based base-
line and a neural CRF chunker. Finally, Section 6
details the evaluation process and presents the re-
sults, followed by a conclusion in Section 7.

2 Chunking (German)

Chunking is also referred to as partial or shallow
parsing. The concept of chunks was introduced by
Abney (1991), who defines them as non-recursive
phrases from a sentence’s parse tree ending with
the head of the phrase. According to this defini-
tion, a chunk may contain chunks of other types
but not of the same type, and post-nominal mod-
ifiers start a new chunk. Example (1) shows the
annotation of an English sentence following Ab-
ney’s chunk definition:

(1) [S [NP The woman] [PP in [NP the lab coat]]
[VP thought]] [S [NP you] [VP had bought]
[NP an [ADJP expensive] book]].

(Kübler et al., 2010, p. 147)

The CoNLL-2000 shared task on chunking
(Sang and Buchholz, 2000), which is still widely
used as a benchmark, has popularized a more
restricted definition of chunks and only allows



for non-recursive, non-overlapping chunks, i.e. a
word belongs to a maximum of one chunk while
keeping the restriction that a chunk ends at the
head token. When applied to sentence (1), this re-
sults in the annotation in example (2).

(2) [NP The woman] [PP in] [NP the lab coat]
[VP thought] [NP you] [VP had bought] [NP
an expensive book].

Defining chunks this way makes them suitable
for the automatic annotation with sequence label-
ing methods and is especially useful for tasks that
do not require a complete syntactic analysis but
profit from an easy and fast annotation, e.g. agree-
ment checking in word processors (Fliedner, 2002;
Mahlow and Piotrowski, 2010). Furthermore, it
may serve as a basis for deeper syntactic analyses
(cf. Van Asch and Daelemans, 2009; Daum et al.,
2003; Osenova and Simov, 2003) and thus could
build the foundation for the automatic syntactic
annotation of historical data.

However, applying the standard definition of
chunks is problematic when chunking German be-
cause of possibly complex pre-nominal modifica-
tion. The phrase in example (3) violates Abney’s
chunk definition due to the embedded noun chunk
and, when annotated according to the CoNLL-
style definition, it would contain an article der that
is separated from its noun chunk as in example (4).

(3) [NC der [NC seinen Sohn] liebende Vater]
the his son loving father
‘the father who loves his son’

(Kübler et al., 2010, p. 148)

(4) der [NC seinen Sohn] [NC liebende Vater]

While in some German corpora, these stranded
tokens are left unannotated, e.g. DeReKo (Dip-
per et al., 2002), Kübler et al. (2010) introduce
a special category for stranded material, marked
with an initial ‘s’, e.g. sNC for a stranded noun
chunk. They also suggest including the head noun
chunk in the prepositional chunk while leaving
post-nominal modifiers separate. In the following,
their approach is adopted for chunking German.

Of the eleven original chunk types from the
CoNLL-2000 shared task, four main types are
considered in this study: noun chunks (NC), prepo-
sitional chunks (PC), adjective chunks (AC), and
adverb chunks (ADVC), and, in addition, stranded
noun (sNC) and prepositional chunks (sPC). Ex-
ample (5) shows the annotation of a sentence from

an 1871 newspaper taken from one of the histor-
ical data sets in this study. For better readability,
the relation of stranded articles to their respective
noun chunks is indicated by subscripts.

(5) [sNC1 die] [sNC2 den] [PC an Deutschland]
[NC2 abgetretenen Landestheilen]
[NC1 angehörenden Kriegsgefangenen] [...]
werden [ADVC sofort] [PC in Freiheit]
gesetzt;
the the to Germany transferred territories be-
longing prisoners of war will be immediately
to freedom set
‘Prisoners of war belonging to the territories
transferred to Germany will be released im-
mediately’

Allgemeine Zeitung, no. 72, 1871
(DTA; BBAW, 2021)

3 Related Work

Since chunking can be understood as both a shal-
low parsing and a sequence labeling task, de-
pending on the chunk definition, there have been
many different approaches to the automatic iden-
tification of chunks. For non-recursive Abney-
style chunking, Abney (1991) uses finite-state cas-
cades, yet similar techniques have also been ap-
plied to CoNLL-style chunking. Müller (2005)
gives an overview of chunking studies on German,
many of which use finite state-based methods, but
also other parsing approaches. For his FSA-based
chunker, he reports an overall F1-score of 96%.

For non-recursive, non-overlapping CoNLL-
style chunking, there have been experiments
with different classification and sequence labeling
methods, including the application of taggers (e.g.
Osborne, 2000; Molina and Pla, 2002; Shen and
Sarkar, 2005) with F1-scores between 92% and
94% as well as machine learning, e.g. with Condi-
tional Random Fields yielding F1-scores of 93%
to 94% (cf. Sun et al., 2008; Roth and Clematide,
2014). More recently, there have also been ex-
periments with neural sequence labeling using bi-
directional LSTMs (Akhundov et al., 2018; Zhai
et al., 2017), RNNs (Peters et al., 2017), and neu-
ral CRFs (Huang et al., 2015; Yang and Zhang,
2018) with F1-scores of about 95%.

As chunks of a given type can only contain cer-
tain part-of-speech sequences, most of the studies
use POS tags as features. However, lexicalization
of models can also improve chunking results (cf.
Shen and Sarkar, 2005; Indig, 2017) and current



contextual word representations already seem to
have some awareness of shallow syntactic struc-
tures like chunks (Swayamdipta et al., 2019). In
general, van den Bosch and Buchholz (2002) find
that POS tags are most relevant if the training data
is small, while words become more helpful with
increasing amounts of data, and a combination of
both features yields the best results.

For evaluation, most studies still use the data
set from the CoNLL-2000 shared task (Sang and
Buchholz, 2000), i.e. WSJ data from the Penn
Treebank, and written news data also serves as
the evaluation basis for most studies on German.
However, when Pinto et al. (2016) compare tools
on English CoNLL-2000 data with their perfor-
mance on Twitter data, they find that for standard
toolkits, F1-scores decrease by 17 to 38 percent-
age points to 45%–54% on social media text. A
similar drop in performance might also occur for
other non-standard data like historical language
and would underline the importance of methods
and models that are specifically tailored to a par-
ticular language variety.

But to date, there has only been a small number
of studies on the automatic syntactic analysis of
historical German, all of which have to deal with
a lack of syntactically annotated historical data. In
the absence of a gold standard, some studies de-
velop rule-based approaches, e.g. Chiarcos et al.
(2018) for topological field identification in Mid-
dle High German. But without the possibility for
evaluation, the accuracy of such systems remains
unclear. Other studies try to compensate for the
lack of historical data by falling back on modern
German. Petran (2012) approximates historical
language by removing punctuation and capitaliza-
tion from a modern German news corpus. Using
CRFs, he tries to identify segments of increasing
length, chunks, clauses, and sentences, in this ar-
tificial data set and concludes that smaller units
are easier to identify. For chunking, he reports
an F1-score of 93.3%, but since capitalization and
punctuation are not the only differences between
modern and historical German, it is unclear how
well these results generalize to real historical data.
Nevertheless, the exploitation of modern data can
be conducive for automatically annotating histor-
ical language by reducing the need for large an-
notated historical data sets. As a previous study
has shown, models trained on modern newspaper
text can successfully be transferred to historical

German with F1-scores >92% when POS tags are
used as input unless the historical language struc-
tures differ too much from modern German (Ort-
mann, 2020).

4 Data

As already mentioned, most German corpora and
especially historical corpora do not offer a man-
ual chunk annotation that could be used for train-
ing and evaluating automatic models. However,
Kübler et al. (2010) notice that chunks can be ex-
tracted directly from constituency trees by con-
verting the lowest phrasal projections with lexical
content to chunks. Using this method, they auto-
matically transform the constituency annotations
from the TüBa-D/Z treebank (Telljohann et al.,
2017) into chunks. The resulting corpus1 com-
prises 3,816 newspaper articles with more than
100k sentences and almost 2M tokens. In total,
it contains over 743k instances of the six chunk
types considered in the present study.

Since the extracted chunks might be influenced
by the structure of the constituency trees and,
hence, may differ between treebanks with differ-
ent syntactic annotation schemes, a second Ger-
man treebank is included in the present study.
The Tiger corpus (Brants et al., 2004)2 contains
about 50k sentences with about 888k tokens from
2,263 German news articles, but the annotation of
certain syntactic phenomena deviates significantly
from those in the TüBa-D/Z corpus (Dipper and
Kübler, 2017). Most notably, the Tiger treebank
includes discontinuous annotations. Therefore, all
sentences must be linearized first3 before chunks
of the six different types can be extracted from
the constituency trees similar to the procedure de-
scribed by Kübler et al. (2010).

Besides accounting for possible influences of
the annotation scheme on the extracted chunks, in-
cluding the Tiger treebank offers another advan-
tage: While annotated historical data sets rarely
exist for syntactic annotation tasks, there are two

1Release 11.0, chunked version, http://www.
sfs.uni-tuebingen.de/ascl/ressourcen/
corpora/tueba-dz.html

2Version 2.2, TIGER-XML format, https:
//www.ims.uni-stuttgart.de/forschung/
ressourcen/korpora/tiger

3As only the lowest phrasal projections are used to derive
chunks from the tree, the broader structure of the tree is ir-
relevant for the task at hand. Therefore, discontinuous nodes
are simply duplicated and re-inserted at the correct position
inside the tree according to the linear order of terminal nodes
in the sentence.

http://www.sfs.uni-tuebingen.de/ascl/ressourcen/corpora/tueba-dz.html
http://www.sfs.uni-tuebingen.de/ascl/ressourcen/corpora/tueba-dz.html
http://www.sfs.uni-tuebingen.de/ascl/ressourcen/corpora/tueba-dz.html
https://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/tiger
https://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/tiger
https://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/tiger


Corpus #Docs #Sents #Toks #Chunks
Training

TüBa-D/Z 3,075 83,225 1,564,840 593,735
Tiger 1,863 39,976 726,811 255,077
Mercurius 2 6,709 150,354 53,831
ReF.UP 26 16,761 415,934 163,438

Development
TüBa-D/Z 377 10,702 196,308 74,780
Tiger 200 4,567 81,593 28,615
Mercurius 2 820 18,287 6,570
ReF.UP 26 2,112 53,836 21,245

Test
TüBa-D/Z 364 10,491 196,636 74,982
Tiger 200 4,445 78,018 27,253
Modern 78 547 7,605 2,829
Mercurius 2 818 18,740 6,691
ReF.UP 26 2,173 54,005 21,120
HIPKON 53 342 4,210 1,529
DTA 29 606 18,515 6,651

Table 1: Overview of the data sets. The number of
chunks refers to the six chunk types evaluated in
this study. Only sentences containing at least one
chunk of the given types are included.

treebanks for historical German, which are anno-
tated according to the Tiger scheme and thus, for-
tunately, can also be used for chunk extraction.
The Mercurius corpus (Demske, 2005)4 contains
semi-automatic annotations of approximately 8k
sentences with 187k tokens from newspaper text
from the 16th and 17th centuries. The second
treebank, ReF.UP, is a subcorpus of the Reference
Corpus of Early New High German (Wegera et al.,
2021)5 and includes annotations of 26 documents
with 21k sentences and 500k tokens from different
language areas from the 14th to 17th century. Like
with the Tiger corpus, the constituency trees from
both historical treebanks must be linearized before
chunks can be extracted from them. In total, the
two corpora contain about 67k chunks and over
205k chunks of the six relevant types, respectively.
While the Tiger corpus is already provided with a
training, development, and test section, the other
three corpora were split into a training (80%), de-
velopment (10%), and test set (10%) for this study.
Also, the historical POS tagsets in the Mercurius
and ReF.UP treebanks were mapped to the Ger-
man standard tagset STTS (Schiller et al., 1999).

Compared to previous studies on historical data,
the two modern and historical treebanks form a
solid basis for training and evaluating automatic

4Mercurius Baumbank (version 1.1),
https://doi.org/10.34644/
laudatio-dev-VyQiCnMB7CArCQ9CjF3O

5https://www.linguistics.rub.de/ref

chunking methods on historical German. How-
ever, Osborne (2002) notes that distributional dif-
ferences between training and test data can be even
more problematic for chunking performance than
noise in the data itself. Therefore, three additional
data sets from a previous study (Ortmann, 2020),6

which are unrelated to the training data, are used
for evaluation. The first data set is a collection
of about 550 sentences with 7.6k tokens from five
modern registers with a varying degree of for-
mality: Wikipedia articles, fiction texts, Christian
sermons, TED talk subtitles, and movie subtitles.
In total, the modern data set contains about 2.8k
chunks of the six types and is used to test the appli-
cability of annotation methods to non-newspaper
registers.

The two other data sets comprise historical data
from two different corpora. The HIPKON corpus
(Coniglio et al., 2014) contains 342 manually an-
notated sentences from 53 sermons from the 12th

to the 18th century. Originally, the corpus only in-
cludes a partial annotation of chunks, which was
completed for the present study. Also, the map-
ping of the historical POS tags to STTS tags from
Ortmann (2020) was used. The second historical
data set consists of 600 sentences with 18.5k to-
kens from 29 texts from the German Text Archive
DTA (BBAW, 2021). The texts were published in
a variety of genres7 from the 16th to the 20th cen-
tury and were manually enriched with chunks for
this study, using the corrected POS tags and sen-
tence boundaries from Ortmann (2020). Table 1
gives an overview of the data sets. The annotated
data sets and additional resources can be found in
this paper’s repository.8

Table 2 shows the distribution of the six chunk
types in the test data. As could be expected, noun
chunks (NC) are the most frequent chunk type, fol-
lowed by prepositional chunks (PC) and adverb
chunks (ADVC). Stranded chunks make up about
1% of the chunks in all data sets, except for the
TüBa-D/Z data with 0.6% and the modern non-
standard data with only 0.4% stranded chunks.
While stranded noun chunks (sNC) are more fre-
quent in the modern data, the opposite can be ob-
served for most of the historical data sets where

6https://github.com/rubcompling/
latech2020

7The DTA subset contains five newspaper texts and three
texts each from the genres: funeral sermon, language science,
medicine, gardening, theology, chemistry, law, and prose.

8https://github.com/rubcompling/
nodalida2021

https://doi.org/10.34644/laudatio-dev-VyQiCnMB7CArCQ9CjF3O
https://doi.org/10.34644/laudatio-dev-VyQiCnMB7CArCQ9CjF3O
https://www.linguistics.rub.de/ref
https://github.com/rubcompling/latech2020
https://github.com/rubcompling/latech2020
https://github.com/rubcompling/nodalida2021
https://github.com/rubcompling/nodalida2021


Corpus NC PC AC ADVC sNC sPC
TüBa-D/Z 54.2 24.6 5.9 14.8 0.4 0.2
Tiger 55.2 30.7 4.6 8.5 0.6 0.4
Modern 60.3 21.2 5.5 12.5 0.3 0.1
Mercurius 51.5 29.5 4.4 13.5 0.4 0.7
ReF.UP 57.7 20.6 5.9 15.1 0.2 0.5
HIPKON 56.4 25.1 2.4 15.3 0.1 0.9
DTA 56.4 24.4 5.2 12.8 0.6 0.6

Table 2: Distribution of chunk types in the test
data reported as percentage of the total number of
chunks per data set.

stranded prepositional chunks (sPC), as in exam-
ple (6) from the Mercurius corpus, are more com-
mon.

(6) [sPC von] [NC der Frantzosen] [PC Vor-
haben]
of the French’s plan
‘of the plan of the French’

5 Methods

As detailed in Section 3, various methods have
been applied to the automatic recognition of
chunks in modern text. In the present study, two
different approaches are tested: an unlexicalized
regular expression-based chunker, which serves as
a baseline, and a neural state-of-the-art sequence
labeling tool.

The regular expression-based approach is com-
parable to the finite-state chunkers mentioned
in Section 3. For this study, a simple RegExp
chunker as implemented in the NLTK9 is used,
which successively applies a set of manually cre-
ated context-sensitive regular expressions to an in-
put POS sequence to identify non-recursive, non-
overlapping chunks of the six different types.

The neural sequence labeling tool NCRF++
(Yang and Zhang, 2018)10 achieves state-of-the-
art results for several tasks, including chunking.
On the English CoNLL-2000 data, the best model
reaches an F1-score of 95% (Yang et al., 2018).
The toolkit consists of a three-layer architecture
with a character sequence layer, a word sequence
layer, and a CRF-based inference layer. While the
RegExp chunker relies on expert knowledge in the
form of manually compiled rules, NCRF++ must
be trained on annotated data to perform the task.
For this study, the tool is trained on the two dif-
ferent modern treebanks: model News1 is trained

9http://www.nltk.org/api/nltk.chunk.
html

10https://github.com/jiesutd/NCRFpp

on the TüBa-D/Z training set, and model News2
on the Tiger training set. Also, the two historical
treebanks are used to train a joined model Hist,
which might be more suitable for the analysis of
historical data and its peculiarities. Finally, since
the historical data sets are smaller than the modern
training sets, a model News2+Hist is trained on
a combination of the modern and historical tree-
banks that follow the same annotation scheme.
During training, the tool is provided with the cor-
responding development data and each of the mod-
els is trained with and without POS tags as an
additional feature. Since current contextual word
representations seem to be aware of shallow syn-
tactic structures (Swayamdipta et al., 2019), each
model is also trained with GloVe embeddings pre-
trained on German Wikipedia.11 To ensure com-
parability, all models are trained with the same de-
fault settings.12 While the News2 and Hist train-
ing sets only contain annotations of the six chunk
types considered in this study, the News1 model
is trained on all chunk types included in the TüBa-
D/Z corpus, although only the six types described
in Section 2 are evaluated here. For each token,
both selected methods, i.e. the RegExp chunker
and the NCRF++ toolkit, output the single most
likely chunk label encoded as a BIO tag.

6 Evaluation and Results

To assess the performance of the automatic meth-
ods introduced in the previous section, their output
is compared to the gold standard annotation. As
already mentioned, every token is annotated with
a BIO tag, i.e. either B-XC (beginning of chunk),
I-XC (inside chunk), or O (outside chunk). How-
ever, the number of tokens inside and outside of
chunks provides little information about the qual-
ity of the automatic chunk annotation. Instead, it is
of interest whether the boundaries of chunks align
between automatic and gold annotation. There-
fore, the evaluation is carried out chunk-wise in-
stead of token-wise and each chunk in the gold

11GloVe embeddings trained on German Wikipedia
and provided by deepset, https://deepset.ai/
german-word-embeddings

12The experiments of Yang et al. (2018) suggest that the
default combination of character CNN, word LSTM, and a
CRF-based inference layer gives the best result for the chunk-
ing task with good model stability for random seeds (mean
F1: 94.86 ± 0.14). However, the present study is only a first
investigation of chunking historical German and further ex-
periments should be conducted to test for model stability and
to explore fine-tuning of parameters for optimal results.

http://www.nltk.org/api/nltk.chunk.html
http://www.nltk.org/api/nltk.chunk.html
https://github.com/jiesutd/NCRFpp
https://deepset.ai/german-word-embeddings
https://deepset.ai/german-word-embeddings


Model Words POS GloVe TüBa-D/Z Tiger Modern Mercurius ReF.UP HIPKON DTA
RegExp - + - 85.46 86.75 90.35 85.70 86.83 91.76 88.20

News1

+ - - 93.46 87.80 89.63 72.52 49.77 47.69 72.07
+ - + 94.30 88.16 90.12 73.48 51.94 48.43 71.50
+ + - 97.07 90.33 92.91 90.34 91.01 93.71 90.11
+ + + 97.17 90.89 93.68 90.37 90.66 92.92 90.15

News2

+ - - 85.02 91.41 86.67 71.15 49.09 43.25 67.75
+ - + 86.19 92.76 87.77 72.05 50.01 46.90 69.59
+ + - 90.96 94.70 94.04 88.58 89.84 94.20 88.76
+ + + 91.22 95.44 93.97 88.55 88.77 92.50 88.35

Hist

+ - - n.a. n.a. n.a. 11.68 16.10 12.81 13.86
+ - + n.a. n.a. n.a. 85.53 81.28 69.41 73.61
+ + - n.a. n.a. n.a. 92.37 93.48 93.29 89.89
+ + + n.a. n.a. n.a. 92.80 93.64 93.85 90.37
+ - - n.a. n.a. n.a. 82.56 79.42 60.47 73.24

News2 + - + n.a. n.a. n.a. 83.40 79.02 65.05 74.77
+Hist + + - n.a. n.a. n.a. 91.94 93.03 94.49 90.15

+ + + n.a. n.a. n.a. 92.19 93.41 93.99 90.29

Table 3: Overall F1-scores for the RegExp chunker and all NCRF++ models for the seven corpora.
Models trained on historical data are only applied to historical corpora. All numbers are given in percent
and the best result for each corpus is highlighted in bold.

standard is compared to the system output and vice
versa concerning chunk type and chunk bound-
aries. Only sentences for which the gold standard
contains at least one of the six relevant chunk types
are considered. Chunks with identical labels and
boundaries are counted as true positives, whereas
chunks only existing in the gold standard are con-
sidered false negatives, and chunks only present in
the system output count as false positives.

In addition to these common categories, there
can be additional types of errors, though, which
are not captured by the three categories and usu-
ally are penalized as multiple errors in a single
unit. For example, a system could identify a chunk
spanning the correct token sequence but label it as
a different chunk type, e.g. ADVC instead of AC,
which would count as a false positive ADVC and
a false negative AC. Also, a system can get the
boundaries of a chunk wrong, e.g. miss the first
word of an ADVC, which would correspond to a
false positive and a false negative ADVC. And fi-
nally, the system can make both errors at once,
for example by missing the initial preposition and
classifying a PC as NC, resulting in a false pos-
itive NC and a false negative PC. To account for
these types of errors, in the following, seven dif-
ferent categories are distinguished during evalua-
tion: true positives (TP), false positives (FP), la-
beling errors (LE), boundary errors (BE), labeling-
boundary errors (LBE), and false negatives (FN).13

13The idea for this distinction between error types
stems from a blog post by Chris Manning about

Because labeling and boundary errors mean that
the system recognized some chunk, although not
entirely correctly, and not that it missed a chunk,
LE, BE, and LBE errors are counted as false pos-
itives for the calculation of precision and recall
while preventing multiple penalties for a single
unit. As the evaluation is carried out chunk-wise,
sensible true negatives cannot be determined and
are not evaluated here. Table 3 gives an overview
of the results for the different annotation methods
and models.

The evaluation shows that the RegExp parser,
which operates on POS tags only, reaches F1-
scores between 85% and 92% for all data sets,
setting a high baseline for the task. The best re-
sults are achieved for the modern non-newspaper
data and the HIPKON corpus. The NCRF++ mod-
els outperform this baseline by several percent-
age points on each data set, achieving F1-scores
between 90% and 97%. The recall lies between

a similar problem with named entity evaluation
(https://nlpers.blogspot.com/2006/08/
doing-named-entity-recognition-dont.
html). The problem with double penalties when using
F-scores has also been recognized in the literature. For ex-
ample, in the context of word tokenization, Shao et al. (2017)
show that precision favors under-splitting systems, suggest-
ing that recall, i.e. the proportion of correctly segmented
units, gives a more realistic impression of system perfor-
mance and should be used as the only evaluation metric.
However, for tasks that require segmentation and labeling
such as chunking or NER, almost correct chunks/entities
may still provide useful information for certain purposes.
Thus, the more fine-grained distinction of errors and adjusted
calculation of precision and recall seem appropriate for a
thorough evaluation of these annotations.

https://nlpers.blogspot.com/2006/08/doing-named-entity-recognition-dont.html
https://nlpers.blogspot.com/2006/08/doing-named-entity-recognition-dont.html
https://nlpers.blogspot.com/2006/08/doing-named-entity-recognition-dont.html


97% and 99% for the best models on all data
sets and is always higher than the precision with
84% to 95%. As already observed in other stud-
ies (van den Bosch and Buchholz, 2002), models
that include POS as additional features generally
perform better than models purely based on char-
acters and word forms. Also, adding pre-trained
word embeddings improves the results in almost
all cases, especially for models without POS tags.

The modern newspaper data is analyzed with
the highest F1-scores of 97% and 95% respec-
tively. Unsurprisingly, models trained on the train-
ing section of the same corpus perform better on
the test data than models trained on another data
set. This may be a result of distributional dif-
ferences between data sets (Osborne, 2002) but
could, in part, also be due to differences between
the constituency trees from which the chunks were
extracted.

The results for the modern non-newspaper data
are slightly lower than for the news corpora with
a maximum F1-score of 94%. Interestingly, the
overall F1-scores are higher for the more informal
registers than for the formal ones. Probably, in-
formal sentences are generally easier to chunk be-
cause they contain more simple (noun) chunks and
less pre-nominal modification.

While models purely based on words still per-
form well on the modern data, POS tags prove to
be especially relevant for the historical data. Even
the Hist model must be complemented with
(modern) pre-trained word embeddings for accept-
able performance on the historical corpora, possi-
bly reflecting problems with the non-standardized
spelling in historical German. For the Mercurius
and ReF.UP corpora, the Hist model with POS
and word embeddings achieves the best results
with F1-scores of about 93%, followed by the
News2+Hist model. For the HIPKON corpus,
the News2+Hist model with POS reaches the
highest F1-score of 94.5%, closely followed by
the News2 model. The DTA data is analyzed with
the highest F1-score of 90.4% by the Hist model
with POS and word embeddings, followed by the
News2+Hist and the News1 models with F1-
scores of about 90% as well.

These results are in line with the observations
of Ortmann (2020) that models trained on mod-
ern news data can successfully be transferred to
historical German with overall F1-scores >90%
when POS tags are used as input. However, the

Corpus NC PC AC ADVC sNC sPC
TüBa-D/Z 95.6 97.9 86.8 97.0 77.2 70.0
Tiger 94.4 95.0 85.2 84.7 84.7 68.4
Modern 93.3 91.3 85.4 83.7 80.0 0.0
Mercurius 90.6 90.8 84.3 86.0 0.0 36.7
ReF.UP 92.9 92.3 81.1 85.1 5.6 40.3
HIPKON 94.1 90.4 87.0 87.4 0.0 26.7
DTA 87.5 90.0 80.4 81.8 10.3 16.7

Table 4: Overall F1-scores per chunk type (in per-
cent) for the best performing model on each data
set.

evaluation also shows that historical training data
further improves the automatic annotation of his-
torical language.14

In Table 4, the results per chunk type are dis-
played for the best performing model on each data
set. Here, no distinction is made between true pos-
itives, labeling, and boundary errors, i.e. one unit
can correspond to multiple errors in one or two
of the categories as exemplified above. For all
data sets, the best results are observed for noun
and prepositional chunks with F1-scores mostly
above 90%, while the results for adjective and
adverb chunks range mostly between 80% and
87%. The stranded chunk types are recognized
much less reliably, especially in the historical data
where the majority of errors in these categories re-
sult from structures with a pre-nominal modifying
noun chunk NC inside a prepositional chunk PC
like in example (6) above. These structures are
more frequent in historical German, causing the
higher proportion of stranded prepositional chunks
compared to modern data. When confronted with
a structure like this, in most cases, instead of an-
notating a stranded preposition sPC preceding a
pre-nominal noun chunk NC, the models identify a
joined PC, followed by an NC as in example (7).

14It is important to note that the experiments in this pa-
per were conducted with gold standard POS tags and using
automatically assigned POS can be expected to negatively
influence the results. For example, Müller (2005) reports a
chunking F1-score of only 90% instead of 96% when using
automatic POS. Applying the Stanza tagger (Qi et al., 2020,
German hdt model) to the modern data sets in this study
results in POS error rates of 4% (TüBa-D/Z) to 6% (Mod-
ern) and reduces the F1-scores of the RegExp chunker by 1
(TüBa-D/Z) to 4 (Modern) percentage points. The F1-scores
of the best NCRF++ models with POS as feature decrease
by 3 (TüBa-D/Z) to 3.7 (Tiger, Modern) percentage points.
It can be assumed that similar reductions would be observed
for historical data if a comparable tagger model for the rel-
evant language stages was available and used to tag the data
automatically.



Corpus FP LE BE LBE FN
TüBa-D/Z 10.9 4.4 60.1 4.8 19.8
Tiger 17.7 6.0 59.8 4.2 12.3
Modern 11.3 5.5 63.6 2.4 17.1
Mercurius 22.6 10.3 53.2 7.1 6.7
ReF.UP 17.5 8.1 56.0 7.1 11.3
HIPKON 11.7 10.4 55.8 12.3 9.8
DTA 13.9 6.5 58.9 6.7 14.0

Table 5: Proportion of the five different error
types: false positives (FP), labeling errors (LE),
boundary errors (BE), labeling-boundary errors
(LBE), and false negatives (FN). Numbers are
given in percent for the best performing model on
each data set.

(7) Gold: [sPC von] [NC der Frantzosen] [PC
Vorhaben]

NCRF++: [PC von der Frantzosen] [NC
Vorhaben]

Since, in these cases, the embedded noun chunk
cannot be recognized based on STTS POS tags, a
morphological analysis is necessary to distinguish
structures with a pre-nominal genitive from prepo-
sitional chunks with a post-modifying noun chunk.
When the genitive form is not syncretized, i.e. the
word form differs from the morphological realiza-
tion in other cases like nominative or dative, lex-
icalized models could, in theory, identify the cor-
rect structure. But as stranded chunks constitute
only about one percent of all chunks in the data
sets, there is not enough training data to recognize
them reliably.

Finally, Table 5 shows the distribution of error
types in the data sets, including the more fine-
grained distinction of labeling and boundary er-
rors. Interestingly, for all corpora, boundary er-
rors constitute more than half of the errors, i.e. the
models identified the chunks but did not achieve
an exact match of the boundaries. One could argue
that this type of error is less severe than completely
missing (FN) or made-up chunks (FP), which are
the second and third most frequent error types for
most data sets. The evaluation approach in this
study, which does not multiply penalize a model
for boundary errors, thus seems appropriate to get
a more realistic impression of model performance.

7 Conclusion

The present study has investigated the automatic
recognition of chunks in historical German. To ad-
dress the main problem of analyzing historical lan-
guage, namely a lack of manually annotated data

for training and evaluation, chunks of six differ-
ent types were derived from modern and histor-
ical constituency treebanks. Using the extracted
chunks, the state-of-the-art neural sequence label-
ing tool NCRF++ was trained on modern news ar-
ticles, Early New High German corpora, as well as
a combination of modern and historical data.

The evaluation has shown that models that in-
clude POS tags as features can be transferred suc-
cessfully from modern to historical language, with
F1-scores >90%, thereby outperforming a regular
expression-based baseline. By adding historical
training data, the results can be improved further,
yielding F1-scores between 90.4% and 94.5% for
the different historical corpora.

Regarding the evaluation of chunks, the present
study has argued for a distinction between differ-
ent types of errors that are commonly penalized
as multiple errors in a single unit. An analysis of
the occurring error types showed that the major-
ity of errors are boundary errors, meaning that the
system identified the chunks, but the boundaries
do not exactly match those in the gold standard.
Since this type of error can be considered less se-
vere than pure false positives or negatives, the pre-
sented results give a more realistic impression of
the actual system performance.

Future studies should focus primarily on a re-
duction of incorrect chunk boundaries to increase
the annotation precision, as well as further investi-
gate and improve the analysis of stranded chunks
and complex pre-nominal modification in (histori-
cal) German.
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