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Introduction

Welcome to the second workshop on natural language processing for medical conversations.

Technological advancements have been transforming healthcare rapidly in the past several years. This
has been further catalyzed by the COVID-19 pandemic. Several policy changes have been made by the
government with added flexibility to enable remote treatment of patients. COVID-19, its symptoms, and
medications are being widely discussed on social media. These discussions are also being analyzed by
researchers from various perspectives. Moreover, with the availability of wearable fitness devices, these
interactions are not limited to a pandemic but go much further. While medical discussions on public
forums were prevalent in the past, their prevalence is now highlighted due to the scale of the pandemic.

To address healthcare consumers, Electronic Health Record (EHR) companies have been working to
make health data of patients easily available to patients. More recently, technology companies are also
stepping in. Healthcare providers are also making use of automatic speech recognition (ASR) and natural
language understanding to understand doctor-patient conversations and generate medical documentation
automatically. Finally, smart speakers are now common in households and users interact with them about
personal and public health issues.

While applying NLP to open domain is getting increasingly popular, medical conversations present
unique challenges and opportunities for impact. After our successful event last year, we are excited
to continue the cross-pollination between NLP researchers and medical practitioners. The goal of this
workshop is to discuss state-of-the-art approaches in conversational AI, as well as share insights and
challenges when applied in healthcare. This is critical in order to bridge existing gaps between research
and real-world product deployments, this will further shed light on future directions.

We received 19 submissions this year, and accepted 9 reviewed papers in the proceedings of the
workshop. This will be a one-day workshop including keynotes, spotlight talks, posters, and panel
sessions.
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Would you like to tell me more?
Generating a corpus of psychotherapy dialogues

Seyed Mahed Mousavi1, Alessandra Cervone2∗, Morena Danieli1, Giuseppe Riccardi1
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2Amazon Alexa AI

{mahed.mousavi, giuseppe.riccardi}@unitn.it

Abstract
The acquisition of a dialogue corpus is a key
step in the process of training a dialogue
model. In this context, corpora acquisitions
have been designed either for open-domain in-
formation retrieval or slot-filling (e.g. restau-
rant booking) tasks. However, there has been
scarce research in the problem of collecting
personal conversations with users over a long
period of time. In this paper we focus on the
types of dialogues that are required for men-
tal health applications. One of these types
is the follow-up dialogue that a psychothera-
pist would initiate in reviewing the progress
of a Cognitive Behavioral Therapy (CBT) in-
tervention. The elicitation of the dialogues is
achieved through textual stimuli presented to
dialogue writers. We propose an automatic al-
gorithm that generates textual stimuli from per-
sonal narratives collected during psychother-
apy interventions. The automatically gener-
ated stimuli are presented as a seed to dialogue
writers following principled guidelines. We
analyze the linguistic quality of the collected
corpus and compare the performances of psy-
chotherapists and non-expert dialogue writers.
Moreover, we report the human evaluation of
a corpus-based response-selection model.

1 Introduction

The idea of developing conversational agents
as Personal Healthcare Agents (PHA) (Riccardi,
2014) has gained growing attention in recent years
for various domains including mental health (Fitz-
patrick et al., 2017; Abd-alrazaq et al., 2019; Ali
et al., 2020). Most of the conversational agents in
the mental health domain are created using rule-
based and simple predefined tree-based dialogue
flows, resulting in limited understanding of the user
input and repetitive responses by the agent. These
limitations lead to shallow conversations and weak
user engagement (Abd-Alrazaq et al., 2021).

∗The work was done while at the University of Trento,
prior to joining Amazon Alexa AI.

The major reasons for such limitations are the
complexity of conversations, the lack of dialogue
data and domain knowledge. The conversations
about mental state issues are very complex be-
cause they usually encompass personal feelings,
user-specific situations, different spaces of entities,
and emotions. In this domain, the state-of-the-art
data-driven frameworks are not applicable and do-
main knowledge is very scarce. The two main ap-
proaches to collect dialogue data for the purpose of
developing data-driven dialogue agents are either
acquiring user interaction data via user simulators
and hand-designed policies (Li et al., 2016), or to
collect large sets of human-human conversations
in different user-agnostic settings (Budzianowski
et al., 2018; Gopalakrishnan et al., 2019; Zhang
et al., 2018). These approaches have been used for
goal-oriented agents (e.g. reservations of restau-
rants) or open-domain agents answering questions
about a finite set of topics (e.g. news, music,
weather, games etc.). However, neither of the above
approaches can address the need for personal con-
versations which include user-specific recollections
of events, objects, entities and their relations. Last
but not least, state-of-the-art conversational agents
cannot carry out engaging and appropriate single-
user multi-session conversations. However, per-
sonal conversations’ requirements include the abil-
ity of carrying out multi-session conversations over
several weeks or months.

In this paper, we propose a novel methodology
to collect corpora of follow-up dialogues for the
mental health domain (or domains with the sim-
ilar characteristics). Psychotherapists deliver in-
terventions over a long period of time and need
to monitor or react to patients’ input. In this do-
main, dialogue follow-ups are a critical resource
for psychotherapists to learn about the life events
of the narrator as well as his/her corresponding
thoughts and emotions in a timely manner. In Fig-
ure 1 we describe the proposed workflow for the
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Figure 1: The workflow for the elicitation of follow-up dialogues starting from the personal narratives collected
during psychotherapy (left-hand side) interventions. The stimulus generation algorithm creates a textual stimulus
from personal narratives as a seed to dialogue writers. Dialogue writers use the textual stimulus and principled
guidelines to generate the follow-up dialogues (right-hand side). The dialogue follow-ups may be used to train
dialogue models, response-selection models and natural language generators.

acquisition of personal dialogue data aimed at train-
ing dialogue models. We first collect a dataset of
personal narratives written by the users who are
receiving Cognitive Behavioral Therapy (CBT) to
handle their personal distress more effectively1. In
the next step, the narratives are used to generate
stimuli for the follow-up conversations with an au-
tomatic algorithm. The first part of the stimulus,
the common-ground statement, contains the sum-
mary of the narrative the user has previously left
and the associated emotions and the second part is
a follow-up question aimed at reviewing the users
life events. In the last step, the stimuli are pre-
sented to writers and they are asked to generate
a conversation based on the provided stimulus by
impersonating themselves as both sides of the con-
versation, an approach introduced firstly by Krause
et al. (2017), where in our setting the sides are the
PHA and the patient.

The main contributions of this paper can be sum-
marized as follows:

• We present a methodology for data collection
and elicitation of follow-up dialogues in the
mental health domain.

• We present an algorithm for automatically
generating conversation stimuli for follow-up
dialogues in the mental health domain from a

1This data collection has been approved by the Ethical
Committee of the University of Trento.

sequence of personal narratives and recollec-
tions, with a similar structure that psychother-
apists use when reviewing the progress with
the patient.

• We evaluate the collected dialogue corpus in
terms of the quality of the obtained data, as
well as the impact of domain expertise on writ-
ing the follow-up dialogues.

• We investigate the suitability of the collected
corpus for developing conversational agents
in the mental health domain by automatic
and human evaluation of a baseline response-
selection model.

2 Literature Review

Knowledge grounded dialogue corpora Previ-
ously published research have addressed the prob-
lem of collecting dialogue data starting from world
knowledge facts or predefined persona descrip-
tions. In this regard, Zhang et al. (2018) collected
a dataset of conversations conditioned on synthetic
persona descriptions for each side of the dialogue
using Amazon Mechanical Turk (AMT) workers.
Gopalakrishnan et al. (2019) collected a dataset of
dialogues grounded in world knowledge by pair-
ing AMT workers to have a conversation based
on selected reading sets from Wikipedia and The
Washington Post over various topics. Furthermore,
Rashkin et al. (2019) have crowdsourced a dataset
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of conversations with implied user feelings in the
context, using AMT workers where a worker writes
a personal situation associated to an emotion and
in the next step is paired with another worker to
have a conversation about the mentioned situation.
While useful for chitchat and open-domain con-
versations, unfortunately these resources are not a
good fit to address the needs of the mental health
support domain.

Mental health support dialogue corpora The
research in this domain is very recent and resources
are scarce. “Counseling and Psychotherapy Tran-
scripts” published by Alexander Street Press2 is a
dataset of 4000 therapy session transcriptions on
various topics, used as a resource for therapists-
in-training. Pérez-Rosas et al. (2016) collected a
dataset of 277 Motivational Interviewing (MI) ses-
sion videos and obtained the transcriptions for each
session either directly from the data source, or by
recruiting AMT workers. Guntakandla and Nielsen
(2018) conducted a data collection process of thera-
peutic dialogues in Wizard of Oz manner where the
therapists were impersonating a Personal Health-
care Agent. The authors recorded 324 sessions of
therapeutic dialogues which were then manually
transcribed. Furthermore, in the physical health
coaching domain, Gupta et al. (2020) collected a
dataset of conversations where the expert imperson-
ates a PHA that engages the users into a healthier
life style. For this purpose, a certified health coach
interacted with 28 patients using a messaging ap-
plication.

3 Dialogue Follow-Up Generation
Methodology

The type of dialogues that we aim at obtaining is
different from what has been reported in the litera-
ture. While previous works attempted to collect in-
the-field therapeutic interactions and convert them
into dialogue datasets, we present an elicitation
methodology to generate a dataset of follow-up di-
alogues in the mental health domain, grounded in
the personal narratives and with the same conver-
sational structure that the psychotherapists use in
order to review the events with the patients in a
timely manner.

3.1 Collection of Personal Narratives

A group of 20 Italian native speakers who were re-
ceiving Cognitive Behavioral Therapy (CBT) were

2https://alexanderstreet.com/

Figure 2: The user interface of the mobile applica-
tion designed for collecting personal narratives (En-
glish translations). The patients were asked to describe
events, persons, situations that explained their emo-
tional arousal while answering the ABC questions de-
signed by psychotherapists.

asked to write notes about the daily events that acti-
vated their emotional state. CBT is a psychotherapy
technique based on the intuition that it is not the
events that directly generate certain emotions but
how these events are cognitively processed and
evaluated and how irrational or dysfunctional be-
liefs influence this process (Oltean et al., 2017). A
technique commonly used in CBT treatment is the
ABC (Antecedent, Belief, Consequences). In this
technique, the psychotherapist tends to identify the
event that has caused the patient a certain emotion
by a set of questions to define A) what, when and
where the event happened, B) the patient’s thoughts
and beliefs about the event and C) the emotion the
patient has experienced regarding the event. Once
dysfunctional thoughts are identified, the patient is
guided on how to change them or find more rational
and/or functional thoughts (Sarracino et al., 2017).

We recruited 20 users who would meet with their
human psychotherapists one session a week and
asked them to write notes about the day-life events
that caused them an emotional arousal between one
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Figure 3: The heat-map of frequent nouns used by the patients in collected personal narratives (English transla-
tions). The x-axis represents the nouns extracted from the 5-most frequent list used by each user while the y-axis
and z-axis represent the users and the noun frequency, respectively.

session and the following one. For this purpose,
a mobile application was designed that the users
could interact with for a period of three months, to
answer the questions designed by the psychothera-
pists for the ABC technique, and assign an emotion
to the note if possible. The emotions could be se-
lected from a predefined set, equal for all users,
including the six basic emotions used in psycho-
logical experiments (Happiness, Anger, Sadness,
Fear, Disgust and Surprise) (Ekman, 1992), and
two other complex emotional states (Embarrass-
ment and Shame) that were considered relevant for
this setting. Figure 2 shows the user interface of
the application designed for this purpose.

By the end of this step, 224 ABC notes were ob-
tained from 20 users of which 92 notes (written by
13 different subjects) are complete, i.e. the users
has answered all the questions completely, and are
selected for the generation of the stimuli. Consider-
ing the fact that each note, that is the answers to the
ABC questions, is about a unique real-life event,
we concatenate the answers in each note under the
psychotherapists’ supervision to convert the notes
into personal narratives of one piece. Out of the 92
complete narratives, 18 narratives are assigned an
emotion by the user, and 74 notes are not labeled
by any emotions. A lexicon-based sentiment ana-
lyzer developed by The OpeNER project3 is used
to detect the polarity of the 74 narratives without
any expressed emotions, which labeled 61 narra-
tives as either negative or positive and 13 of them
as neutral.

Lexical analysis on the selected narratives
demonstrates that the language and vocabulary

3https://www.opener-project.eu/

used in the narratives are user-specific. Figure 3
plots the recurrence of the 5 most frequent nouns
used by each user in the notes, translated into En-
glish. As the figure shows, each word has been
used frequently by one user and seldom by other
users, indicating the personal space of entities and
characteristics of the conversations in the mental
health domain since the topic of these conversa-
tions, i.e. the life events and situations, varies from
one patient to the other.

3.2 Generation of Personal Stimuli

We extracted one sentence from each of the 92
selected narratives using an out-of-the-shelf extrac-
tive summarizer4, and under the supervision of the
psychotherapists, designed 5 templates to convert
each summary and its assigned emotion or automat-
ically detected sentiment into a coherent stimulus
consisting of a common ground and a follow-up
question. For each 18 one-line narrative summaries
[Summary] with an assigned emotion [Emotion] by
the user, two templates are defined as;

In the notes you left previously, I read [Sum-
mary]. You told me you felt [Emotion] for that.
Do you still feel [Emotion]?

I remember you told me that you felt [Emo-
tion] because of [Summary]. How do you feel
now?

while, for the 61 one-line narrative summaries with
automatically determined polarity [Sentiment], two
templates are defined as;

4sumy Automatic text summarizer,
https://pypi.org/project/sumy/
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Previously, you had a [Sentiment] feeling
about what I read in your note [Summary].
How do you feel about it now?

I remember you had a [Sentiment] feeling
about what I read in your note [Summary].
Do you have any new thoughts or considera-
tions about it now?

and, for the 13 one-line narrative summaries with-
out any assigned emotion or determined polarity,
one template is defined as;

I read in your note about [Summary]. Do you
want to tell me more about it now?

Using this methodology, we obtained 171 stim-
uli from the 92 selected narratives, of which 150
stimuli are used as the grounding and conversation
context for follow-up dialogue generation while
21 stimuli (approximately equal to 10% of the set)
are selected by stratified sampling, as a reserved
subset. Table 1 shows the statistics regarding the
distribution of the stimuli type used for the dialogue
generation process.

3.3 Generation of Dialogue Follow-Ups

Two dialogue writer groups were recruited for the
dialogue generation. The first group included 4
psychotherapists experienced in ABC therapy tech-
nique, and the second group included 4 non-expert
writers. Each writer was presented with a detailed
guideline including the task description as well as
several examples of correct and incorrect annota-
tion outcomes. For each provided stimulus, the
writers were asked to firstly review and validate
the stimulus for possible “Grammatical Error” or
“Inter-sentence Incoherence” and in case of an in-
valid stimulus, to apply necessary modifications
to correct it. Following the validation, the writ-
ers were asked to write a short dialogue follow-up
based on the stimulus, assuming that the stimulus
was asked by a Personal Healthcare Agent (PHA)
to a user about his/her previous narrative.

The writers were asked to respect three manda-
tory requirements while generating the dialogues as
1) The conversation must be based on and consis-
tent with the stimulus; 2) The flow of the conversa-
tion must be such that the user elaborates about the
event introduced in the stimulus and provides more
information about the event and its objects (person,
location etc.) or his/her emotion to the PHA; and 3)
The conversation must contain a closure turn by the

Stimulus Type Category Count Total
Count

with Emotion

Fear 2

32

Happiness 9
Sadness 10
Anger 7
Disgust 2
Surprise 2

with Valence
Positive 57

107
Negative 50

Neutral - - 11

Table 1: The distribution of the stimuli used for follow-
up dialogue collection, obtained by the automatic ag-
gregation of extracted one-line summaries, the tem-
plates and the assigned emotion or automatically de-
tected sentiment valence.

PHA. The closure turn is an important part of the
generated dialogue because these sentences play
the role of the acknowledgment and grounding of
the dialogue between the user and the PHA, and at
the same time may increase the user willingness to
use the PHA. The number of turns for the dialogues
was not fixed. However, the dialogue writers were
suggested to write 4 dialogue turns for each stimu-
lus, resembling 2 turns for the user and 2 turns for
the PHA (excluding the stimulus) with the last turn
as the closure by the PHA. Furthermore, in order
to minimize cognitive workload, the writers were
suggested to distribute the work by taking a break
after each 10 stimuli.

Initially, 10 stimuli were selected by stratified
sampling as the Qualification Batch and were pro-
vided to all the writers for the purpose of training
and resolving possible misunderstandings. The out-
come of the Qualification Batch was then manually
controlled and few adjustments were made with 2
of the writers. Afterwards, the rest of the stimuli
were distributed such that 30% of the stimuli are
annotated by all 8 writers and the rest of the stim-
uli are annotated by two psychotherapists and two
non-expert writers.

4 Evaluation

Using the introduced elicitation methodology, we
collected a corpus of follow-up conversations from
the two writer groups5. We then performed an anal-
ysis on the obtained conversations to evaluate the

5We are currently applying for further funds to anonymize
the corpus and publish a version of the corpus that respects
patients’ privacy and deontological requirements.
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Non-Experts Therapists
# Dialogues 400 400
# Turns 1714 1494
# Unique Tokens 3146 4251
Avg. Turns

4.2 3.7per Dialogue

Table 2: The statistics of the collected corpus of follow-
up dialogues using the proposed elicitation methodol-
ogy per each writer group, non-experts and psychother-
apists.

elicitation methodology and to investigate the im-
pact of domain expertise on the collected dialogues
by comparing the performances of psychotherapists
and non-expert writers.

4.1 Validation of the Generated Stimuli
In the first subtask, while 34.2% of the provided
stimuli to the non-expert writers were labeled as
invalid, this percentage by the psychotherapist
group was 44.5%. Furthermore, the inter-annotator
agreement measured by Fleiss κ coefficient (Fleiss,
1971) was higher in the latter group (0.26) as op-
posed to the non-expert group (0.06). This dis-
crepancy in the validation subtask suggests that the
assessment of the stimuli by each writer is affected
by their level of competence in the domain and a
more precise assessment of the stimuli as an effect
of domain expertise. Therefore, domain expertise
seems to be an important requirement for the qual-
ity of validation annotation in the mental health
domain. Nevertheless, by representing each writer
group by their consensus vote over the subset of
stimuli for which we have a consensus decision, the
inter-group agreement over this subset of 27 stim-
uli was 0.6639, measured by Cohen’s κ coefficient
(Cohen, 1960), suggesting that even though domain
knowledge and expertise results in a fine-grained
assessment, it is still feasible to obtain a course-
grained validation over the generated stimuli with a
group of non-expert writers with appropriate guide-
lines.

While the expert group labeled 60% of the in-
valid stimuli due to “Inter-sentence Incoherence”
with respect to the automatic generation and com-
bination of the stimuli elements (the summary, the
sentiment, and the template), “Grammatical Error”
was the assigned error in most of the stimuli labeled
as invalid, 69%, by the non-expert group. Regard-
ing the corrections applied to the invalid stimuli,
modifications were mostly about the automatically

Dialogue Act Non-Experts Therapists
inform 1487 1777
answer 768 925
auto-positive 591 333
question 396 452
request 217 194
suggest 162 167
offer 117 26
confirm 65 36
disconfirm 56 63
address-suggest 40 17
address-request 2 9
other 77 11

Table 3: The distribution of the Dialogue Acts in
the generated follow-up conversations by each writer
group using ISO standard DA tagging in Italian (Roc-
cabruna et al., 2020). Less frequent DAs to the task
as accept-apology, apology, promise, accept-offer, and
Feedback dimension DAs auto-negative, allo-negative
and allo-positive are presented as "other" in the Table
(Bunt et al., 2010).

extracted summary and detected polarity. The mod-
ifications on the summary sentence included refac-
toring the structure, re-positioning sections of the
summary or restoring the punctuation. As for the
modifications on the detected sentiment, while the
modifications done by the non-expert writers were
about changing negative and positive polarity with
one another, the experts tended to be more con-
servative in expressing a sentiment for the stimuli
as they mostly changed the stimuli with detected
sentiment to neutral ones without any polarity.

In less than 10% of the cases the writers, mostly
the psychotherapists, modified the template and
specifically the follow-up question. In these cases,
the questions were changed to a more summary-
specific ones such as "...What was the distorted
thought that came to your mind?".

4.2 Analysis of the Dialogue Data Collection

As the result of elicitation process, we collected a
dataset of follow-up dialogues in the mental health
domain, presented in Table 2, consisting of 800 dia-
logues written by both groups. The number of turns
and the number of unique tokens for each group
indicate that the experts tended to write shorter
conversations while they used a wider range of vo-
cabulary in writing the conversations compared to
the non-expert group. Regarding the length of the
generated dialogues, in 627 conversations the writ-
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Figure 4: The heat-map of frequent nouns used by the dialogue writers in the generated conversations (English
translations). The x-axis represents the nouns extracted by merging the lists of 20 most frequent nouns used per
each writer. The y-axis and z-axis represent the writers and the noun frequency per each writer respectively.

ers respected the suggestion of writing 4 turns per
dialogue, with exceptions of 90 dialogues written in
two turns where the user replies to the stimulus and
the PHA ends the conversation with a closure turn,
and 83 dialogues where the user and the PHA dis-
cuss further about the event and the user’s thoughts
before ending the conversation.

4.2.1 Linguistic Analysis

In order to gain insights about the differences in the
dialogues written be each group, we looked into
the vocabulary of the nouns and entities used by
each writer. Figure 4 shows the frequency heat-
map of the 20 most frequent nouns used by each
writer in generated dialogues, translated into En-
glish. The results indicate that the language and
vocabulary used in the expert group is specific for
each therapist and varies from one expert to the
other, while non-expert writers have a more com-
bined vocabulary with less inter-annotator novelty
in lexicon, suggesting that the domain expertise has
an influence on language and the use of vocabulary
in generating conversations for the mental health
domain.

Furthermore, we developed a Dialogue Act tag-
ger to compare the conversations by their set of
Dialogue Acts (DA). For this purpose, we anno-
tated 370 of the collected dialogue follow-ups
(1514 turns, approximately equal to 45% of the
dataset) with the ISO standard DA tagging in Ital-
ian (Roccabruna et al., 2020) and trained an en-
coder–decoder model (Zhao and Kawahara, 2019)
to segment each turn to its functional units and label
them by their DAs. The results, presented in Table
3, show that despite the similarity in the use of the
top 6 frequent DAs (inform, answer, auto-positive,

question, request and suggest), there is a diversity
in the type and the frequency of the DAs used by
non-expert group (such as offer, address-suggest
and other less relevant DAs to the domain) with
respect to the professionals, suggesting that the pro-
fessionals hold a more structured conversation with
respect to the other group.

4.2.2 Response-Selection Baseline

We investigated the appropriateness of the col-
lected dialogue corpus for developing conversa-
tional agents in the mental health domain by train-
ing a TF-IDF response-selection baseline model.
The model was trained on 90% of the collected con-
versations with a similar training setting to Lowe
et al. (2015), and evaluated on the remaining 10%
of the data as test set using Recall@k family of
metrics, presented in Table 4. The model was then
integrated in the application introduced in subsec-
tion 3.1 to select the correct PHA response for each
user turn. 10 test users were recruited to inter-
act with our application and write narratives about
their life events by answering the ABC questions
for 50 days. Each narrative was then automatically
converted to a personal dialogue stimuli after one
day, using the introduced methodology in subsec-
tion 3.2, to initiate a follow-up dialogue with the
test user for two exchanges (4 turns) with natural
language responses from the users and retrieved re-
sponses from the system. Regarding the evaluation
of the dialogues, we asked the test users to assess
the appropriateness and coherence of each system
turn (including the stimulus) during the conversa-
tion with thumbs-up (appropriate) or thumbs-down
(inappropriate) for each turn, and to evaluate the
quality of the conversation as-a-whole by voting
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TF-IDF
1 in 2 R@1 0.49
1 in 10 R@1 0.21
1 in 10 R@2 0.36
1 in 10 R@5 0.55
1 in 50 R@1 0.14
1 in 50 R@2 0.18
1 in 50 R@5 0.26

Table 4: The performance of the response-selection
baseline on the collected dialogue follow-ups for dif-
ferent recall metrics.

Count
# Dialogues 217
# 5-star 130 (60%)
# 4-star 26 (12%)
# 3-star 41 (19%)
# 2-star 8 (3%)
# 1-star 12 (6%)
# PHA Turns 651
# Thumps-Up 594 (91%)
# Thumps-Down 57 (9%)

Table 5: The results of human evaluation of the
response-selection model in follow-up dialogues. The
users rated each response on a binary scale (Thumbs-
Up and Thumbs-Down) as well as the whole dialogue
with 1-5 star score.

from 1-star (very bad) to 5-stars (very good) for
each dialogue.

The results of human evaluation on the baseline
dialogue model, shown in Table 5, indicate that
91% of the system turns were considered appro-
priate and coherent by the test users, resulting in
more than 70% of the dialogues with acceptable
quality, thus suggesting the usefulness and suitabil-
ity of the generated dialogues using the proposed
methodology for developing PHAs in the mental
health domain.

5 Conclusions

In this work, we address the need for suitable dia-
logue corpora to train Personal Healthcare Agents
in the mental health domain. We present an elicita-
tion methodology for dialogues in the mental health
domain grounded in personal recollections. Using
the proposed methodology, we collected a dataset
of follow-up dialogues that psychotherapists would
hold with the patients to review the personal events
and emotions during a CBT intervention.

Through an analysis of the collected resource
following our proposed methodology, it emerged
that the task of validating responses and generat-
ing dialogues in the mental healthcare domain can
be performed both by using psychotherapists and
non-expert dialogue writers. Therefore, it suggests
the possibility of training a larger number of non-
expert dialogue writers using appropriate guide-
lines to obtain a valid dataset with less cost while
ensuring consistency in the results.

Furthermore, we investigated the appropriate-
ness of the collected corpus for developing conver-
sational agents in the mental health domain. We re-
ported automatic and human evaluation of a corpus-
based response-selection baseline. We found that
the test users who interacted with the model over a
long-term period (50 days) considered on average
91% of system turns as appropriate and coherent,
resulting into 72% of dialogues with acceptable
quality.

We believe the proposed methodology can be
used to tackle the problem of resource scarcity
in the mental health domain. In particular, our
methodology can be used to obtain corpora of dia-
logues grounded in personal recollections for devel-
oping dialogue models in the mental health domain.
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Abstract
Medical conversations from patient visits are
routinely summarized into clinical notes for
documentation of clinical care. The automatic
creation of clinical note is particularly chal-
lenging given that it requires summarization
over spoken language and multiple speaker
turns; as well, clinical notes include highly
technical semi-structured text. In this paper,
we describe our corpus creation method and
baseline systems for two NLP tasks, clinical
dialogue2note sentence alignment and clinical
dialogue2note snippet summarization. These
two systems, as well as other models created
from such a corpus, may be incorporated as
parts of an overall end-to-end clinical note gen-
eration system.

1 Introduction

As a side effect of widespread electronic medi-
cal record adoption spurred by the HITECH Act,
clinicians have been burdened with increased doc-
umentation demands (Tran et al.). Thus for each
visit with a patient, clinicians are required to input
order entries and referrals; most importantly, they
are charged with the creation of a clinical note. A
clinical note summarizes the discussions and plans
of a medical visit and ultimately serves as a clinical
communication device, as well as a record used for
billing and legal purposes. To combat physician
burnout, some practices employ medical scribes
to assist in documentation tasks. However, hiring
such assistants to audit visits and to collaborate
with medical staff for electronic medical record
documentation completion is costly; thus there is
great interest in creating technology to automati-
cally generate clinical notes based on clinic visit
conversations.

Not only does the task of clinical note creation
from medical conversation dialogue include sum-
marizing information over multiple speakers, often
the clinical note document is created with clinician-
provided templates; clinical notes are also often

note dialogue
She declines the [QA-1] Doctor: Have you had a pneumonia vaccine?
pneumonia vaccine. [QA-1] Patient: No, I don’t think so.

[QA-2] Doctor: Alright, do you want one?
[QA-2] Patient: No.

Table 1: Alignment example

injected with structured information, e.g. labs. Fi-
nally, parts of clinical notes may be transcribed
from dictations; or clinicians may issue commands
to adjust changes in the text, e.g. “change the tem-
plate”, “nevermind disregard that.”

In earlier work (Yim et al., 2020), we introduced
a new annotation methodology that aligns clinic
visit dialogue sentences to clinical note sentences
with labels, thus creating sub-document granular
snippet alignments between dialogue and clinical
note pairs (e.g. Table 1, 2). In this paper, we extend
this annotation work on a real corpus and provide
the first baselines for clinic visit dialogue2note au-
tomatic sentence alignments. Much like machine
translation (MT) bitext corpora alignment is in-
strumental to the progress in MT; we believe that
dialogue2note sentence alignment will be a critical
driver for AI assisted medical scribing. In the dia-
logue2note snippet summarization task, we provide
our baselines for generating clinical note sentences
from transcript snippets. Technology developed
from these tasks, as well as other models gener-
ated from this annotation, can contribute as part of
a larger framework that ingests automatic speech
recognition (ASR) output from clinician-patient
visits and generates clinical note text end-to-end
(Quiroz et al., 2019).

2 Background

Table 2 depicts a full abbreviated clinical note with
marked associated dialogue transcript sentences.
To understand the challenges of alignment
(creation of paired transcript-note input-output)
and generation (creation of the note sentence from

10



note dialogue annotations
0 | Chief Complaint :
1 | Evaluation of tonsil hypertrophy
2 | HPI :
.. | ...
.. | ...
5 | Reports enlarged tonsils, tonsil stones and sore throat.
6 | Symptoms have been present for several years but have
worsened over the past several months.
.. | ...
18 | She wakes up in the morning with nausea.
19 | She has frequent tonsil infections, 3-4 infections per year.
.. | ...
.. | ...
26 | Physical Exam
.. | ...
28 | Turbinates :
29 | Normal size and symmetrical bilaterally.
.. | ...
.. | Tonsil :
33 | 3+ cryptic
.. | ...
.. | ...
62 | Assessment & Plan :
.. | ...
68 | [Risk and benefits template for tonsillectomy]
.. | ...

0 | Doctor: alright enlarged tonsils.
.. | ...
6 | Doctor: okay so tell me about your throat.
7 | Patient: my tonsils they stay pretty big and they have tonsil stone and -
.. | ...
9 | Patient: um like this once on this side specifically it’s actually swollen-
10 | Patient: and a couple weeks ago it was so swollen that it was like bleeding.
11 | Patient: I wake up in the mornings and I feel like I’m going to be sick.
.. | ...
18 | Doctor: so you had this for a long time?
19 | Patient: yeah
20 | Doctor: wait how old are you?
21 | Patient: twenty two.
22 | Doctor: and you’ve had tonsil infections since high school?
23 | Patient: mhm.
.. | ...
24 | Doctor: sore throats?
26 | Patient: yeah.
.. | ...
32 | Patient: do you think it happens more than three times in a year?
33 | Patient: probably at least three.
.. | ...

48 | Doctor: tonsils three plus cryptic .
.. | ...
.. | ...

147 | Doctor: please insert the risks and benefits template for tonsillectomy.

note[1]→ STATEMENT2SCRIBE[0]

note[5]→ GROUP
[ STATEMENT[6],
STATEMENT[7],
STATEMENT[9,10] ]

note[6]→ GROUP
[ QA[18,19],
QA[20,21],
STATEMENT[22,23] ]

INCOMPLETE

note[18]→ STATEMENT[11]
note[19]→ QA[32,33]
note[29]→ INFFERRED-OUTSIDE
note[33]→ DICTATION[48]

note[68]→ COMMAND[147]

Table 2: Example annotations (right) for corresponding clinical note (left) and dialogue (middle). The same colors indicate
matched associations.

the dialogue snippet), it is important to consider
several differences in textual mediums:

Semantic variations between spoken dia-
logue and written clinical note narrative.
Spoken language in clinic visits have vastly
different representations than in highly technical
clinical note reports. Dialogue may include
frequent use of vernacular and verbal expressions,
along with disfluencies, filler words, and false
starts. In contrast, clinical note text is known to use
semi-structured language, e.g. lists, and is known
to have a much higher degree of nominalization.
Moreover, notes frequently contain medical
terminology, acronyms, and abbreviations, often
with multiple word senses.

Information density and length. Whereas clin-
ical notes are highly dense technical documents,
conversation dialogue are much longer than clini-
cal notes. In fact, in our data, dialogues were on
average three times the note length. Key informa-
tion in conversations are regularly interspersed.

Dialogue anaphora across multiple turns is per-
vasive. Anaphora is the phenomenon in which
information can only be understood in conjunction
with references to other expressions. Consider in
the dialogue example : “Patient: I have been having
swelling and pain in my knee. Doctor: How often
does the knee bother you?” It’s understood that the
second reference of “knee” pertains to the knee-
related swelling and pain. A more complex exam-
ple is shown in Table 2 note line 6. While anaphora
occurs in all naturally generated language, in con-

versation, it may appear across multiple turns many
sentences apart with contextually inferred subjects.

Order of appearance between source and tar-
get are not consistent. The order of information
and organization of data in a clinical note may not
match the order of discussion in a clinic visit dia-
logue. This provides additional challenges in the
alignment process. Table 2 shows corresponding
note and dialogue information with the same color.

Content incongruency. Relationship-building is
a critical aspect of clinician-patient visits. There-
fore visit conversations may include discussion un-
related to patient health, e.g. politics and social
events. Conversely, not all clinical note content
necessarily corresponds to a dialogue content. In-
formation may come from a clinical note template
or various parts of the electronic medical record.

Clinical note creation from conversation amal-
gamates interweaving subtasks. Elements in a
clinic visit conversation (or accompanying speech
introduction) are intended to be recorded or acted
upon in different ways. For example, some spoken
language may be directly copied to the clinical note
with minor pre-determined edits, such as in a dic-
tation, e.g. “three plus cryptic” will be converted
to “3+ cryptic”. However some language is meant
to express directives, pertaining to adjustments to
the note, e.g. “please insert the risks and benefits
template for tonsillectomy.” Some information is
meant to be interpreted, e.g. “the pe was all nor-
mal” would allow a note sentence “CV: normal
rhythm” as well as “skin: intact, no lacerations”.
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Finally, there are different levels of abstractive sum-
marization over multiple statements, questions and
answers as shown in the Table 2 examples.

3 Related Work

Clinical Conversation Language Understand-
ing Language understanding of clinical conversa-
tion can be traced to a plethora of historical work
in conversation analysis regarding clinician-patient
interactions (Byrne and Long, 1977; Raimbault
et al., 1975; Drass, 1982; Cerny, 2007; Wang et al.,
2018). More recent work has additionally included
classification of dialogue utterances into seman-
tic categories. Examples include classifying dia-
logue sentences into either the target SOAP sec-
tion format or by using abstracted labels consis-
tent with conversation analysis (Jeblee et al., 2019;
Schloss and Konam, 2020; Wang et al., 2020). The
work of (Lacson et al., 2006) framed identifying
relevant parts of hemodialysis 118 nurse-patient
phone conversations as an extractive summariza-
tion task. There has also been numerous works
related to identifying topics, entities, attributes, and
relations from clinic visit conversation – using var-
ious schemas (Jeblee et al., 2019; Rajkomar et al.,
2019; Du et al., 2019). Though clinic conversa-
tion language understanding is not explored in this
work, our automatic or manual sentence alignments
methods produce the language understanding labels
that may to used to (a) model dialogue relevance,
(b) cluster dialogue topics, and (c) classify speak-
ing mode, e.g. dictation versus question-answers.

Clinic Visit Dialogue2note Sentence Alignment
Creating a corpus of aligned clinic visit conversa-
tion dialogue sentences with corresponding clinical
note sentences is instrumental for training language
generation systems. Early work in this domain in-
cludes that of (Finley et al., 2018), which uses
an automated algorithm based on some heuristics,
e.g. string matches, and merge conditions, to align
dictation parts of clinical notes. In (Yim et al.,
2020), we annotated manual alignments between
dialogue sentences and clinical note sentences for
the entire visit; however, the dataset was small and
artificial (66 visits). Here we utilize this approach
on real data and additionally provide an automatic
sentence alignment baseline system. To our knowl-
edge, this is the first work to propose an automated
sentence alignment system for entire clinic visit
dialogue and note pairs.

Clinical Language Generation from Conversa-
tion (Finley et al., 2018) produced dictation parts
of a report, measuring performance both on gold
standard transcripts and raw ASR output using sta-
tistical MT methods. In (Liu et al., 2019), the
authors labeled a corpus of 101K simulated con-
versations and 490 nurse-patient dialogues with
artificial short semi-structured summaries. They
experimented with different LSTM sequence-to-
sequence methods, various attention mechanisms,
pointer generator mechanisms, and topic informa-
tion additions. (Enarvi et al., 2020) performed sim-
ilar work with sequence-to-sequence methods on a
corpus of 800K orthopaedic ASR generated tran-
scripts and notes; (Krishna et al., 2020) on a corpus
of 6862 visits of transcripts annotated with clinical
note summary sentences. Unlike most of previous
works, our task generates clinical note sentences
from labeled transcript snippets, which are at times
overlapping and discontinuous. (Krishna et al.,
2020)’s CLUSTER2SENT oracle system does use
gold standard transcript “clusters”, though differ-
ent from our setup, outputs entire sections. While
this strategy presupposes an upstream conversation
topic segmentation system1 as well as some extrac-
tive summarization, generation based on smaller
text chunks can lead to more controllable and accu-
rate natural language generation, critical character-
istics in health applications.

4 Corpus Creation

Data The data set was constructed from clinical
encounter visits from 500 visits and 13 providers.
The data for each visit consisted of a visit audio
and clinical note. For each visit audio, speaker
roles (e.g. clinician patient) were segmented and
labeled. Automatically generated speech to text for
each audio was manually corrected by annotators.
Table 3 gives the summary statistics of the extracted
visit audio. For all specialties, the average number
of turns and sentences for transcript was 175 ±
111 and 341 ± 214, for a total of 87725 turns and
170546 sentences. The number of sentences for
clinical note was 47 ± 24, for a total of 23421
sentences. Table 4 shows the number of turns and
sentences per different types of speakers.

We also combined our data with external data,
the mock patient visit (MPV) dataset, from (Yim

1A system that divides conversations into segments accord-
ing to topics

12



et al., 2020) to create a total of 566 visits.2

specialty providers visits duration speakers
ENT 1 68 10 ± 4 4 ± 1

HAND 1 43 10 ± 4 3 ± 1
ORTHO 1 27 11 ± 5 4 ± 1

PODIATRY 4 174 7 ± 4 3 ± 1
PRIMARY 6 188 17 ± 9 4 ± 1

TOTAL 13 500 12 ± 8 4 ± 1

Table 3: Source audio statistics

Annotations Each annotation is based on a
clinical note sentence association with multiple
transcript sentences. A note sentence can be
associated with zero transcript sentences and an
INFERRED-OUTSIDE label for default template
values, e.g. “cv: normal”. One may also be
associated with sets of transcript sentences and
a set tag, e.g. DICTATION or QA (described
below). Finally, when multiple sets have anaphoric
references, they may be tied together using a
GROUP label. Given this hierarchy, the annotation
related to a single note sentence can be represented
as a tree as shown in Figure 1.

Set labels
COMMAND: Spoken by the clinician to the scribe
to make a change to the clinical note structure, e.g.

“add skin care macro.”
DICTATION: Spoken by the clinician to the scribe
where the output text is expected to be almost
verbatim, though with understood changes in
abbrevations, number expressions, and language
formatting commands, e.g. “return in four to five
days period.”
STATEMENT2SCRIBE: Spoken by the clinician
to the scribe where information is communicated
informally, e.g. “okay so put down heart and lungs
were normal”
STATEMENT: Statements spoken by any partici-
pant in a clinic visit in natural conversation, e.g.

2To normalize for annotation differences between the
Mock Patient Visits (MPV) and our corpus, we removed
INFERRED-DIALOGUE labels, reattached REPEATS to a
higher node, and moved all GROUP labels to the highest node.

speaker sentences turns
clinician_primary 99421 42480

patient 56052 36059
other 15073 9186

TOTAL 170546 87725

Table 4: Speaker statistics

Figure 1: Annotation match tree

“it lasted about a week.”
QA: Questions and answers spoken by any
participant in a clinic visit in natural conversation,
e.g. “how long has the runny nose lasted? about a
week.”
INFERRED-OUTSIDE: Clinical note sentences
for which information comes from a known tem-
plate’s default value rather than the conversation,
e.g.“skin: intact.”

If after applying all possible associations and still
there is information in the note sentence not avail-
able from the transcript, then an INCOMPLETE
tag is added. A note sentence is left unmarked if
no information can be found from the transcript.
Table 2 shows label annotations with color coding
for a full abbreviated transcript-note pair.

To measure interannotaor agreement, we cal-
culated the triple, path, and span metrics intro-
duced in (Yim et al., 2020), briefly described
again here. The triple, path, and span metrics
were defined based on instances constructed from
the annotation tree representation. Specifically,
for the triple metric, which measures unlabeled
note to dialogue sentence match, instances are
defined by note sentence id and transcript sen-
tence id per visit, e.g. ‘visitid_01|note_0|3’. The
second metric, similar to the leaf-ancestor met-
ric used in parsing, takes into account the full
path from one note sentence to one dialogue sen-
tence, e.g. ‘visitid_01|note_0|GROUP|QA|3’. The
span metric, similar to that of PARSEVAL, mea-
sures a node-level labeled span of dialogue sen-
tences, e.g. for the top group node would be
‘visitid_01|note_0|GROUP|[10,12,13,14]’ (Samp-
son and Babarczy, 2003). When testing agreement,
labels for each annotator are decomposed to these
instance collections; true positive, false positive,
and false negatives may be counted by the matches
and mismatches between annotators. F1 score is
calculated as usual. The different definitions allow
both relaxed (triple) and stricter (path and span)
agreement measurements.

13



Labeling Process A group of 11 annotators were
trained for various parts of the processing task.
Audio transcription was performed using Elan
(archive.mpi.nl/tla/elan) and dialogue2note anno-
tation was performed using an in-house software.
Annotators underwent training on sample files for
which they received in-depth feedback. They ad-
ditionally took a training quiz and self-reviewed
errors. After training, their interannotator agree-
ment was calculated based on 10 final files. Their
average pairwise triple, path, and span F1 scores
were 0.754, 0.549, and 0.645 respectively, a reason-
able performance given the task difficulty.3

Annotation Statistics On average 58 ± 18 % of
the clinical note was marked with an annotation.
This suggests that around 40% of the note is struc-
tural, e.g. blank sentences or section headers, or
from outside sources, e.g. injected labs, medication
lists, etc. On average 13 ± 12 % of the transcript
sentences were marked. This low number suggests
that much of the information from transcripts con-
sisted of repeats or were unused. Table 5 shows that
most note sentences were associated with one set
type, though still many were associated with multi-
ple. Table 6 shows the frequency of note sentences
and the unique label types associated with it. From
the spread of percentages for each combination cat-
egory, it is apparent that understanding the entire
conversation context requires combining different
types of cognitive listening skills. For each note
sentence, the average range of transcript sentences
associated with it in the train set was 11, with the
90th percentile at 17; however there were 10% of
cases with ranges above 17, which occurred when
explicit topic mentions appeared far away from
detailed discussion. Crossing annotations occur
when content from the note and transcript appeared
comparatively out of order. For example, if note
sentence 0 is matched with transcript sentence 3
and meanwhile note sentence 3 is matched with
transcript sentence 0, these annotations “cross”,
rendering automatic alignment more challenging.
To quantify this, we calculate the percentages of
annotations which annotates cross one, three, or
five other annotations4 (Table 7). These high per-
centages reveal that the order of information in the
transcript differ greatly from that of the note – thus

3These agreement values are consistent with the compara-
ble task of simplification corpus creation, previously measured
to be 0.68 kappa (Hwang et al., 2015).

4DICTATION, STATEMENT2SCRIBE, COMMAND la-
bels aren’t counted to focus on conversational dialogue

# label-types freq %
1 8712 37
2 2914 12
3 1021 4
4 311 1
5 20 -

Table 5: Label frequency per note sentence

label-combo note sents %sent % cum
{INFERRED-OUTSIDE} 3731 16 16
{STATEMENT2SCRIBE} 2664 11 27

{STATEMENT} 977 4 31
{STATEMENT2SCRIBE,INCOMPLETE} 898 4 35

{DICTATION} 742 3 38
{STATEMENT,INCOMPLETE} 706 3 41

{QA} 465 2 43
{STATEMENT,GROUP} 452 2 45

{QA,STATEMENT,GROUP} 382 2 47

Table 6: Note sentence label combination statistics

alignments are said to be non-monotonic.

The full amount of annotations from the dia-
logue2note labels may be used to create classifiers
in many different types of tasks, e.g. dialogue rele-
vance classification, topic segmentation, command
identification, etc. However, in the remaining sec-
tions, we focus on two particular system applica-
tions : automatic dialogue2note sentence alignment
and snippet summarization. For these baselines, the
train and test sets were split using stratified random
sampling using an 80-20 split. The training and
test sets were composed of 400 and 100 of our vis-
its; 53 and 13 for the MPV visits. 91 visits from
training was reserved for development testing. As
a simplification, the GROUP, INCOMPLETE, and
COMMAND labels are ignored for these baselines.

crossing percentages
cross1 33 ± 28
cross3 22 ± 27
cross5 14 ± 22

Table 7: Crossing annotation statistics

5 Sentence Alignment Baselines

We define the dialogue2note sentence alignment
baseline task as the classification of 1-to-1 dialogue
sentence and clinical note sentence pairs with set
labels. Thus, the candidate space includes all com-
binations of clinical note sentences paired with all
dialogue possible sentences in a visit; only those
annotated with labeled associations are considered
positive. This is a subset of the full annotation tasks
that require 1-to-many multi-label classifications
with hierarchical GROUP set labels. However, this
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feature description
match-note Dot product of note and transcript vector divided by the magnitude of the note vector.

match-transcript Dot product of note and transcript vector divided by the magnitude of the transcript vector.
cui-pair UMLS concept pair, as extracted by MetaMap (Aronson and Lang, 2010), where the first concept unique

identifier (cui) is from the clinical note and the second cui is from the transcript sentence. The top_p
parameter determines which most significant cui-pair features to keep, using chi-square analysis.

prev-sent-quest 1 if the previous sentence has one of sentence has a question feature, e.g. interrogative words such as who,
what etc, 0 otherwise.

jaccard-sim If set to local, then defaults to jaccard similarity of the note-transcript sentence pair. If set to regional
and similarity passes the sim-thresh threshold, instead, the maximum jaccard similarity from candidate
regional local matches is returned. These candidate regional matches are created by by heuristically
finding the closest length matches by incorporating previous and next sentences.

Table 8: Feature description for non-standard features

setup is consistent with the comparable simplifi-
cation dataset creation task. We report the align-
ment evaluation based on pairwise F1 score. The
number of positive pairwise instances in train, dev,
and test sets are 19721, 4770, and 5796; including
all possible negative instances 6370787, 1303972,
1706901.

Bitext Corpus Creation Related Work The
topic of bitext corpus creation is often used in the
context of creating resources for statistical machine
translation or as a means to create cross lingual lin-
guistic resources (Koehn, 2005; Tiedemann, 2011);
it is also used to describe simplification dataset cre-
ation (Barzilay and Elhadad, 2003; Hwang et al.,
2015; Štajner et al., 2017). While highly parallel
bitext can be aligned using sentence length meth-
ods, much like other comparable corpora alignment
strategies, multi-form comparable corpora cannot
rely on monotonic ordering or correlated bitext
sentence length; moreover the different text forms
presents additional constraints on exact narrative
structure. Like in previous work, we build our
baselines for dialogue2note sentence alignment by
using similarity features with some adjustment to
incorporate similarity over multiple sentences.

System Description Candidate classification
instances for every note sentence and transcript
sentences pair were created and classified into one
of the previously described set labels. For each
clinical note, an additional classification instance
was created for a match with an empty transcript
line. (This occurs with a INFERRED-OUTSIDE
label). A single tag was assigned to each classifi-
cation instance according to annotated labels. If
multiple tags existed per sentence pair, we took the
first label in the following order: STATEMENT,
STATEMENT2SCRIBE, QA, DICTATION.

Sentences were tokenized, changed to lemma

form using Spacy English model (spacy.io), and
vectorized according to a bag of words model.
Stop words and punctuation were removed. To
balance the uneven data distribution, the number
of negative class instances were sampled randomly
according to configurable parameter, neg_samp.
We experimented with three baseline pairwise
classification systems:

simple-threshold : A rule-based system that cate-
gorizes everything over threshold1 to DICTATION
anything between threshold1 and threshold2 to
STATEMENT2SCRIBE. These were the two labels
in the train set with the highest pairwise similari-
ties; other labels had comparable similarities.
system1 : A simple feature-based system using a
decision tree classifier (scikit-learn.org). Its fea-
tures included speaker category, cosine similarity,
length of the note and transcript sentence vectors,
and the note sentence vector. In order to take into
account the match over the length of either the note
or the transcript, we included a match-note and
match-transcript feature described in Table 8.
system2 : A feature-based system like system1
with additional features, the transcript vector, a
previous-question feature, a cui-pair feature, and
a jaccard similarity feature described in Table 8.
To avoid erroneous matches to answer sentences,
in this system, common answers (e.g. “no”) were
removed from the train set.

Results After tuning, we found optimal perfor-
mances for the threshold systems at threshold1=0.9
and threshold2=0.6. For system1 and system2, op-
timized parameters were at neg_samp=50, jaccard-
sim=regional, sim-thresh=0.3, top_p=20, for a de-
cision tree classifier. Table 9 shows the F1 results
per each label. With the simple threshold system,
we can see the DICTATION pairs already achieve a
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label thresh sys1 sys2
DICTATION 0.36 0.39 0.43

STATEMENT2SCRIBE 0.20 0.36 0.36
STATEMENT 0.00 0.12 0.13

QA 0.00 0.19 0.20
INFERRED-OUTSIDE 0.00 0.59 0.66

UNMARKED 0.998 0.998 0.998

Table 9: Pairwise F1 by label

similarity composition thresh sys1 sys2
0-20 0.66 0.00 0.22 0.26
20-40 0.20 0.08 0.39 0.39
40-70 0.09 0.45 0.64 0.69
70-100 0.05 0.91 0.94 0.93

Table 10: Pairwise F1 by jaccard similarity (composi-
tion is the percent of annotations within the range)

performance near that of the more complex systems.
Using a simple feature based system, we see F1
measures between 0.188 and 0.390 for everything
but INFERRED-OUTSIDE and UNMARKED. As
expected, given the high amounts of UNMARKED,
it has the highest performance. Adding additional
features and curating training examples gave a mi-
nor boost across different labels as shown in the
system1 and system2 differences. Analyzing the
results across pairs based on similarity ranges, we
see that the higher similarity pairs have higher per-
formance, likely because the similarity features can
be more reliable at those ranges (Table 10). Table
11 shows the results of system2 per label. Such
results are comparable to simplification dataset cre-
ation systems with 0.33 F1 at 0-40% similarity,
0.79 F1 at 40-70%, 0.95 F1 at 70-100% (Barzilay
and Elhadad, 2003).

label gold-freq P R F1
DICTATION 257 0.53 0.35 0.43

STATEMENT2SCRIBE 1248 0.32 0.43 0.36
STATEMENT 2140 0.23 0.09 0.13

QA 1239 0.25 0.16 0.20
INFERRED-OUTSIDE 912 0.72 0.61 0.66

UNMARKED 1701105 0.998 0.998 0.999

Table 11: Sys2 performance by label

Studying confusions between classes in system2,
we found that overwhelmingly most errors were
due to assigning unmarked passages to another
label. This may be due to the simple represen-
tation of features, where certain content note or
transcript bag of word features may have higher
weights against similarity features. There are also
cases where legitimately, the dialogue will men-
tion what is discussed in the clinical note but is

not marked in the gold standard (e.g. the same
topic may be referred to multiple times but we
only annotate the best instance). To a smaller ex-
tent, there were confusions among related posi-
tive class labels. Confusions between DICTATION
and STATEMENT2SCRIBE occurred for high sim-
ilarity sentences. Confusions between STATE-
MENT2SCRIBE and STATEMENT arose for cases
in which dialogue may be perceived to be spoken
either to a scribe or a patient, e.g. “looks normal”.
Confusions between STATEMENT and QA tran-
spired because we allowed the QA label to encom-
pass both open-ended questions, e.g. “How are
you? I have been having a headache for 2 weeks”
as well as very focused categorical questions, e.g.
“Did you take nasal spray? No.”; thus answers to
open-ended questions can be easily confused with
STATEMENTs.

In the current system, classifications for each
note-dialogue sentence pair are labeled indepen-
dently. We can improve the system by framing the
required matches for each clinical note sentence
as a sequence labeling problem. More semantic
normalization features and surrounding sentence
features would benefit the classification. Finally,
in the future we can try more complex sentence
vector representations.

6 Snippet Summarization Baselines

We define the snippet summarization baseline task
where given the gold standard dialogue snippet text,
a corresponding clinical note sentence is generated.
The number of instances of aligned sets for train,
dev, and test was 7129, 1851, and 2085 respectively.
The average number of input and output tokens was
24 and 13 respectively.

Monolingual Text-to-Text Language Genera-
tion Related Work Monolingual monologue
text-to-text language generation tasks include sum-
marization (See et al., 2017), simplification (Štajner
et al., 2017), and paraphrasing (Ma et al., 2018).
The exact manner of transformation between the in-
put and output text depends on comparative lengths,
task-specific constraints, and level of abstraction.

In the area of conversational modeling, e.g. chat-
bots, the task is to produce appropriate dialogue re-
sponses given a prompt. In one simple classic setup,
the response generation can be modeled as an in-
formation retrieval problem (Jurafsky and Martin,
2009; Ji et al., 2014). In such systems, the prompt
query is processed and compared to those saved
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BLEU R-1 R-2 R-L
section ret vanilla pg pg-mt ret vanilla pg pg-mt ret vanilla pg pg-mt ret vanilla pg pg-mt

AP 0.26 0.19 0.38 0.38 0.20 0.14 0.33 0.31 0.09 0.03 0.17 0.18 0.19 0.13 0.31 0.30
CC 0.22 0.22 0.30 0.30 0.16 0.15 0.26 0.24 0.05 0.05 0.11 0.10 0.15 0.14 0.25 0.22
HPI 0.26 0.19 0.36 0.36 0.18 0.16 0.32 0.29 0.07 0.04 0.14 0.14 0.17 0.15 0.30 0.27
IM 0.29 0.15 0.61 0.73 0.42 0.17 0.65 0.75 0.31 0.02 0.52 0.61 0.41 0.16 0.63 0.73
PE 0.35 0.19 0.44 0.44 0.29 0.17 0.39 0.40 0.17 0.04 0.24 0.23 0.28 0.16 0.38 0.39

ROS 0.15 0.12 0.21 0.22 0.13 0.11 0.28 0.24 0.03 0.01 0.04 0.06 0.11 0.10 0.27 0.22
ALL 0.27 0.19 0.38 0.38 0.21 0.15 0.33 0.32 0.09 0.04 0.17 0.17 0.19 0.14 0.32 0.30

Table 12: BLEU, ROUGE-1, ROUGE-2, and ROUGE-L performance by sections

in training data. The system produces the saved
response to the prompt most similar to that of the
query. Although our task is not to respond a user,
we may utilize the same type of system. Specifi-
cally, we can instead model the note sentence as
the retrieval response to a dialogue input prompt.

Our problem most closely resembles meeting
conversation summarization, in which the source
data is a meeting conversation (dialogue) and the
target data is a meeting summary (monologue)
(Carenini et al., 2011). Method pipelines include
multiple classifiers such as topic segmentation, ac-
tion item identification, as well as some language
generation module. There is also work with end-to-
end pipelines that perform extractive and abstrac-
tive neural generation (Zhu et al., 2020; Mehdad
et al., 2013). Unlike a typical summarization task,
our source data is of a more comparable length,
making the task more tractable. For our baselines,
in addition to a simple retrieval based system, we
experimented with a classic sequence-to-sequence
model with and without a pointer-generator.

Note Section Identification Clinical notes are
typically organized into different sections de-
marked by section headers as shown in Table 2 note
lines 0, 2, 26, and 62. In order to report language
generation performances grouped by sections and
also to experiment with joint section prediction,
we automatically labeled note sentences to one
of six note sections using a rule-based algorithm.
These categories included: History of Present Ill-
ness (HPI), Assessment and Plan (AP), Physical
Exam (PE), Chief Complaint (CC), Review of Sys-
tems (ROS), and Imaging (IM). Sections headers
were identified using regular expressions created
by studying the train set. Subsequently, note sen-
tences were labeled based on their corresponding
section header. We modeled section prediction for
two of our baseline systems : ret, pg-mt.

System Descriptions Below we describe our
baseline systems. We trained and tested our seq-

to-seq models using the LeafNATS codebase (Shi
et al., 2019).
retrieval-based generator (ret) : Note sentence sug-
gestion generation are modeled as a retrieval task.
Paired transcript snippets and note lines (with as-
sociated section) are cached. For new transcript
snippets, the note sentence corresponding to the
highest cosine similarity dialogue snippet in train-
ing data is returned.
seq2seq baselines : We evaluate the performances
of three sequence-to-sequence baselines with an
RNN sequence encoder. The base system (vanilla)
is a simple sequence-to-sequence system with at-
tention. We also evaluate an option to add a pointer-
generator network (pg). Finally, to model a pointer-
generator system that outputs a summary as well
as a section designation, we evaluated a final op-
tion that treats the two outputs as a multitask sys-
tem (pg-mt).5 Experiments were run on an EC2
p2.xlarge instance with an NVIDIA K80 GPU, tak-
ing ∼150 minutes each.

Results Table 12 shows the BLEU, ROUGE-1
(R-1), ROUGE-2 (R-2), AND ROUGE-L (R-L)
performances across different note sections. As
shown, typically the two pointer-generator systems
outperform the retrieval based and vanilla baselines.
This difference may be due to the ability for the
pointer-generator system to copy-and-paste items
from the original input.

Comparatively, (Krishna et al., 2020)’s best
CLUSTER2SENT oracle scores yielded R-1, R-
2, and R-L performances of 66.5, 39.01, and 52.46,
respectfully, from 6862 visits. In our low resource
scenario of 566 visits, we achieved 50%, 43%, and
61% of their R-1, R-2, and R-L scores at 12% of
the data. This suggests given more training data our

5Final experimental hyperparameters were set
at, RNN=LSTM, batch_size=50, emb_dim=128,
src_hidden_dim=256, trg_hidden_dim=256,
src_seq_lens=400, trg_seq_lens=100,
attn_method=luong_concat, repetition=vanilla,
share_emb_weight=False.
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system may similarly reach state-of-the-art levels.
Table 13 shows the accuracy of the ret and pg-

mt systems for note section prediction. Although
on the whole, pg-mt performs better than the ret
system, for low frequency categories this is not the
case. This phenomenon most likely occurs because
pg-mt favors higher frequency labels, which is con-
sistent with its training objective. ret, which classi-
fies note section through the intermediate compar-
isons of input sequence similarities, is less likely
to be directly skewed by class imbalances.

section freq acc
train validation test ret pg-mt

AP 1935 534 655 0.41 0.54
CC 306 71 113 0.12 0.00
HPI 3708 949 956 0.65 0.85
IM 85 7 0 0.38 0.00
PE 992 274 319 0.59 0.58

ROS 103 16 21 0.05 0.00
ALL 7129 1851 2085 0.53 0.65

Table 13: Section frequency and accuracy

Human Evaluation We sampled 10 random test
snippets from each of the six section categories
for evaluation (total 60 snippets). An annotator
with a medical degree was asked to rank the four
systems relative to each other, where 1 is the
best. Additionally each system was evaluated
independently with a score from 1-5 (5=best)
for the categories relevancy, factual accuracy,
writing-style, completeness, and overall. Table 14
shows the average scores for the different baseline
systems. The vanilla seq2seq system consistently
performed the worst, while the pointer-generator
systems consistently performed better.

ret vanilla pg pg-mt
completeness 2.5 1.2 3.1 2.9

factual-accuracy 2.4 1.3 3.2 2.9
relevancy 2.9 1.5 3.7 3.5

writing-style 3.2 1.8 3.3 3.3
overall 2.4 1.2 3.1 2.9

rank(1=best) 2.7 3.4 1.8 2.1

Table 14: Average human evaluation ratings

While our sentence generation baselines showed
modest performances, this is consistent with low
resource language generation scenarios and may
be ameliorated with additional training data. To
improve our system, in the future, we will apply
methods from low-resource machine translation
techniques, utilizing unpaired sources of medical

dialogue and clinic note corpora. Furthermore, we
can experiment with other sequence-to-sequence
approaches, e.g. transformers, for better summary
generation. Joint section prediction generation may
be extended to model hierarchical sections by ad-
justing targets to include subsections.

7 Conclusions

In this work, we provided baselines for two tasks
that work towards natural language generation of
note sentences from medical visit conversation. An
automated dialogue2note sentence alignment sys-
tem can be used to create realistic training data
so immensely critical for modern systems. Mean-
while, if given properly extracted transcript snip-
pets, dialogue2note snippet summarization could
provide a valuable building block for an overall
language generation system.

In future work, additional metadata information,
(e.g. set labels, speaker, specialties) may be incor-
porated into the network architecture. Although we
only explore two systems here, other models such
as topic segmentation, extractive summarization,
note sentence ordering, and dialogue command
classification, can be trained from this annotated
dataset alone. These labels may alternatively be
used for additional multitask classification objec-
tives in a full sequence-to-sequence model.

Extension of this labeled dataset may yield fur-
ther interesting gains. For example, textual en-
tailment labels between paired snippets would al-
low progress towards understanding and generating
semantic variations and detail. Event annotation,
which structures text, if performed on paired snip-
pets, would provide training examples for data-to-
text or text-to-data generation.

Together or apart, such systems would enable
automation of clinical note generation whether as
a full end-to-end solution or as piecemeal sugges-
tions in a human-augmented solution. Ultimately
this technology may be utilized to deburden clini-
cians, allowing them to focus back on patient care.

Ethical Considerations

All annotators, hired in-house, underwent HIPAA
data and security training. Data was stored in
dedicated HIPAA compliant compute resources.
Data collection and persistence was consistent with
terms of use and customer expectations. All con-
tent examples in this paper are fictitious.
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Abstract
We focus on dialog models in the context of
clinical studies where the goal is to help gather,
in addition to the closed set of information col-
lected based on a questionnaire, serendipitous
information that is medically relevant. To pro-
mote user engagement and address this dual
goal (collecting both a predefined set of data
points and more informal information about
the state of the patients), we introduce an en-
semble model made of three bots: a task-based,
a follow-up and a social bot. We introduce a
generic method for developing follow-up bots.
We compare different ensemble configurations
and we show that the combination of the three
bots (i) provides a better basis for collecting
information than just the information seeking
bot and (ii) collects information in a more effi-
cient manner that an ensemble model combin-
ing the information seeking and the social bot.

1 Introduction

Current work on Human-Machine interaction fo-
cuses on three main types of dialogs: task-based,
open domain and question answering conversa-
tional dialogs. The goal of task-based models is to
gather the information needed for a given task e.g.,
gathering the price, location and type of a restau-
rant needed to recommend this restaurant. Usually
trained on social media data (Roller et al., 2020)
(Adiwardana et al.), open domain conversational
models aim to mimick open domain conversation
between two humans. Finally, question answering
conversational models seek to model dialogs where
a series of inter-connected questions is asked about
a text passage.

In this paper, we consider dialog models in the
context of clinical studies i.e., dialog models which
are used to collect the information needed by the
medical body to assess the impact of the clinical
trial on a cohort of patients (e.g., information about
their mood, their activity, their sleeping patterns).
In the context of these clinical studies, the goal

of the dialog model is two-fold. A first goal is
to collect a set of pre-defined data points i.e., an-
swers to a set of pre-defined questions specified in
a questionnaire. A second goal is to gather relevant
serendipitous information i.e., health related infor-
mation that is not addressed by the questionnaire
but that is provided by the user during the interac-
tion and which may be relevant to understand the
impact of the therapy investigated by the clinical
study. This requires keeping the user engaged and
prompting him/her with relevant follow-up ques-
tions.

To model these three goals (collecting a prede-
fined set of data points, keeping the user engaged
and gathering more informal information about the
state of the patient), we introduce an ensemble
model which combines three bots: a task-based
bot (MEDBOT) whose goal is to collect informa-
tion about the mood, the daily life, the sleeping
pattern, the anxiety level and the leisure activities
of the patients; a follow-up bot (FOLLOWUPBOT)
designed to extend the task-based exchanges with
health-related, follow-up questions based on the
user input; and an empathy bot (EMPATHYBOT)
whose task is to reinforce the patient engagement
by providing empathetic and socially driven feed-
back.

Our work makes the following contributions.

• We introduce a model where interactions are
driven by three main goals: maintaining user
engagement, gathering a predefined set of in-
formation units and encouraging domain re-
lated user input.

• We provide a generic method to create training
data for a bot that can follow-up on the user
response while remaining in a given domain
(in this case the health domain).

• We show that such a follow-up bot is crucial
to support both information gathering and user
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engagement and we provide a detailed analy-
sis of how the three bots interact.

2 Related Work

Several approaches have explored the use of en-
semble models for dialog. While Song et al. (2016)
proposed an ensemble model for human-machine
dialog which combines a generative and a retrieval
model, further ensemble models for dialog have fo-
cused on combining agents/bots designed to model
different conversation strategies. Yu et al. (2016)
focus on open domain conversation and combines
three agents, two to improve dialog coherence (en-
suring that pronouns can be resolved and maximis-
ing semantic similarity with the current context)
and one to handle topic switch (moving to a new
topic when the retrieval confidence score is low).
The ALANA ensemble model (Papaioannou et al.,
2017b,a), developed for the Amazon Alexa Chal-
lenge i.e., for open domain chitchat, combines do-
main specific bots used to provide information from
different sources with social bots to smooth the in-
teractions (by asking for clarification, expressing
personal views or handling profanities). Similarly,
Yu et al. (2017) introduces a dialog model which in-
terleaves a social and a task-based bot. Conversely,
Gunson et al. (2020) showed that success of inter-
leaving depends on the context and that in a public
setting, users either prefer purely task-based sys-
tems or fail to see a difference between task-based
and a richer ensemble model combining task-based
and social bots.

Our work differs from these previous approaches
in that we combine a standard, task-based model
with both a social bot and a domain specific, follow-
up bot. This allows both for more natural dialogs
(by following up on the user input rather than sys-
tematically asking about an item in the predefined
set of topics) and for additional relevant, health
related information to be gathered.

3 ComBot, an ensemble Model for
Repeated Task-Based Interactions

We introduce the three bots making up our en-
semble model and the ensemble model combining
them.

3.1 Medical Bot

MEDBOT is a retrieval model which uses the pre-
trained ConveRT dialog response selection model
(Henderson et al., 2019) to retrieve a query from

the MedTree Corpus (Liednikova et al., 2020). It
is designed to collect information from the user
based on a predefined set of questions contained in
a questionaire.

The MedTree Dataset. The MedTree corpus
(Liednikova et al., 2020) was developed to train
a task-based, information seeking, health bot on
five domains: sleep, mood, anxiety, daily tasks
and leisure activities. It was derived from a dialog
tree provided by a domain expert (i.e., a physician)
and designed to formalise typical patient-doctor
interactions occurring in the context of a clinical
study. In that tree, each branch captures a sequence
of (Doctor Question, Patient Answer) pairs and
each domain is modeled by a separate tree with the
root introducing the conversation (initial question)
and the leaves providing a closing statement. The
MedTree corpus is then derived from this tree by
extracting from each branch of the tree, all context-
question pairs, where the context consists of a se-
quence of patient-doctor-patient turns present on
that branch and the question is the following doctor
question. A fragment of the decision tree created
for the sleep domain and an example dialog are
shown in Figure 1.

There are two versions of the MedTree corpus:
one consisting of only the context/question pairs
derived from the dialog tree (INIT) and the other in-
cluding variants of these pairs based on paraphrases
extracted from forum data (ALL). In (Liednikova
et al., 2020), the ALL corpus is used to train a
generative and a classification model. In our work,
we use (a slightly modified version1 of) the INIT
corpus instead, as its small size facilitates retrieval
(the number of candidates is small) and preliminary
experimentations showed better results when using
the INIT corpus.

Model. ConverT is a Transformer-based
Encoder-Decoder which is trained on Reddit
(727M input-response pairs) to identify the dialog
context most similar to the current context and to
retrieve the dialog turn following this context. In
order to retrieve from the MedTree corpus, the
question that best fits the current dialog context,
the MEDBOT model compares the last three
turns of the current dialog with contexts from
the MedTree Corpus. The model identifies the

1The modifications consists in shortening the questions,
changing all leaves to statements and adding meta-statements
about the dialog to account for cases where the user indicates
misunderstanding or agreement
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MedTree corpus context with the highest similarity
score2 and outputs the question following that
context. If the selected question has already been
asked in the dialog generated so far and provided
it is not a question such as “What other things
would you like to share with me ?”, we retrieve
the next best question that is not a repetition. No
fine-tuning is done due to the small amount of
data.

3.2 Follow-Up Bot

One main motivation behind the use of a health-bot
in clinical studies is to complement the informa-
tion traditionally gathered through a fixed ques-
tionnaire filled in each week by the patients with
serendipitous information i.e., information that is
not actively queried by the questionnaire but that is
useful to analyse the cohort results.

The MEDBOT model introduced in the previous
section is constrained to address only those top-
ics which are present in the dialog tree, in effect,
modeling a closed questionnaire. To allow for the
collection of serendipitous health information, we
develop the FOLLOWUPBOT whose function is to
generate health-related questions which are not pre-
dicted by the dialog tree but which naturally follow
from the user input. The main difference of FOL-
LOWUPBOT from MEDBOT is the way it retrieves
questions that are not in the sequence, but the ones
that occurs in the same context even if the question
itself doesn’t share the lexions with the previous
turns. Rather than artificially restricting the dia-
log to the limited set of topics pre-defined by the
dialog tree, the combined model (MEDBOT + FOL-
LOWUPBOT) allows for transitions based either on
the dialog tree or on health-related, follow-up ques-
tions. In that sense, FOLLOWUPBOT allows not
only for the collection of health-related serendipi-
tous information but also for smoother dialog tran-
sitions.

Like MEDBOT, FOLLOWUPBOT used the pre-
trained ConveRT model to retrieve context appro-
priate queries from a dialog dataset. In this case
however, the queries are retrieved from the Health-
Board dataset, a new dataset we created to support
follow-up questions in the health domain.

The Healthboard Dataset. This dataset consists
of (s, q) pairs where s is a (health related) state-

2Both contexts are encoded using ConveRT as average of
embeddings of the last turn and concatenation of preceding
ones. The inner product is used to compute similarity.

ment and q is a follow-up question for that state-
ment. We extract this dataset from the Health-
board forum 3 as follows. We first select 16 fo-
rum categories (listed in Table 1) that are rele-
vant to our five domains. In the forum, each
category includes multiple conversational threads,
each thread consists of multiple posts and each
post is a text of several paragraphs that can be
split into sentences. In total, we collect 175,789
posts from 31,042 threads with 5.68 posts in av-
erage per thread. We then segment each post into
sentences using the default NLTK sentence seg-
menter. We label each sentence with a dialogue act
classifier in order to distinguish statements ("sd"
label) from questions ("qo" label). For this la-
belling, we fine-tune the Distilbert Transformer-
based classification model 4 on the Switchboard
Corpus Stolcke et al. (2000) using 6 classes “qo”
(Open-Question), “sd” (Statement-non-opinion),
“ft” (Thanking), “aa” (Agree/Accept), “%” (Un-
interpretable) and “ba” (Appreciation). For each
question q (i.e., sentence labelled “qo”) in each
thread T , we gather all statements (i.e., all sen-
tences labeled as “sd”) which precede q in T into
a pool of candidate statements5. As dialogue turns
in bots should remain short, we filter sentences
that have more than 100 tokens. For each candi-
date statement, we calculate its similarity with the
question using the dot product on their ConveRT
embeddings. We filter out all candidate statements
whose score with the question is less than 0.6. If af-
ter filtering the resulting pool contains at least one
candidate, we select the top-ranked statement and
add the statement-question pair pair to the dataset.
The resulting dataset contains 3,181 (statement,
question) pairs.

Model. Similar to the MEDBOT model, the FOL-
LOWUPBOT model used the pre-trained ConveRT
model to compare the current dialog context (the
preceding three turns) with the statements con-
tained in the HealthBoard dataset using the in-
ner product. The top-20 candidates are then re-
trieved and filtered using Maximal Marginal Rel-

3https://www.healthboards.com/
4https://huggingface.co/distilbert-base-uncased
5We do not restrict the set of candidates at that stage i.e.,

we consider all posts that precede the question within the
question thread and all statements in these posts no matter
how far away the statement is from the question. In practice,
the set of such statements has limited size and distance does
not seem to matter too much although an investigation of that
factor would be interesting. We leave this question open for
further research as it is not central to our paper.
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Figure 1: Fragment of decision tree for the sleep domain and a corresponding dialog

Category Threads Posts Avg

anxiety 6852 38523 5.63
anxiety tips 42 71 1.69
chronic fatigue 670 3856 5.77
chronic pain 646 4893 7.59
depression 5327 32998 6.21
depression tips 27 51 1.89
exercise fitness 1583 8142 5.16
general health 7279 29858 4.11
healthy lifestyle 104 621 5.97
pain management 4985 38738 7.79
panic disorders 1314 8376 6.39
share your anxiety story 42 42 1
share your depression story 55 71 1.29
share your pain story 28 42 1.50
sleep disorders 1671 7656 4.59
stress 415 1973 4.76

Table 1: Forum Categories used for the Creation of the
HealthBoard Dataset

evance (MMR) (Carbonell and Goldstein, 1998)
with λ = 0.5 to control for repetitions6. Next, we
compute the similarity between the remaining se-
lected questions and the questions included in the
current dialog context (all preceding dialog turns)
and we exclude candidates with similarity score 0.8
or higher. After filtering, the top ranking candidate
is selected and the associated follow-up question is
output.

3.3 Empathy Bot
As the name suggests, the role of the EMPATHY-
BOT is to engage the user by showing empathy.
For this bot, we use Roller et al. (2020) generative
model which was pre-trained on a variant of Red-
dit discussion (Baumgartner et al., 2020) and fine-
tuned on the ConvAI2 (Zhang et al., 2018), Wizard
of Wikipedia (Dinan et al., 2019), Empathetic Di-
alogues (Rashkin et al., 2019), and Blended Skill
Talk datasets (BST) (Smith et al., 2020) to opti-

6MMR is a measure for quantifying the extent to which
a new item is both dissimilar to those already selected and
similar to the target (here a selected question). A λ value of
0.5 favors similarity and diversity equally, both matter equally.

mize engagigness and humanness in open-domain
conversation.

3.4 Ensemble Model (ComBot)

Each bot provides a single candidate. To rank them,
we encode the whole current dialog context and
each candidate response using the ConveRT en-
coder, we calculate similarity (dot product) for each
candidate/context pair and we select the candidate
with highest similarity score. In case all candidates
scores are less than 0.1, we consider that there is
no good response and we end the conversation.

4 Experiments

4.1 Data

Table 2 shows some statistics for the corpora used
for pretraining (ConveRT, Blender) and for re-
trieval (INIT, HealthBoard). For MEDBOT and
FOLLOWUPBOT, we use the ConveRT model from
PolyAI 7. For EMPATHYBOT, we use the Blender
model with 90M parameters from the ParlAI library
8 .

One benefit of the ensemble approach is that
several models can be combined, each mod-
elling different types of dialog requirements. We
compare different configurations of our three
bots: COMBOT (which combines the three
bots), MEDBOT (using only the task-based bot),
MED+EMPATHYBOT an ensemble model which
combines the task-based ( MEDBOT) and the so-
cial bot (EMPATHYBOT) and MEDBOT+ FOL-
LOWUPBOT, a bot combining the task-based and
the follow-up question bot.

We first use automatic metrics and global sat-
isfaction scores to compare the four models. We
restrict the Acute-Eval, human-based model com-
parison to the two best performing systems namely,

7https://github.com/connorbrinton/polyai-
models/releases/tag/v1.0

8https://parl.ai/projects/recipes/
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COMBOT and MEDBOT.

4.2 Evaluation

As there does not exist a dataset of well-formed
health-related dialogs whose aim is both to an-
swer a clinical study questionaire and to allow for
serendipitous interactions, we have no test set on
which to compare the output of our dialog models.
Moreover, as has been repeatedly argued, reference-
based, automatic metrics such as BLEU or ME-
TEOR, fail to do justice to the fact that a dialog
context usually has many possible continuations.
We therefore use reference-free automatic metrics
and human assessment for evaluation.

Human evaluation. We use the MTurk platform
to collect human-bot dialogs for our four models
(COMBOT, MEDBOT and MED+EMPATHYBOT)
and ask the crowdworkers to provide a satisfaction
rate at the end of their interaction with the bot.
We then run a second MTurk crowdsourcing task
to grade and compare dialogs pairs produced by
different models.

To collect dialogs, we ask participants to interact
with the bot for as long as they want. The con-
versation starts randomly with one of the initial
questions of MEDBOT. The interaction stops ei-
ther when all candidates scores are less than 0.1 (cf.
Section 3.4) or when the user ends the conversa-
tion. For each model, we collect 50 dialogs. Each
annotator interacts at most once with a bot.

At the end of each human-bot conversation, the
annotator is asked to rate satisfaction on a 1-5 Lik-
ert scale (a higher score indicates more satisfac-
tion).

Assigning a satisfaction score to a single dia-
log is a highly subjective task however with scores
suffering from different bias and variance per anno-
tators (Kulikov et al., 2019). As argued by Li et al.
(2019), comparing two dialogs, each produced by
different models, and deciding on which dialog
is best with respect to a predefined set of ques-
tions, helps support a more objective evaluation.
We therefore use the Acute-Eval human evaluation
framework to compare the dialogs collected using
different bots. Since the automatic evaluation (cf.
Section 5.1) shows that COMBOT and MEDBOT

are the best systems, we compare only these two
systems asking annotators to read pairs of dialogs
created by these two bots and to then answer the
pre-defined set of questions recommended by Li
et al. (2019)’s evaluation protocol namely:

• Who would you prefer to talk to for a long
conversation?

• If you had to say one of the speakers is inter-
esting and one is boring, who would you say
is more interesting?

• Which speaker sounds more human?

• Which speaker has more coherent responses
in the conversation?

We report the percentage of time one model was
chosen over the other.

For this comparison, we consider 50 dialog pairs
(one dialog produced by COMBOT, the other by
MEDBOT) and for each Acute-Eval question, col-
lected 50 judgments, one per dialog pair. We had
ten annotators, each annotating at most 5 dialog
pairs. To maximise similarity between the dialogs
being compared, we create the dialog pairs by com-
puting euclidean distance between context embed-
dings of MEDBOT and COMBOT dialogue sets.
Then we composed a pair of two closest items and
excluded them from the choice in the next iteration.

Automatic Metrics. After collecting dialogues
we perform their automatic evaluation. All scores
are computed on the 50 bot-human dialogs col-
lected for a given model. Table 3 shows the result
scores averaged over 50 dialogs.

To measure coherence, we exploit the unsuper-
vised model CoSim introduced by Mesgar et al.
(2019); Xu et al. (2018); Zhang et al. (2017). This
model measures the coherence of a dialog as the av-
erage of the cosine similarities between ConveRT
embedding vectors of its adjacent turns.

To assess task success, we count the number of
unique medical entities (Slots) mentioned. We do
this using the clinical NER-model from gthe Stanza
library (Zhang et al., 2020) 9, a model trained on
the 2010 i2b2/VA dataset (Uzuner et al., 2011) to
extract named entities denoting a medical problem,
test or treatment. We report the average number
of medical entities both per dialog and in the user
turns (to assess how much medical information
comes from the user).

Following Yu et al. (2017), we also calculate In-
formation gain (InfoGain), the average number of
unique tokens per dialog and Conversation Length
(ConvLen), the average number of turns in the over-
all dialog.

9http://stanza.run/bio
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Reddit ConvAI2 WoW EmpaDial BSD INIT HealthBoard

Nb of context-question pairs 211803 83011 76673 27018 168 3181
Nb of distinct turns 1.50B 267945 165213 88757 53335 154 73140
Nb of tokens 568B 3791971 2720426 2625338 912857 3688 202389
Nb of tokens per turn (Avg, Max, Min) 8.95 16.39 17.12 16.89 6.92 11.5
Vocabulary size 20707 95590 59438 52561 306 7321

Table 2: Corpus statistics (Reddit: pre-training corpus for ConveRT and the Empathy bot. ConvAI2, WoW, Empa-
Dial and BSD: Datasets used to fine-tune the Empathy Bot. INIT: used for the MedBot retrieval step. HealthBoard:
for FollowUp Bot Fine-Tuning and Retrieval .)

Model Satisf. CoSim Slots ConvLen InfoGain UserQ

MEDBOT 3.94 0.26 6.24 (1.68) 28.46 108.82 (3.82) 0.08 (4)
MEDBOT+ FOLLOWUPBOT 3.18 0.34 11.65 (3.22) 36.06 153.23 (4.25) 0.47 (23)
MEDBOT+ EMPATHYBOT 3.77 0.34 3.87 (1.46) 30.29 140.19 (4.63) 0.68 (33)
COMBOT 3.72 0.36 7.12 (2.82) 21.96 124.82 (5.68) 0.48 (24)

Table 3: Satisfaction Scores (Satisf.) and Results of the Automatic Evaluation. CoSim: Average Cosine Similarity
between adjacent turns. Slots: Average Number of Medical Entities per dialogue (in brackets: average number in
the user turns). ConvLen: Average Number of turns per dialog. InfoGain: Average number of unique tokens per
dialog (in brackets: normalised by dialog length). UserQ: number of questions asked by Human (in bracket: total
number for 50 dialogs). All metrics are averaged over the 50 Human-Bot dialogs collected for each model.

(a) (b)

(c) (d)

Figure 2: (a) Distribution of the Satisfaction Scores for each configuration, (b) Conversation length distribution for
MedBot and ComBot, (c) Acute-Eval results for both systems, (d) Majority bot ratio in COMBOT

Finally, we compute the number of questions
asked by the user (UserQ) as an indication of the
user trust and engagement. We compute both the
total number of questions present in the 50 dialog
collected for a given model and the average number
of question per dialog.

5 Results and Discussion

We compare four models using automatic metric
and absolute satisfaction scores. Based on this first
evaluation, we compare two of these models using
the Acute-Eval human evaluation framework. We
display an example dialog and discuss the respec-
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tive use of each bot in the COMBOT model.

5.1 Automatic Evaluation and Absolute
Satisfaction Scores

Table 3 shows the absolute satisfaction scores (i.e.,
scores provided on the basis of a single dialog
rather than by comparing dialogs produced by dif-
ferent models) and the results of the automatic eval-
uation for the four models mentioned above.

ComBot provides a better basis for collect-
ing information than MedBot. The automatic
scores show that COMBOT consistently outper-
forms MEDBOT on informativity (Slots, InfoGrain)
while allowing for shorter dialogs (ConvLen). In
other words, COMBOT allows for a larger range
of informational units (words and medical named
entities) to be discussed in fewer turns.

ComBot collects information in a more
user-friendly, more efficient manner than
Med+EmpathyBot. While the InfoGain
scores are higher for MED+EMPATHYBOT and
MEDBOT+FOLLOWUPBOT than for COMBOT

(InfoGain: 140.19 and 153.23 vs. 124.82), this
is achieved at the cost of much longer dialogs
(ConvLen: 30.29 and 36.06 vs. 21.96; cf. also
Figure 2b) In fact, when normalising InfoGain
by the number of dialog turns (ConvLen), we
see that in average, a turn in COMBOT dialogs
contains a much higher number of unique tokens
(i.e., is more informative) than for MEDBOT

(3.82), MEDBOT+EMPATHYBOT (4.63) or
MEDBOT+FOLLOWUPBOT (4.25).

ComBot allows for more coherent dialogs. In
terms of quality, the differences in satisfaction
scores between the three models is not statistically
significant (p < 0.05, T-test). For dialog coher-
ence (Measured by CoSim) however, COMBOT

scores highest (0.36) and the difference with MED-
BOT is statistically significant (p < 0.05, T-test).
This suggests that follow up questions help support
smoother transitions between dialog turns.

5.2 Comparative Human Evaluation

The results of the comparative human evaluation
are presented in Figure 2.

ComBot is judged more knowledgeable, more
interesting, more human and better for long
conversations. COMBOT outperforms MEDBOT

on all Acute-Eval questions (Figure 2c).

In particular, users find COMBOT more knowl-
edgeable by a large margin. This is in line with the
automatic metrics results (higher COMBOT values
for Slots and InfoGain) and is likely due to the fact
that the COMBOT model supports the use of health-
related, follow-up questions which in turn allows
for a wider range of medical issues to be discussed
than just those present in the MEDBOT corpus.

Users also show a clear preference for COMBOT

in long conversations (Figure 2a). While this seems
to contradict the fact that both models have simi-
lar satisfaction score, we conjecture that the high
MEDBOT satisfaction score is an artefact of the
MEDBOT model. Since the MEDBOT coverage
is restricted, the users have low expectations and
correspondingly give high satisfaction scores (they
are easily satisfied because their expectations are
low). An indication of these low user expectations
is given by the number of questions asked : when
users feel that the system they interact with is unre-
stricted, they will feel comfortable asking questions
and will start to do so. Conversely, if they feel the
model is restricted, they will refrain from asking
questions. The results show a much higher number
of questions for users interacting with COMBOT

(Table 3)

5.3 Component analysis
Figure 3 displays an example Human-Bot dialog
using the COMBOT model which illustrates the
interactions between the three composing bots: the
EMPATHYBOT closes the conversation with social
chit-chat, the FOLLOWUPBOT responds to the user
turn and MEDBOT asks questions from the dialog
tree whenever suitable.

The proportion of turns generated by each bot
(cf. Figure 2d) varies from one dialog to another,
illustrating the capacity of the ensemble model to
adapt to various dialog users and contexts. We find
that in 55% of the collected dialogs, a majority of
turns (i.e., more than 33% of the turns) is generated
by the EMPATHYBOT model; in 29% of the cases
by the FOLLOWUPBOT and in 16% of the cases by
the MEDBOT10

We also observe interesting dependencies and
correlations. MEDBOT is triggered twice more of-

10Since a COMBOT dialog has an average of 21 turns and
only half of those are generated by the bot, this means that for
55% of the collected dialogs, the dialog contains more than
3 “social” dialog turns (turns generated by EMPATHYBOT).
Similarly, 29% of the collected dialogs contain more than
3 follow-up turns (FOLLOWUPBOT) and 16% more than 3
task-based turns (MEDBOT).
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BOT: : [opening question] What would you like to share today?
USER: : i feel soo tired
BOT: : [FOLLOWUPBOT] Is something making you hyper at night?
USER: : maybe i am so stressed that i cannot sleep
BOT: : [MEDBOT] What wakes you up at night ?
USER: : nothing, i just cannot fall asleep
BOT: : [FOLLOWUPBOT] Are your sleep issues anxiety related?
USER: : i think so
BOT: : [FOLLOWUPBOT] Also do you snore when you do sleep possibly sleep apnea?
USER: : i do not know
BOT: : [MEDBOT] Do you feel anxiety or stress during nights awakenings ?
USER: : yes, a bit
BOT: : [MEDBOT] Anxiety and sleep may be connected, it is time to speak with your physician
USER: : okay
BOT: : [FOLLOWUPBOT] What about getting a second opinion from another doctor about your situation?.
USER: : why not
BOT: : [FOLLOWUPBOT] What does your doctor say about coming off of them and then trying to go back on.
USER: : i do not know
BOT: : [MEDBOT] Are you not able to fall asleep regularly or punctually ?
USER: : regularly
BOT: : [EMPATHYBOT] i hope things get better for you , and that you are able to enjoy your time with your family .
USER: : thank you
BOT: : [EMPATHYBOT] you are welcome , and i wish you the best of luck with the rest of your life . : )

Figure 3: Example Human-ComBot dialog

ten after FOLLOWUPBOT (30 cases) than after EM-
PATHYBOT (12 cases) – this indicates that follow-
up questions help bringing the user back to the
questions contained in the dialog tree.

6 Conclusion

A qualitative analysis of the collected dialogs indi-
cates several directions for further research.

Negation is often not recognised leading to in-
teractions in which the model continues discussing
a topic which was declared as irrelevant by the
user. Another difficulty is knowing when to end
the conversation. Long ones are good to complete
the task, but bad for people who are ready to finish
conversation but feel forced to continue. To im-
prove user engagement, a possibility would be to
explore whether the information provided by sen-
timent analysers could be exploited to help main-
tain a positive interaction. By detecting polarity, it
could also help improve negation handling.

Another key issue concerns the emotional im-
pact of the dialog on the user. An interaction with
the bot might highlight a health issue the user was
not aware of resulting in increased user stress. In
such a situation, a good policy would be to provide
the user with some notion of solution, some piece
of information or advice which can help her face
the situation and if possible, incite her to act to
improve her health. Indeed some of the dialogs col-
lected with COMBOT show that users sometimes
ask for help. Here a knowledge-based agent could

be useful either to provide facts that are related to
the topic at hand or to highlight the connections be-
tween facts that have been mentioned in the dialog.
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Abstract

Medical simulators provide a controlled en-
vironment for training and assessing clinical
skills. However, as an assessment platform,
it requires the presence of an experienced ex-
aminer to provide performance feedback, com-
monly preformed using a task specific check-
list. This makes the assessment process inef-
ficient and expensive. Furthermore, this eval-
uation method does not provide medical prac-
titioners the opportunity for independent train-
ing. Ideally, the process of filling the check-
list should be done by a fully-aware objective
system, capable of recognizing and monitor-
ing the clinical performance. To this end, we
have developed an autonomous and a fully au-
tomatic speech-based checklist system, capa-
ble of objectively identifying and validating
anesthesia residents’ actions in a simulation
environment. Based on the analyzed results,
our system is capable of recognizing most of
the tasks in the checklist: F1 score of 0.77 for
all of the tasks, and F1 score of 0.79 for the ver-
bal tasks. Developing an audio-based system
will improve the experience of a wide range
of simulation platforms. Furthermore, in the
future, this approach may be implemented in
the operation room and emergency room. This
could facilitate the development of automatic
assistive technologies for these domains.

1 Introduction

In recent years, there is a growing interest in devel-
oping performance-based assessment for medical
practitioners. In the pursuit for methods that may
assess hands-on skills, simulation-based assess-
ment has emerged (Srinivasan et al., 2006; Swan-
son et al., 1995). Simulation-based assessment
requires appropriate validation metrics, and check-
lists are one of the most common methods. For a
given simulation scenario, evaluation experts deter-
mine which actions, based on the presenting com-
plaint, are important for the candidate to perform
in order to properly manage the scenario (Scavone

et al., 2006; Morgan et al., 2007). Based on this
process, a detailed checklist is developed (Morgan
et al., 2007; Hilliard et al., 2000; Morgan et al.,
2001; Boulet et al., 2008; Shayne et al., 2006).
During the simulation, an experienced examiner
is required for filling in the checklist. The need
for an experienced examiner makes the assessment
process very time consuming and expensive, and
in addition, does not provide medical practitioners
the opportunity for independent training.

Ideally, to reduce the costs of performance as-
sessments and to allow more residents to train
in a complex scenario, the process of filling the
checklist should be done by a machine: A fully-
aware objective system capable of recognizing and
monitoring the resident performance. To this end,
we have developed a end-to-end fully automatic
speech-based objective checklist validation system,
capable of identifying anesthesia residents’ actions
in a simulation environment, based solely on the
participants’ speech recordings. We developed a
simulation setup for data collecting. The check-
list system was evaluated using two different clini-
cal scenarios for assessing skills of senior anesthe-
sia residents. Our underlying assumption is that
in many cases the communication among medi-
cal staff may represent the physical action itself.
By analyzing the participants’ speech, our system
can automatically identify and fill the appropriate
rubrics in the checklist.

2 Materials and Methods

2.1 Medical Simulation

Two clinical scenarios were developed by an expe-
rienced anesthesiologist and a medical simulation
expert. The scenarios were based on scenarios
previously written by the anesthesiologist (A. R)
and were used for the Israeli Anesthesiology board
certification exam. The first scenario included the
management of a patient with a severe anaphy-
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laxis reaction and the second scenario involved a
patient after surgery suffering from severe brady-
cardia. The study was approved by the Rambam
Medical Center IRB committee.

As done in similar medical simulation studies
(Hall et al., 2015; Faudeux et al., 2017; Everett
et al., 2013; Wallenstein and Ander, 2015), a de-
tailed checklist was developed for each scenario.
The checklist included approximately 35 tasks the
participants were expected to perform. The score
for each task was in the range of 0-2, representing
the performance quality in comparison to standard
medical guidelines. The checklist tasks scores are
scaled as follows: 0 for not observed, 1 for needs
improvement, 2 for meets expectations.

Fifteen senior anesthesiology residents, 11 males
and 4 females, participated in the study. Five of
them preformed both simulation scenarios, 4 resi-
dents preformed only the anaphylaxis scenario and
5 preformed only the bradycardia scenario. In addi-
tion, two members of the research team played the
roles of a nurse and a medical intern. During the
simulation, an experienced anesthesiologist evalu-
ated the resident’s performance using the scenario
checklist. A ‘Laerdal’ MegaCode Kelly, a full body
manikin designed for the practice of Advanced Car-
diovascular Life Support (ACLS), was used as the
patient.

Video and audio were recorded using StreamPix
digital video recording software (NorPix Inc.). The
recorded video data was used by a human observer
to manually fill in the checklist. For audio record-
ings, the resident and the nurse wore a wireless
lavalier microphone transmitter (Sony UWP-D11),
which was connected to a digital mixer (Tascam
US-20x20). Each audio channel was saved sepa-
rately.

2.2 Automatic Checklist Generation

The automatic generation of the checklist included
several steps. First, automatic transcription was
performed, and then, keywords were identified in
each sentence. Using these keywords, a matching
process between the checklist tasks and the corpus
sentences was implemented. The outcome of the
algorithm was a filled checklist in which the com-
pleted tasks are provided with a matching sentence
and timestamp. A detailed description of each step
will be provided in the following sections (Figure
2).

2.3 Automatic Transcription

The recorded audio data were automatically tran-
scribed using Google’s speech-to-Text API. This
required two preprocessing steps:

1. Audio Source Separation – since the physi-
cian, nurse and intern stood in close prox-
imity, each audio channel recorded multiple
speakers as well as background noise (e.g. pa-
tient monitors). Thus, the mixed audio signal
was separated into individual source signals
(Vincent et al., 2018). In recent years, sev-
eral open-source audio toolkits have provided
implementations of audio source separation
methods using deep learning (Pariente et al.,
2020; Manilow et al., 2018; Ni and Mandel,
2019). In this study we used the Conv-TasNet
(Luo and Mesgarani, 2019) network provided
by Asteroid (Pariente et al., 2020). The net-
work was fine-tuned for Hebrew speech as
well as to our audio recording device.

2. Audio Segmentation – our objective was to
provide a transcription with timestamps for
each sentence. Therefore, each audio chan-
nel was segmented using the ‘pyAudioAnal-
ysis’ library (Giannakopoulos, 2015). This
library provides a semi-supervised audio seg-
mentation using an SVM model. This func-
tion takes an uninterrupted audio recording
as input and returns segment endpoints that
correspond to the areas of “silence” between
them. To achieve better division to segments,
adjustments of the dynamic thresholds were
performed.

2.4 Morphological and Syntactic Parsing

In order to syntactically analyze texts, the input
tokens are first broken down to their constituent
morphemes. However, Morphologically Rich Lan-
guage (MRL), such as Hebrew, pose a unique chal-
lenge to the standard language processing pipeline.
Due to extreme morphological ambiguity, global
context is required in order to correctly decompose
raw tokens into morphemes (More et al., 2019).
To overcome this challenge, a morpho-syntactic
parser for morphological and syntactic analysis of
Hebrew texts (Tsarfaty et al., 2020) was used. Mor-
phologically rich syntax parsing is useful in cases
of verbs and adjectives, by reducing the variance
in the transcription database.
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Figure 1: Data acquisition system. (A) Patient monitor; (B) Physician working area; (C) Overview of the simula-
tion area; (D) Nurse working area. In addition, each participant carried a wireless lavalier microphone transmitter

Figure 2: Automatic checklist process. End-to-end description of the checklist generation pipeline.

2.5 Word importance

The checklist includes short descriptions of each
task. These descriptions guide the examiner in iden-
tifying the different assignments performed by the
participants. Hence, by stripping the task descrip-
tion to its base form and choosing distinct words
that best represent the task, a bag-of-words for each
task can be generated. These "bags" will serve as
touchstones for assessing how each sentence in the
transcription is suitable to describe the task in hand.
These keywords tend to be medical terms (medi-
cations, procedures, etc.) and combinations of an
object and a verb. The matching process is based
on thresholded argmax.

2.6 Checklist Evaluation

After collecting the simulation recording, a profes-
sional performance evaluator observed the video
recordings and completed the checklist. As men-
tioned, each task in the checklist received a score
in the range of 0-2. However, since the algorithm

developed in this study is a binary classier, scores
1 and 2 were considered true (task preformed) and
0 was considered false. The classifier was assessed
using the F1 score (Powers, 2020).

3 Results

As mentioned in section 2.4, a proper syntactically
analysis of Hebrew texts requires the disassem-
bling of the input tokens down to their constituent
morphemes. To evaluate the impact of the lexi-
cal analysis on the algorithm results, we compared
two versions of the pipeline - one used the lexical
analysis and the other didn’t.

During the process of analyzing the data, we
found that few tasks in the checklist tend to be
non-verbal in their nature. Most candidate don’t
use any verbal commands when preforming those
tasks, and the human observer can validate them
only by identifying the action itself. These tasks
include ’verification of intubation tube location’,
’exposure of patient chest’ and few others. These
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Algorithm without Lexical analysis
Division Category Total tasks Tasks preformed Algorithm identified F1 score

All 664 405 249 0.682
Verbal 578 363 233 0.704

Non-Verbal 86 42 16 0.470

Table 1: Algorithm without lexical analysis performances for all, verbal and non-verbal tasks in the collected data

Algorithm with Lexical analysis
Division Category Total tasks Tasks preformed Algorithm identified F1 score

All 664 405 316 0.773
Verbal 578 363 292 0.793

Non-Verbal 86 42 24 0.585

Table 2: Algorithm with lexical analysis performances for all, verbal and non-verbal tasks in the collected data

tasks have a dramatic affect on the performance of
our system. Based on this findings, we decided to
divide our checklist into two different categories:
verbal and non-verbal tasks. This provided us with
better understanding of the system limitations. The
collected data from the post-simulation human ob-
server and the F1 scores over all three division: All
tasks, Verbal tasks and Non-verbal tasks can be
found in Table 1 & 2.

4 Discussion

In this study we developed a system for automat-
ically filling a medical simulation checklist using
audio data. The system is completely autonomous
and a fully automatic pipeline from the raw audio
files to a complete checklist was established. The
system was assessed using novel data collected for
this study.

The native language of the current participants of
this study is Hebrew. This poses a unique challenge
common to Morphologically Rich Language. As
clearly evident from the results, using lexical anal-
ysis improved our system performances, and might
have a greater impact on a more complex models.
We plan to expand our work to other languages in
the future and assess the system performance.

The system was successful in correctly identi-
fying most of the tasks performed by the partici-
pants. Yet, one limitation of the system is that it is
currently based on keyword matching and not on
a more complex model of the conversation. The
method in use has limited accuracy, and in addition,
only provides a binary score indication whether the
task was preformed or not. For example, the cur-

rent system may indicate a drug was provided but
it will not assess the dosage. In order to develop
a more complex algorithm, a significantly larger
data base is required. We are continuously collect-
ing data that focuses both on a larger number of
participants as well as a wide range of clinical sce-
narios. This will expedite the development of more
complex algorithms.

Developing an audio-based system has several
advantages. First, it may fit to a wide range of sim-
ulation platforms including low- and high-fidelity
mannequins, virtual reality, and standardized pa-
tients. Furthermore, in the future, our system could
migrate from the simulation domain and be imple-
mented in the operation room and emergency room.
This could facilitate the development of automatic
assistive systems for these domains.

Acknowledgements

The study was supported by the Technion’s TASP-
2020 grant entitled "Autonomous Medical Simula-
tion and Training".

References

John R. Boulet, Marta Van Zanten, André De Cham-
plain, Richard E. Hawkins, and Steven J. Peitzman.
2008. Checklist content on a standardized patient
assessment: An ex post facto review. Advances in
Health Sciences Education, 13(1):59–69.

Tobias C. Everett, Elaine Ng, Daniel Power, Christo-
pher Marsh, Stephen Tolchard, Anna Shadrina, and
Matthew D. Bould. 2013. The Managing Emergen-
cies in Paediatric Anaesthesia global rating scale is a

33



reliable tool for simulation-based assessment in pe-
diatric anesthesia crisis management.

Camille Faudeux, Antoine Tran, Audrey Dupont,
Jonathan Desmontils, Isabelle Montaudié, Jean
Bréaud, Marc Braun, Jean Paul Fournier, Eti-
enne Bérard, Noémie Berlengi, Cyril Schweitzer,
Hervé Haas, Hervé Caci, Amélie Gatin, and Lisa
Giovannini-Chami. 2017. Development of Reliable
and Validated Tools to Evaluate Technical Resusci-
tation Skills in a Pediatric Simulation Setting: Re-
suscitation and Emergency Simulation Checklist for
Assessment in Pediatrics. Journal of Pediatrics,
188:252–257.

Theodoros Giannakopoulos. 2015. PyAudioAnalysis:
An open-source python library for audio signal anal-
ysis. PLoS ONE, 10(12):1–17.

Andrew Koch Hall, Jeffrey Damon Dagnone, Lauren
Lacroix, William Pickett, and Don Albert Klinger.
2015. Queen’s simulation assessment tool: Devel-
opment and validation of an assessment tool for re-
suscitation objective structured clinical examination
stations in emergency medicine.

Robert I. Hilliard, Susan E. Tallett, and Diana Tabak.
2000. Use of an Objective Structured Clinical Ex-
amination as a Certifying Examination in pediatrics.

Yi Luo and Nima Mesgarani. 2019. Conv-TasNet:
Surpassing Ideal Time-Frequency Magnitude Mask-
ing for Speech Separation. IEEE/ACM Transac-
tions on Audio Speech and Language Processing,
27(8):1256–1266.

Ethan Manilow, Prem Seetharaman, and Bryan Pardo.
2018. The northwestern university source separa-
tion library. Proceedings of the 19th International
Society for Music Information Retrieval Conference,
ISMIR 2018, pages 297–305.

Amir More, Amit Seker, Victoria Basmova, and Reut
Tsarfaty. 2019. Joint Transition-Based Models for
Morpho-Syntactic Parsing: Parsing Strategies for
MRLs and a Case Study from Modern Hebrew.
Transactions of the Association for Computational
Linguistics, 7(2001):33–48.

Pamela J. Morgan, Doreen Cleave-Hogg, and
Cameron B. Guest. 2001. A comparison of global
ratings and checklist scores from an undergraduate
assessment using an anesthesia simulator. Academic
Medicine, 76(10):1053–1055.

Pamela J. Morgan, Jenny Lam-McCulloch, Jodi
Herold-McIlroy, and Jordan Tarshis. 2007. Sim-
ulation performance checklist generation using the
Delphi technique. Canadian Journal of Anesthesia,
54(12):992–997.

Zhaoheng Ni and Michael I. Mandel. 2019. Onssen: an
Open-Source Speech Separation and Enhancement
Library. arXiv.

Manuel Pariente, Samuele Cornell, Joris Cosentino,
Sunit Sivasankaran, Efthymios Tzinis, Jens
Heitkaemper, Michel Olvera, Fabian Robert Stöter,
Mathieu Hu, Juan M. Martín-Doñas, David Ditter,
Ariel Frank, Antoine Deleforge, and Emmanuel
Vincent. 2020. Asteroid: The PyTorch-based
audio source separation toolkit for researchers.
Proceedings of the Annual Conference of the
International Speech Communication Association,
INTERSPEECH, 2020-Octob(1):2637–2641.

David M. W. Powers. 2020. Evaluation: from preci-
sion, recall and F-measure to ROC, informedness,
markedness and correlation. pages 37–63.

Barbara M. Scavone, Michele T. Sproviero, Robert J.
McCarthy, Cynthia A. Wong, John T. Sullivan,
Viva J. Siddall, and Leonard D. Wade. 2006. Devel-
opment of an objective scoring system for measure-
ment of resident performance on the human patient
simulator. Anesthesiology, 105(2):260–266.

Philip Shayne, Fiona Gallahue, Stephan Rinnert,
Craig L. Anderson, Gene Hern, and Eric Katz. 2006.
Reliability of a Core Competency Checklist Assess-
ment in the Emergency Department: The Standard-
ized Direct Observation Assessment Tool. Aca-
demic Emergency Medicine, 13(7):727–732.

Malathi Srinivasan, Judith C. Hwang, Daniel West, and
Peter M. Yellowlees. 2006. Assessment of clinical
skills using simulator technologies.

David B. Swanson, Geoffrey R. Norman, and Robert L.
Linn. 1995. Performance-Based Assessment:
Lessons From the Health Professions. Educational
Researcher, 24(5):5–11.

Reut Tsarfaty, Amit Seker, Shoval Sadde, and Stav
Klein. 2020. What’s wrong with Hebrew nlp? And
how to make it right.

Emmanuel Vincent, Tuomas Virtanen, and Sharon Gan-
not, editors. 2018. Audio Source Separation and
Speech Enhancement. John Wiley & Sons Ltd,
Chichester, UK.

Joshua Wallenstein and Douglas Ander. 2015. Objec-
tive structured clinical examinations provide valid
clinical skills assessment in emergency medicine ed-
ucation.

34



Proceedings of the Second Workshop on Natural Language Processing for Medical Conversations, pages 35–40
July 6, 2021. ©2021 Association for Computational Linguistics

Assertion Detection in Clinical Notes:
Medical Language Models to the Rescue?

Betty van Aken1, Ivana Trajanovska1, Amy Siu1,
Manuel Mayrdorfer2, Klemens Budde2 and Alexander Löser1

1Beuth University of Applied Sciences Berlin, 2Charité Universitätsmedizin Berlin

ivtrajanovska@gmail.com
{bvanaken, siu, aloeser}@beuth-hochschule.de
{manuel.mayrdorfer, klemens.budde}@charite.de

Abstract
In order to provide high-quality care, health
professionals must efficiently identify the
presence, possibility, or absence of symptoms,
treatments and other relevant entities in free-
text clinical notes. Such is the task of asser-
tion detection – to identify the assertion class
(present, possible, absent) of an entity based
on textual cues in unstructured text. We eval-
uate state-of-the-art medical language models
on the task and show that they outperform the
baselines in all three classes. As transferability
is especially important in the medical domain
we further study how the best performing
model behaves on unseen data from two other
medical datasets. For this purpose we intro-
duce a newly annotated set of 5,000 assertions
for the publicly available MIMIC-III dataset.
We conclude with an error analysis that reveals
situations in which the models still go wrong
and points towards future research directions.

1 Introduction

The clinical information buried in narrative reports
is difficult for humans to access for clinical, teach-
ing, or research purposes (Perera et al., 2013). To
provide high-quality patient care, health profes-
sionals need to have better and faster access to cru-
cial information in a summarized and interpretable
format. In this paper, we focus on English dis-
charge summaries and the task of assertion detec-
tion, which is the classification of clinical informa-
tion as demonstrated in Figure 1.

Given a piece of text, we need to identify two
pieces of information – a medical entity and tex-
tual cues indicating the presence or absence of
that entity. Medical entity extraction has been
studied extensively (Lewis et al., 2020), we thus
focus our work on the task of predicting the
present / possible / absent class over a medical en-
tity, addressing an important information need of

Figure 1: Sample output of our demo system. Detected
entities are highlighted in red, yellow, and green to in-
dicate present, possible, and absent.

health professionals. This setting is reflected in
the dataset released by the 2010 i2b2 Challenge
Assertions Task (de Bruijn et al., 2011a), on which
we base our main evaluation.

Clinical assertion detection is known to be a dif-
ficult task (Chen, 2019) due to the free-text format
of considered clinical notes. Detecting possible
assertions is particularly challenging, because they
are often vaguely expressed, and they occur far
less frequently than present and absent assertions.
Language models pre-trained on medical data have
shown to create useful representations for a mul-
titude of tasks in the domain (Peng et al., 2019).
We apply them to our setup of assertion detection
to evaluate whether they can increase performance
(especially on the minority class) and where they
still need improvement.

We argue that clinical assertion detection mod-
els must be transferable to data that differs from
the training data, e.g. due to different writing
styles of health professionals from other clinics
or from other medical fields. As existing datasets
do not represent such diversity, we manually anno-
tate 5,000 assertions in clinical notes from several
fields in the publicly available MIMIC-III dataset.
We then use these annotated notes as an additional
evaluation set to test the transferability of the best
performing model.
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present possible absent
2010 i2b2 Challenge Assertion Task discharge summaries 21,064 1,418 6,144
BioScope scientific publications – 3,474 2,161

MIMIC-III Clinical Database (New)

discharge summaries 2,610 250 980
physician letters 204 34 66
nurse letters 293 14 59
radiology reports 249 40 130

Table 1: Distribution of text types and classes in the three employed datasets. Note that possible is a minority class
across datasets as well as text types. In the i2b2 dataset, for instance, only 5% of all labels are possible.

Our contributions are summarized as follows:
1) We evaluate medical language models on asser-
tion detection in clinical notes and show that they
clearly outperform previous baselines. We further
study the transferability of such models to clinical
text from other medical areas.
2) We manually annotate 5,000 assertions for the
MIMIC-III Clinical Database (Johnson et al., 2016).
We release the annotations to the research commu-
nity1 to tackle the problem of label sparsity and the
lack of diversity in existing assertion data.
3) We conduct an error analysis to understand the
capabilities of the best performing model on the
task and to reveal directions for improvement. We
make our system publicly available as a web appli-
cation to allow further analyses2.

2 Related Work

One of the earliest approaches to assertion de-
tection is NegEx (Chapman et al., 2001), where
hand-crafted word patterns are used to extract the
absent category of assertions in discharge sum-
maries. In 2010, the i2b2 Challenge Assertions
Task (de Bruijn et al., 2011a) was introduced, and
an accompanying corpus was released.

There is a variety of prior work focused on scope
resolution for assertions, which differs from our set-
ting in that it does not consider medical concepts
but scopes of a certain assertion cue. Representa-
tive current approaches for this task setup include
a CNN-based (Convolutional Neural Network) one
by Qian et al. (2016), reaching an F1 of 0.858 on
the more challenging possible category. Sergeeva
et al. (2019) propose a LSTM-based (Long Short-
Term Memory) approach to detect only absent

1Annotated data available at:
https://github.com/bvanaken/
clinical-assertion-data

2Demo application:
https://ehr-assertion-detection.demo.
datexis.com

scopes. When “gold negation cues” are made avail-
able to the model and synthetic features are applied,
an F1 of 0.926 is reached. NegBert (Khandelwal
and Sawant, 2020) is another approach to detect ab-
sent scopes. As its name suggests, it is BERT-based
and reaches an F1 of 0.957 on BioScope abstracts.

In contrast to these approaches we focus our
work on entity-specific assertion detection, the re-
sults of which are of more practical help for sup-
porting health professionals. Bhatia et al. (2019)
explored extracting entities and negations in a joint
setting, whereas the work of Harkema et al. (2009),
Chen (2019) and de Bruijn et al. (2011a) is the
closest to our task setup, i.e. labelling entities with
an assertion class. Harkema et al. (2009) extended
the NexEx algorithm with contextual properties.
de Bruijn et al. (2011a) use a simple SVM classi-
fier and Chen (2019) apply a bidirectional LSTM
model with attention to the task and evaluate it
on the i2b2 corpus. While these models reach
F1-scores above 0.9 on the majority classes, the
challenging possible class does not surpass 0.65.
We show that medical language models outperform
these scores especially regarding the minority class.

Furthermore, Wu et al. (2014) compared then
state-of-the-art approaches for negation detection
and found a lack of generalisation to arbitrary clin-
ical text. We thus want to examine the transfer
capabilities of recent language models to under-
stand whether they can mitigate the phenomenon.

3 Methodology

We want to understand the abilities of medical lan-
guage models on the task of assertion detection. We
hence fine-tune various (medical) language models
on the i2b2 corpus described below. We further
apply the best performing model to the BioScope
dataset and our newly introduced MIMIC-III asser-
tion dataset without further fine-tuning to test their
performance on unseen medical data.
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Model
F1 for

present possible absent
Earlier approaches

SVM Classifier (de Bruijn et al., 2011b) 0.959 0.643 0.939
Conditional Softmax Shared Decoder (Bhatia et al., 2019) – – 0.905
Bi-directional LSTM with Attention (Chen, 2019) 0.950 0.637 0.927

Language models under evaluation
BERT Base (Devlin et al., 2019) 0.968 0.704 0.943
BioBERT Base (Lee et al., 2020) 0.976 0.759 0.963
Bio+Clinical BERT (Alsentzer et al., 2019) 0.977 0.775 0.966
Bio+Discharge Summary BERT (Alsentzer et al., 2019) 0.979 0.786 0.972
Bio+Clinical Outcome Representations (CORe) (van Aken et al., 2021) 0.975 0.761 0.965
Biomed RoBERTa Base (Gururangan et al., 2020) 0.976 0.723 0.967

Table 2: Results of baseline approaches and (medical) language models on the i2b2 Assertions Task. Pre-trained
medical language models outperform all earlier approaches – with a large margin on the possible class. Note that
Bhatia et al. (2019) only evaluated their model on negation detection.

3.1 Datasets

The 2010 i2b2 Assertion Task (de Bruijn et al.,
2011a) provides a corpus of assertions in clinical
discharge summaries. The task is split into six
classes, namely present, possible, absent, hypothet-
ical, conditional and associated with someone else.
However, the distribution is highly skewed, such
that only 6% of the assertions belong to the latter
three classes. Hence we only use the present, possi-
ble, and absent assertions for our evaluation as they
present the most important information for doctors.

BioScope (Vincze et al., 2008) is a corpus of
assertions in biomedical publications. It was specif-
ically curated for the study of negation and specu-
lation (or absent and possible in this paper) scope
and does not contain present annotations. As men-
tioned before, the BioScope dataset does not com-
pletely match the information need of health pro-
fessionals and the i2b2 corpus lacks varied medical
text types. We thus introduce a new set of labelled
assertions to complement existing data.

The MIMIC-III Clinical Database (Johnson
et al., 2016) provides texts from discharge sum-
maries as well as other clinical notes (physician
letters, nurse letters, and radiology reports) repre-
senting a promising source of varied medical text.
Therefore, two annotators followed the annotation
guidelines from the i2b2 challenge, and labelled
5,000 assertions, i.e. word spans of entities and
their corresponding present / possible / absent class.
The inner-annotator agreement as Cohen’s kappa
coefficient is 0.847, which indicates a strong level
of agreement. The annotations were further veri-

fied by a medical doctor, who provided feedback
to correct a small number of labels, and confirmed
that the end results were satisfactory.

It is important to note that even though the newly
annotated data from MIMIC-III adds variation to
the existing corpora, the dataset has its own limita-
tions. The clinical notes are collected from a single
institution (with a mostly White patient population)
and from Intensive Care Unit patients only. We
therefore argue that progress in assertion detection
requires further initiatives for releasing more di-
verse sets of clinical notes.

Table 1 summarizes the assertion distribution in
the introduced datasets and shows the unbalanced
nature of the data.

3.2 Data Preprocessing

We make predictions about assertions on a per-
entity level. However, we want our models to
consider the context of an entity. We therefore
pass the whole sentence to the models and sur-
round the entity tokens with special indicator to-
kens [entity] whose embeddings are randomly
initialised. A sample input sequence thus looks as
follows: [CLS] test results were negative

for [entity] COVID-19 [entity].
We apply the same pre-processing to all three
datasets.

3.3 Fine-tuning Medical Language Models

There are various pre-trained (bio-)medical and
clinical language models available to evaluate on
the assertion detection task. We select the most
prevalent ones and describe them in short below:
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present possible absent
BioScope
scientific pub. – 0.593 0.845
MIMIC-III
discharge sum. 0.951 0.663 0.939
phys. letters 0.929 0.593 0.892
nurse letters 0.967 0.710 0.900
radio. reports 0.950 0.691 0.977

Table 3: Experimental results (in F1) for the best per-
forming Bio+Discharge Summary BERT model on two
further assertion datasets and their different text types.
Both datasets were not seen during training. Note that
the number of evaluation samples is very low for some
text types (i.e. possible class in nurse letters), which
impairs the expressiveness of these results.

BERT (Devlin et al., 2019) was pre-trained on
non-medical data and serves as a baseline for
Transformer-base pre-trained language models.
BioBERT (Lee et al., 2020) is a standard model
for medical NLP tasks and is pre-trained on bio-
medical publications. Bio+Clinical BERT and
Bio+Discharge Summary BERT (Alsentzer et al.,
2019) are built upon BioBERT with additional pre-
training on clinical notes / discharge summaries.
The CORe model (van Aken et al., 2021) uses
BioBERT and adds a specialized clinical outcome
pre-training. Biomed RoBERTA (Gururangan
et al., 2020) is based on the RoBERTA model (Liu
et al., 2019) and pre-trained on bio-medical pub-
lications. After an initial grid search we fix our
hyperparameters to a learning rate of 1e-5, batch
size of 32, and 2 epochs of training.

4 Evaluation and Discussion

We start by evaluating the mentioned models on
the i2b2 corpus. We use training and test data
as defined by in the i2b2 challenge and compare
our results to previous state-of-the-art approaches
in Table 2. Next, we apply the best performing
Bio+Discharge Summary BERT to the BioScope
and MIMIC-III corpora without additional fine-
tuning (Table 3). This way we can see the model’s
performance on medical text from unseen sources.

4.1 Results

Language models outperform baselines. Table 2
shows that all evaluated medical language models
are able to increase F1-scores on all three classes.
On the most challenging possible class the improve-
ment is the clearest with up to∼15pp, which shows

that the models are better in handling sparse occur-
rences coupled with vague expressions.

Medical pre-training is important. The vanilla
BERT baseline is the weakest of our evaluated mod-
els, which shows that models specialized on the
medical domain are not only effective for more
complex medical tasks but also for assertion detec-
tion, which is in line with the claim by Gururangan
et al. (2020) that domain-specific pre-training is
almost always of use. Bio+Discharge Summary
BERT is the best model – probably because it was
trained on text very similar to the i2b2 corpus.

Text style matters. Table 3 shows the ability of the
Bio+Discharge Summary BERT language model
to transfer to other text styles. The assertions in
the BioScope corpus are difficult to identify by the
model as they clearly differ from the ones used by
doctors in clinical notes. The text style in MIMIC-
III data is more similar to the originally learned
data which is reflected in the results.3 However,
physician letters appear to contain more special-
ized expressions and therefore evoke more errors.
This points towards a lack of generalization possi-
bly caused by the limited variety of assertion cues
in the training data.

4.2 Error Analysis

We analyse all errors made by the best model to
identify main sources of errors and to point towards
future research directions.

Inconsistent data in pre-existing datasets account
for roughly 45% of errors. This includes obvious
labelling mistakes, but also disagreements among
annotators. For example, phrases such as “appeared
to be,” “concerning for” and “consistent with” are
labeled differently, as present or as possible.

Long range dependencies account for roughly
20% of all errors, in which entities and their cues
have dependencies longer than a few tokens apart.
While the model’s attention mechanism could eas-
ily detect distant tokens, the model might have
learned to only consider close assertion cues. The
following is an example of a distant cue indicating
the absent class which was missed by the model:

His rash on the right hand was examined further
and is now resolved.

3Note that the model’s pre-training is based on MIMIC-III
and it was thus to an extent exposed to the test data. Due
to the difference of the target task and the amount of total
pre-training data, this influence should be negligible.
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Lists of assertions are found in 8% of error sam-
ples. Here the assertion is not directly coupled to
an entity but must be inferred by the way it is listed.
Such somewhat ambiguous cases are usually easily
understood by humans, but difficult for our models.

No hydrocephalus, subarachnoid hemorrhage,
no fracture.

Misspellings account for 5% of all observed er-
rors, but they reveal a critical yet surprising limita-
tion. For instance, the cues “appeas” and “probalbe”
that indicate possible instances, are missed. While
Transformer-based models are generally capable of
dealing with misspellings due to subword tokeniza-
tion, the missing variety of expressions in the data
appears to let the models focus on a specific set of
textual cues without generalizing to new phrases or
even misspellings.

5 Conclusion and Future Work

In this work, we present an evaluation on medi-
cal language models to detect assertions in clinical
texts and experimental results which show that they
outperform baseline approaches. We further pro-
vided a new corpus of assertion annotations on the
MIMIC-III dataset that will augment existing data
collections and shows the model’s capability to be
transferred to other sources – if the text styles do
not strongly differ. We suggest future work to in-
vestigate generalization to unseen data and expres-
sions. We further encourage work on multi-task
learning of entity extraction and assertions to sup-
port health professionals with systems that learn
jointly in an end-to-end fashion.
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Abstract

Extracting structured information from medi-
cal conversations can reduce the documenta-
tion burden for doctors and help patients fol-
low through with their care plan. In this paper,
we introduce a novel task of extracting appoint-
ment spans from medical conversations. We
frame this task as a sequence tagging problem
and focus on extracting spans for appointment
reason and time. However, annotating medical
conversations is expensive, time-consuming,
and requires considerable domain expertise.
Hence, we propose to leverage weak supervi-
sion approaches, namely incomplete supervi-
sion, inaccurate supervision, and a hybrid su-
pervision approach and evaluate both generic
and domain-specific, ELMo, and BERT em-
beddings using sequence tagging models. The
best performing model is the domain-specific
BERT variant using weak hybrid supervision
and obtains an F1 score of 79.32.

1 Introduction

Increased Electronic Health Records (EHR) docu-
mentation burden is one of the leading causes for
physician burnout (Downing et al., 2018; Collier,
2017). Although EHRs facilitate effective work-
flow and access to data, several studies have shown
that physicians spend more than half of their work-
day on EHRs (Arndt et al., 2017). This leads to
decreased face time with patients and reduced work
satisfaction for physicians (Drossman and Ruddy,
2019; Sinsky et al., 2016). For these reasons, there
has been growing interest in using machine learn-
ing tecniques to extract relevant information for a
medical record from medical conversations (Lin
et al., 2018; Schloss and Konam, 2020).

On the other hand, research shows that approx-
imately 23% of patients do not show up for their
doctor appointments (Dantas et al., 2018). Missed
appointments have a large impact on hospitals’ abil-
ity to provide efficient and effective services (Chan-
dio et al., 2018). Studies in Callen et al. (2012)

DR: And the thing with angiogram , uh,
um, um, we already scheduled, uh,
the days I do it is Mondays and on
Fridays. That’s the best time for me
to do the angiogram.

DR: Um, yeah, I, I guess I could make it
Monday next week.

DR: Or next, or Friday?
DR: Which one is better for you?
PT: Um, well, it’s already - Today

is, uh, uh, Tuesday.
DR: Yeah, let’s do it as soon as possible.
PT: Okay, let’s do it on Monday.

Figure 1: An utterance window from a medical conver-
sation annotated with appointment reason and time
spans.

also show that a significant number of patients miss
their lab appointments. Missed lab appointments
can put a patient’s health at risk and allow diseases
to progress unnoticed (Mookadam et al., 2016).
One of the main reasons for no-shows is patient
forgetfulness (Ullah et al., 2018). Mookadam et al.
(2016) and Perron et al. (2013) show that proac-
tive reminders through text messages, calls, and
mobile applications are promising and significantly
decrease the missed appointment rates.

In line with the aforementioned value, appoint-
ment span extraction from medical conversations
can help physicians document the care plan regard-
ing diagnostics (Dx), procedures (Px), follow-ups,
and referrals. It can also directly impact a patient’s
ability to keep their appointments. In this work, we
investigate extracting the appointment reason and
time spans from medical conversations as shown
in Figure 1. The reason span refers to a phrase that
corresponds to Dx, Px, follow-ups and referrals.
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The time span refers to a phrase that corresponds
to the time of the appointment. To tackle this task,
we collected a dataset for both reason and time
spans and framed it as a sequence tagging prob-
lem. Our contributions include: (i) defining the
appointment span extraction task, (ii) describing
the annotation methodology for labeling the medi-
cal conversations, (iii) investigating weak supervi-
sion approaches on sequence tagging models using
both generic and domain-specific ELMo and BERT
embeddings, and (iv) performing error analysis to
gather insights for improving the performance.

2 Related work

Extracting Dx, Px and time expressions has been
the subject of past work. Tools such as Clini-
cal Text Analysis and Knowledge Extraction Sys-
tem (cTAKES) (Savova et al., 2010) and MetaMa
(Aronson, 2006) are widely used in the biomedi-
cal field to extract medical entities. Both of these
tools use the Unified Medical Language System
(UMLS) (Bodenreider, 2004) to extract and stan-
dardize medical concepts. However, UMLS is pri-
marily designed for written clinical text, not for
spoken medical conversations. Further, research
on date-time entity extraction from text is task ag-
nostic. Rule-based approaches like HeidelTime
(Strötgen and Gertz, 2010), and SUTime (Chang
and Manning, 2012) mainly handcraft rules to iden-
tify time expression in the text. Learning-based
approaches typically extract features from text and
apply statistical models such as Conditional Ran-
dom Fields (CRFs). While these tools perform well
for generic clinical and date-time entity extraction
from texts, they don’t fare as well on task-specific
entity extraction, where only a subset of the entities
present in the text is relevant to solving the task.

Recently, there has been an increasing interest in
medical conversations-centered applications (Chiu
et al., 2017). Du et al. (2019a,b) proposed several
methods for extracting entities such as symptoms
and medications and their relations. Selvaraj and
Konam (2019) and Patel et al. (2020) examined
the task of medication regimen extraction. While
recent research in medical conversations is primar-
ily focused on extracting symptoms and medica-
tions, we propose a new task of extracting appoint-
ment spans. Our framing of this task as a sequence
tagging problem is similar to Du et al. (2019a,b);
however, they use a fully supervised approach and
mainly focus on relation extraction, whereas we

investigate weak supervision for appointment span
extraction. Moreover, we evaluate both generic and
domain-specific ELMo and BERT models in our
task.

3 The Appointment Span Extraction
Task

3.1 Corpus Description

Our corpus consists of human-written transcripts
of 23k fully-consented and manually de-identified
real doctor-patient conversations. Each transcript
is annotated with utterance windows where the ap-
pointment is discussed. We have obtained a total of
43k utterance windows that discuss appointments.
Of the 43k utterance windows, 3.2k utterances win-
dows from 5k conversations are annotated with
two types of spans: appointment reason and ap-
pointment time (Figure 1). We have also obtained
annotations for other span types such as appoint-
ment duration and frequency, however due to infre-
quency of such spans, we have not included these
spans in this study.

3.2 Annotation Methodology

Span Type Examples

Reason follow-up, dermatologist, MRI,
chemotherapy, chemo, physical,
heart surgery

Time about a month, every two weeks,
in the middle of August, July 2021,
before the next appointment

Table 1: Examples of annotated spans.

A team of 15 annotators annotated the dataset. The
annotators were highly familiar with medical lan-
guage and have significant experience in medical
transcription and billing. We have distributed 3.2k
utterance windows equally among 15 annotators.
Each utterance window is doubly-annotated with
appointment spans, and the authors resolved any
conflicting annotations. We collect the spans of
text describing the reason and time for only future
appointments. We show examples of reason and
time spans in Table 1. Overall, 6860 reason spans
and 2012 time spans are annotated, and the average
word lengths for reason and time spans are 1.6 and
2.3, respectively.
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Reason span The reason span captures four
types of appointments: follow-ups, referrals, diag-
nostics, and procedures. Phrases of body parts and
substances are also captured if they are mentioned
in relation to the appointment reason (e.g., ultra-
sound of my kidney, surgery for the heart valve).
We also annotated the spans where the appointment
reason is expressed in informal language (e.g., see
you back for follow-ups, let’s do your blood for a
blood test).

Time span The time span captures the time of
an appointment. We also included prepositions (eg.
in two days, at 3 o’clock) and time modifiers (eg.,
after a week, every year) in this span. In cases
where multiple different time phrases are present
for an appointment, annotators were instructed to
annotate a time phrase that is confirmed by either
patient or doctor, or annotate potentially valid time
phrases if the discussion is ambiguous.

Due to the conversational nature, appointment
reason and time are often discussed multiple times
using the same phrase or a synonymous phrase
(e.g., a blood test called FibroTest, Monday or Mon-
day next week). To maintain consistency across
different conversations, annotators were instructed
to mark all occurrences of the span.

3.3 Methods

To account for the limited set of annotations, we
employed weak supervision approaches. We specif-
ically used inaccurate supervision, incomplete su-
pervision (Zhou, 2018) and developed a hybrid ap-
proach that utilizes both inaccurate and incomplete
supervision.

Inaccurate Supervision Inaccurate supervision
is a scenario where the training labels provided are
not always the ground-truth; in other words, the
training labels suffer from errors. We take advan-
tage of off-the-shelf tools such as UMLS and spaCy
(Honnibal et al., 2020) to automatically annotate
reason and time spans. For the reason span, we
perform a dictionary lookup in UMLS vocabularies
and extract any span with a semantic type belong-
ing to Dx, Px, and body parts. For the time span,
we use spaCy’s named entity recognition (NER)
model to extract spans belonging to time and date.
To reduce the inaccuracies, we included only the
utterance windows with at least one reason phrase
and one time phrase. Using this approach, we ob-

tained 20k utterance windows with both appoint-
ment reason and time spans.

Incomplete Supervision Incomplete Supervi-
sion refers to a scenario where only a small subset
of data has annotated labels. For this scenario, we
use 2.5k conversations from manual span anno-
tated corpus conversations, which resulted in 1292
utterance windows.

Hybrid Supervision In this approach, we apply
both inaccurate and incomplete supervision tech-
niques sequentially. To avoid catastrophic forget-
ting (McCloskey and Cohen, 1989), the models are
first trained with inaccurate supervision and then
fine-tuned with incomplete supervision.

We use a 85:15 split of the remaining 1844 man-
ual span annotated utterance windows for testing
and validation purposes. To make the test dataset
more difficult, we used a weighted sampling tech-
nique in which each appointment span is weighted
by the inverse probability of it being sampled.

4 Models

In this section, we briefly describe our two mod-
els that use variants of contextualized embeddings
namely, ELMo (Peters et al., 2018) and BERT (De-
vlin et al., 2018).

4.1 ELMo-based CRF

Our model is a 2-layer BiLSTM network using
GloVe word embeddings and a character-based
CNN representation trained with CRF loss. Similar
to the approach taken in Peters et al. (2018), our
model is enhanced by concatenating a weighted av-
erage of ELMo embeddings with GloVe and charac-
ter embeddings. We next describe the two variants
of ELMo models we use.

ELMo The original ELMo model is pre-trained
on generic language corpora using the 1-Billion
Words dataset (Chelba et al., 2013).

BioELMo BioELMo (Jin et al., 2019) is a
biomedical variant of ELMo trained on 10M re-
cent abstracts (2.46B tokens) from PubMed.

4.2 BERT-based classifier

Similar to the approach taken in Devlin et al.
(2018), we use a token level classifier instead of
a CRF layer and fine-tune variants of the BERT
model. We next describe the variants of BERT
models we use.
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BERT The original BERT model is trained on
BooksCorpus (Zhu et al., 2015) and English Wiki.

BioBERT BioBERT (Lee et al., 2019) further
pre-trains the BERT-base model on a large corpus
of PubMed abstracts containing 4.5B words.

4.3 Experiment details

Model Embedding Size Learning rate

ELMo variants 1024 1e-3

BERT variants 768 3e-5

Table 2: Experiment configurations for the models.

The experiment configuration for ELMo and
BERT variants used in our experiments is shown
in Table 2. Both ELMo and BERT variants use
an uncased vocabulary. The span labels are repre-
sented using the IOB2 tagging scheme (Sang and
Veenstra, 1999).

5 Evaluation

To evaluate our models, we measure micro-
averaged Precision, Recall, and F1 of reason and
time spans on the test dataset (Table 3). Both ELMo
and BERT variants performed similarly with inac-
curate supervision owing to the noisy nature of
the inaccurate supervision. With the incomplete
supervision approach, the performance improved
considerably, ranging from 49% in ELMo to 60%
in BioBERT. Both BioELMo and BioBERT gained
more than the ELMo and BERT variants, respec-
tively. However, with hybrid supervision, both the
ELMo variants benefited most and achieved sim-
ilar performance nullifying the advantage of the
in-domain pre-training of BioELMo.

On the other hand, the BERT variants showed
a minor improvement with hybrid supervision.
The BERT variants consistently performed better
than ELMo variants, and the domain-specific pre-
training has only a minor impact on BERT when
compared to ELMo. Overall, the proposed hybrid
supervision approach has consistently improved
performance across all model variants and the re-
sults show that augmenting the training data with in-
accurate supervision can improve the performance.

In order to assess performance at each span type,
we chose the best performing BioBERT-hybrid
model. For both span types precision was lower
than recall (Table 4) suggesting a higher percentage
of false positives than false negatives.

Model P R F1

ELMo-inaccurate 58.76 43.29 49.85
ELMo-incomplete 71.76 78.03 74.77

ELMo-hybrid 77.05 77.22 77.14

BioELMo-inaccurate 58.09 42.44 49.05
BioELMo-incomplete 73.30 78.19 75.67

BioELMo-hybrid 74.74 79.69 77.14

BERT-inaccurate 58.95 42.73 49.54
BERT-incomplete 73.96 82.29 77.91

BERT-hybrid 76.16 81.44 78.71

BioBERT-inaccurate 58.62 42.41 49.22
BioBERT-incomplete 76.98 80.66 78.77

BioBERT-hybrid 77.23 81.53 79.32

Table 3: Evaluation of weak supervision methods; P:
Precision, R: Recall, F1: F1 score.

Span Type Precision Recall F1 # Occurences

Reason 80.52 84.27 82.36 3459 (3687)
Time 66.24 72.02 69.01 997 (1163)

Table 4: Performance of BioBERT-hybrid model and
the number of occurrences of each span type in ground
truths and predictions respectively.

6 Error Analysis

Error Type Reason Time

Correct Label - Overlapping Span 6.83 14.61

Wrong Label - Correct Span 0.08 0.08
Wrong Label - Overlapping Span 0.13 0.77

Complete False Positive 13.77 23.12
Complete False Negative 8.03 11.41

Table 5: Percentage of error types on the test set using
the BioBERT-hybrid model.

To better understand the errors in predictions, we
computed percentages of different types of errors
(Table 5). The cases where the model predicted the
right label but with an overlapping span (Correct
Label-Overlapping Span) are mainly due to incon-
sistencies in annotations. The primary source of
these inconsistencies is when annotators missed an-
notating a prepositional phrase or a time modifier
phrase in the time span. Wrong label errors (Wrong
Label - Correct Span, Overlapping Span) are min-
imal, suggesting that the model distinguishes be-
tween the time and reason spans very well.
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Complete false positives and false negatives are
the significant sources of errors for both reason
and time spans and our qualitative analysis sug-
gests that these cases often happen when multiple
reason phrases and time phrases are present in the
utterance window, but only a subset of them are
valid. Because the task actually involves two dif-
ferent aspects, extracting reason and time mentions
and spotting their confirmation clues, it may be
difficult for the trained system to select exactly the
confirmed reason or time mentions without explic-
itly modeling their relations. The ambiguity due to
the oral nature of the conversations also makes it
difficult to spot the confirmation clues.

Notably, we observe that the portion of complete
false positives for the time span is significantly
higher than reason spans. For example, the con-
versation in Figure 1 discusses several options for
the appointment time, but the patient finally set-
tles for Monday. The model often struggles with
such cases and also extracts time mentions that are
not confirmed. Using SpaCy’s NER, we find that
87% of these errors occurred when multiple time
phrases are present, but not all are valid. The model
may have difficulty with these cases because they
amount to only 21.3% of the manually annotated
time spans. Further, the annotated time spans are
infrequent by a factor of three than the reason spans.
These reasons explain why the F1 score on time
span is significantly lower than the reason span.

7 Conclusion

In summary, we defined a novel task of extracting
appointment spans from medical conversations, de-
scribed our annotation methodology, and employed
three weak supervision approaches to account for
the limited set of annotations. Our proposed hybrid
weak supervision approach showed improvement
across all our experiments. Finally, our error anal-
ysis shows that a significant portion of the errors
comes from false positives where the model has dif-
ficulty in identifying the correct span when multiple
appointment reason or time mentions are present.
In future work, we plan to study the data augmenta-
tion approaches as well as joint entity and relation
extraction approaches to improve performance on
difficult examples. We also plan to study the gen-
eralization of this work to automatic transcripts,
whose transcription error rate may challenge entity
detection.
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Abstract

There has been significant progress in dialogue
systems research. However, dialogue systems
research in the healthcare domain is still in its
infancy. In this paper, we analyse recent stud-
ies and outline three building blocks of a task-
oriented dialogue system in the healthcare do-
main: i) privacy-preserving data collection; ii)
medical knowledge-grounded dialogue man-
agement; and iii) human-centric evaluations.
To this end, we propose a framework for devel-
oping a dialogue system and show preliminary
results of simulated dialogue data generation
by utilising expert knowledge and crowdsourc-
ing.

1 Introduction

There has been significant progress in the research
field of the dialogue system in past years with the
help of large-scale pre-trained language models
(LMs) (Vaswani et al., 2017; Radford et al., 2019;
Lewis et al., 2020). Pre-trained LMs show a good
generalised ability obtained from massive training
data collected from the internet and achieve state-
of-the-art performance over a wide range of dia-
logue domains (Zhang et al., 2020). While many
studies exist on general purpose dialogues, the re-
search on dialogue systems for healthcare applica-
tions is still in its infancy.

There are two major directions in the develop-
ment of a dialogue system. One direction is to
build a chatbot that can have a conversation with
a user. This approach mainly focuses on gener-
ating appropriate response given user input and
dialogue history. Researchers have been working
on this direction to create systems to produce more
human-like (Adiwardana et al., 2020), consistent
(Wolf et al., 2019), and empathetic (Rashkin et al.,
2019) responses. The other direction is to build a

task-oriented dialogue system that performs a spe-
cific task, such as triage or diagnosis within the
healthcare domain where researchers focus on de-
veloping systems that can detect implicit symptoms
or make precise diagnosis/triage result (Middleton
et al., 2016; Razzaki et al., 2018; Xu et al., 2019;
Wei et al., 2018).

In this study, we consider a dialogue system for a
sleep coaching programme for healthy people who
would like to optimise their sleep. Motivated by
cognitive behaviour therapy for insomnia (CBT-I),
we focus on investigating the relationship between
how people think, behave, and sleep (Morin et al.,
2006). The first step of the coaching programme
is a complaints assessment to identify sleep issues
and their potential causes and decide the next step
(e.g., referring to sleep apnea treatment, providing
a sleep education, suggesting a behaviour change
programme, etc). During this process, a coaching
provider (coach) plays as an active listener, asking
questions to probe specific information, while a
coaching receiver (user) has more chance to pro-
vide complaints and elaborate on these.

Real challenges in the development of a dialogue
system, especially a machine learning-based sys-
tem, come from three fundamental questions: i)
how to obtain relevant data; ii) how to develop
an automated system; and iii) how to evaluate a
system. In this paper, we first analyse existing
approaches that address the above questions (Sec-
tion 2). Then we propose our method to address
these questions (Section 3) and show preliminary
results and discuss its limitations (Section 4).

The major contributions of this paper are as fol-
lows:

• Identifying gaps in existing dialogue systems
in the healthcare domain.

• Proposing a framework consisting of three
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building blocks.

• Constructing a dataset to illustrate the validity
of the proposed method.

2 Related Work

2.1 Data Collection
Obtaining dialogue data is time-consuming and
might not be available, especially in the health-
care domain. There are several recent studies on
creating a large-scale conversation dataset in the
healthcare domain by scrapping dialogues from
online websites (Wei et al., 2018; Xu et al., 2019;
Zeng et al., 2020). These web-scraping approaches,
however, are not scalable and might create potential
privacy issues.

To mitigate the scalability issue, some studies
leverage domain knowledge to generate simulated
dialogue. For example, Liednikova et al. (2020)
modelled a typical dialogue flow between doctor-
patient in the form of a tree. Then they augmented
data by adding similar sentences extracted from an
online forum. A drawback of this approach is that
access to data sources is required and it might not
be available within European countries in the light
of the General Data Protection Regulation (GDPR).
Contrary to this, Liu et al. (2019) proposed a frame-
work for generating simulated data based on tem-
plates, which are logically and clinically verified,
and incorporated linguistic knowledge to create
diverse augmented data.

Another line of work on collecting dialogue
data is to utilise a user simulator. User simula-
tor has been widely used to interact with a dia-
logue system (Shi et al., 2019). Some of the re-
cent works adapted agenda-based user simulator
(Schatzmann and Young, 2009) to create training
data for dialogue-based diagnosis systems (Wei
et al., 2018; Xu et al., 2019). However, they
still utilised web-scrapped data to model user be-
haviour.

2.2 Dialogue Management
Dialogue management is a component of a dia-
logue system that processes dialogue context and
decides the right next action for the agent to take
(Young et al., 2013). For health-related dialogue
(e.g., symptom check, triage, diagnosis, etc), the
role of dialogue management is to decide what to
ask, answer, or inform given the context.

Middleton et al. (2016) casts triage into a se-
quence of questions and answers. They modelled

triage flow as a graph by encoding medical knowl-
edge. This graph plays the role of dialogue man-
agement to guide a system to interact with users
and make a triage decision. This approach has the
following advantages: 1) it alleviates the issue of
data collection since they do not rely on machine
learning with large-scale data but human expert
knowledge; 2) it can reason about its predictions.
However, the limitation of this approach is that it
requires a lot of expert resources.

Some task-oriented dialogue systems learn how
to manage a dialogue flow by reinforcement learn-
ing (RL) (Wei et al., 2018; Xu et al., 2019). For
example, Wei et al. (2018) framed a dialogue man-
agement module as an RL agent with a deep Q-
network (Mnih et al., 2015). With this approach,
the RL agent can decide the next action (i.e., to in-
quire about implicit symptoms, to make a diagnosis,
etc) based on the current dialogue state. Later, Xu
et al. (2019) showed that incorporating a medical
knowledge graph and symptom-disease relations
can allow an RL agent to ask more relevant implicit
symptoms and make a precise diagnosis.

There are also some recent works on develop-
ing generative models for an end-to-end dialogue
system in the healthcare domain (Liednikova et al.,
2020; Zeng et al., 2020) by utilising generative
pre-trained LMs (Wolf et al., 2019; Radford et al.,
2018, 2019; Lewis et al., 2020; Zhang et al., 2020;
Vaswani et al., 2017). However, considering the
fact that these generative models are less control-
lable (Wallace et al., 2019; Sheng et al., 2019),
using a pre-trained LM-based generative model for
health-related conversation could be risky.

2.3 Evaluation

To evaluate a task-oriented dialogue system, mul-
tiple metrics are used; both automatic evaluation
metrics and human evaluation metrics. Automatic
evaluation metrics include success rate, the average
number of turns per dialogue session, matching
rate, and average reward for an RL-based system
(Li et al., 2017; Wei et al., 2018; Xu et al., 2019).
While the automated metrics focus on task comple-
tion, human evaluation metrics consider qualitative
aspects of the dialogue, such as the quality of dia-
logue flow, the appropriateness of decision making
(diagnosis validity), and dialogue fluency scored
by experts (Razzaki et al., 2018; Xu et al., 2019).

However, user perspective has been less con-
sidered in evaluating a task-oriented dialogue sys-
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tem in healthcare. User-centric metric, such as
a user rating score or user preference score (Li
et al., 2019), is widely used for evaluating general-
purpose dialogue systems (Shi et al., 2019; Shah
et al., 2018; Budzianowski and Vulić, 2019; Roller
et al., 2020). A user-centric metric can not only
be used to assess the performance of a system but
debug a system as well. For example, a user might
have difficulty understanding the complex language
that a system uses or be annoyed by too many ques-
tions without a proper explanation. In this case,
using proper user-centric metrics can provide an
insight into which aspects of a system should be
updated.

3 Building Blocks

Here we outline three building blocks of a dialogue
system in the healthcare domain and identify open
research questions for each building block. To
this end, we propose a framework for developing a
conversation agent for healthcare-related dialogues.

3.1 Privacy-Preserving Data Collection

As mentioned earlier, the potential privacy issues
create challenges in data collection, especially in
European countries in the light of GDPR. We iden-
tify three potential methods of data collection while
safeguarding privacy. The first potential method is
to apply appropriate privacy protection techniques
to the collected data, such as de-identification that
replaces the sensitive information for text (Neamat-
ullah et al., 2008; Meystre et al., 2010; Neubauer
and Heurix, 2011). The second potential method
is to generate synthetic data by training generative
models on the collected data (Guan et al., 2019;
Hatua et al., 2019; Pan et al., 2020). The third
potential method is to generate simulated data by
building a user simulator that can interact with a
dialogue system (Wei et al., 2018; Xu et al., 2019;
Kao et al., 2018). Applying these three methods,
however, entails the following consideration: How
much is the risk of information leakage? What
is the difference in performance between models
trained on de-identified, synthesised, simulated and
real data?

3.2 Medical Knowledge-Grounded Dialogue
Management

Unlike an open-domain dialogue, healthcare-
related dialogue should be grounded in medical
knowledge. Two types of knowledge can be in-

cluded in a dialogue system. The first type of
knowledge is the knowledge about dialogue be-
tween healthcare professional and healthcare recip-
ient. For example, in the healthcare domain, there
exists a typical structure of dialogue that is advised
to be followed. Modelling a dialogue structure can
guide a system to have an appropriate dialogue
flow (Middleton et al., 2016; Razzaki et al., 2018).
The second type of knowledge is medical knowl-
edge, including correlations between symptoms
and causal relation between symptom and diseases.
Incorporating medical knowledge can allow a sys-
tem to have more appropriate dialogue and make
a precise decision (Ni et al., 2017; Ghosh et al.,
2018; Chen et al., 2020; Xu et al., 2019). The open
questions are: How to efficiently encode expert
knowledge into a machine-accessible format (e.g.,
knowledge graph, knowledge base) and how to in-
corporate it into a machine learning model? How
to maintain the previously built knowledge to keep
updated?

3.3 Human-Centric Evaluation

Since a dialogue system is designed to interact with
a user, a human evaluation should be is considered
as an ideal evaluation. More specifically, two types
of human evaluations metrics should be consid-
ered to correctly evaluate a dialogue system in the
healthcare domain: one from the expert (healthcare
professional) perspective and the other from the
end-user (healthcare recipient) perspective. Experts
from the domain should validate the appropriate-
ness of the dialogue actions made by an agent and
assess the quality of the dialogue (Razzaki et al.,
2018; Xu et al., 2019). Also, end-user should eval-
uate a system in terms of satisfaction, usability, and
comprehensibility by rating each aspect (Shi et al.,
2019; Shah et al., 2018) or deciding the preferred
system (Li et al., 2019; Roller et al., 2020). This
is associated with the following questions: Which
aspects are critical to assess both the functionality
and the usability of a system? How can these eval-
uations be reflected to update a system efficiently?

3.4 A Proposed Framework

Considering the above-mentioned building blocks,
we propose a framework for developing a conversa-
tional agent in the healthcare domain as illustrated
in Figure 1.

Simulated Data Generation The proposed
framework generates simulated dialogue data to
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Figure 1: Overview of the proposed framework.

avoid potential privacy issue in data collection. We
follow recent works on generating a simulated data
set based on the knowledge of user behaviour and
the characteristics of dialogue without using real
user data (Shah et al., 2018). This consists of two
steps: firstly, a template is constructed by exploit-
ing expert knowledge. Secondly, data is augmented
by utilising crowdsourcing.

Reinforcement Learning Agent Similar to pre-
vious studies (Wei et al., 2018; Xu et al., 2019),
we frame a dialogue management module as an RL
agent. We propose a two-step training procedure.
At the first step, the RL agent is trained with a user
simulator, either an agenda-based (Schatzmann and
Young, 2009) or a model-based (El Asri et al., 2016;
Kreyssig et al., 2018) one. At the second step, the
RL agent is further trained by interacting with real-
world users.

Model evaluation To evaluate the model, we
use both an automatic evaluation metric and a hu-
man evaluation metric. Since we consider a task-
oriented dialogue system, success rate and match-
ing rate (Xu et al., 2019) are used as automatic
metrics. For the human evaluation metric, validity
scores by experts (Razzaki et al., 2018) and prefer-
ence scores by users (Li et al., 2019) are used.

4 Preliminary Results

This section describes an initial approach of gen-
erating simulated dialogues based on a template
and crowdsourced data. The goal of a dialogue is
to assess user complaints related to their sleep and

identify all potential behavioural factors that might
be associated with the reported complaints.

4.1 Dialogue Template

We consulted an expert in the sleep domain to
model a dialogue between user and coach in the
form of a tree. The dialogue template is struc-
tured in three parts of questions and potential an-
swers related to sleep issues, the impacts of sleep is-
sues, and behavioural factors (i.e., habits/lifestyles
that might affect sleep quality). More specifically,
one open-ended question that is associated with 11
potential answers and two close-ended follow-up
questions (i.e., the frequency and the duration of
the reported issue) in the sleep issue part, one open-
ended question that is associated with 10 potential
answers and one close-ended follow-up question
(i.e., an enquiry regarding daytime fatigue) in the
impact part, and 11 close-ended questions in the
behavioural factor part. A subset of the dialogue
template and a corresponding dialogue example is
shown in Figure 2.

4.2 Crowdsourced Data

Then we collected crowdsourced data via the Ama-
zon MTurk platform. Participants were asked to
answer two open-ended questions related to sleep
issues and their impacts and check all applicable
behavioural factors. Further, the participants are
asked to paraphrase the specific sleep conditions
(i.e., issues, impacts), if they have ever experienced
them, and the selected behavioural factors. The
former and the latter data are denoted as the an-
swer data set and the paraphrase data set, respec-
tively. The answer data set are further used to
create user goals. Following the previous works
(Schatzmann and Young, 2009; Wei et al., 2018;
Xu et al., 2019), we create a user goal G = (E, I)
consisting of explicit information E, which is re-
ported in the answers to the open-ended questions,
and implicit information I , which is the answers
to the behavioural factor that can be retrieved via
probing questions. Table 1 summarises the size of
each data set and the details of each data set are
given in Appendix A.

Data set Goal Issue Impact Habit
Answer 3,015 3,015 3,015 7,961
Paraphrase - 12,325 7,287 7,961

Table 1: Size of each data set.
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(a) Dialogue structure

Coach (Q1) So, tell me a little bit, what is going on with your
sleep?

User (A101) I lie in bed awake, have trouble falling asleep.
Coach (Q1’1) How often does it happen? Do you experience

that issue more than three times a week?
User (A1’02) No, less than three times a week.
Coach (Q2) Tell me how your sleep issues are affecting you?
User (A202) It affects my performance (e.g. I can’t get things

done, or I can’t deliver the same quality)
Coach (Q2’1) Do you also experience daytime fatigue?
User (A2’01) Yes, I feel tired and have less energy or cannot

focus.
Coach (Q302) Do you consume caffeinated drinks, in particular

a few hours before going to bed? If so, could you
please elaborate it?

User (A302) I consume caffeinated drinks.

(b) An example of dialogue

Figure 2: A subset of the dialogue template (left) and a corresponding dialogue example (right).

4.3 Dialogue Simulation

The collected crowdsourced data are further used
to simulate dialogues. At the beginning of each
dialogue, a user goal is sampled from the answer
data set. Then a dialogue is simulated based on the
dialogue template with a set of handcrafted rules
and augmented by using the paraphrase data set.
An example of a user goal and the simulated and
augmented dialogues are shown in Appendix B.

4.4 Limitations and Future Study

In this paper, we show preliminary results of simu-
lating dialogues based on the dialogue template and
crowdsourced data. Our approach aims to augment
the size of the simulated dialogue data set by replac-
ing user answers with samples from the separate
paraphrase data set. However, there are a few limi-
tations that might be associated with the proposed
method. More specifically, the following concerns
should be addressed in a future study: First of all,
the paraphrased sentences should be diverse and
the simulated dialogues should cover all potential
dialogue paths. To validate the quality, the para-
phrased sentences and the simulated dialogues are
required to be accessed by proper measures. Sec-
ondly, as Shi et al. (2019) has already pointed out,
the RL agent may not generalise enough to real-
world dialogues even though it works well with
a user simulator. Therefore, there should be the
additional step of on-line learning by interacting

with real-world users (Shah et al., 2018) to mitigate
this issue.

5 Conclusion

In this paper, we analyse recent studies on the de-
velopment of a dialogue system in the healthcare
domain and outline three building blocks, namely:
i) privacy-preserving data collection; ii) medical
knowledge-grounded dialogue management; and
iii) human-centred evaluations. To this end, we
propose a framework for developing a dialogue
system and show preliminary results of simulated
dialogue data generation by utilising expert knowl-
edge and crowdsourcing. In the future study, we
foresee working on implementing a user simula-
tor that can interact with a reinforcement learning
agent, accessing the quality of the simulated dia-
logues, and deploying the reinforcement learning
agent to interact with both a user simulator and
real-world users.
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A Crowdsourced Data

We collected two crowdsourced data sets for ex-
periments: The answer data set contains user goals
consisting of answers to the two open-ended ques-
tions (i.e., sleep issue and the impact of the is-
sue) and one multiple-choice question (i.e., habit-
s/lifestyles). The paraphrase data set contains para-
phrased answers related to the sleep conditions
(i.e., sleep issue and the impact of the issue) and
the selected multiple-choice answers (i.e., habit-
s/lifestyles). The collected data were annotated
with class labels as shown in tables 2 to 4. Figure 3
shows label distributions of the collected data sets.

Class Description
troubleFallingAsleep Lie in bed awake
troubleStayingAsleep Wake up frequently
staysUpLate Stay up late
wakeUpTooEarly Wake up too early
problemWakingUp Trouble waking up
sleepsInLater Sleep in late
snoringBothersMe Snoring issue 1
snoringBothersOthers Snoring issue 2
snoringStoppedBreathing Breathing problem
otherIssue Other issue
goodSleep No issue

Table 2: Class labels for sleep issues.

Class Description
energy Feel tired or less energy
performance Affect performance
embarrassedBySnoring Snoring impact
dryMouth Cause dry mouth
appearance Look tired
stressMoodAnxiety Bad mood
lessPatience Become less patience
socialImpact Affect social life
otherHealthImmunity Affect health
noImpact No impact

Table 3: Class labels for the impacts of sleep issues.

Class Description
media Engage in screen-time
caffeine Consume caffeine
drinking Consume drink
alcohol Consume alcohol drinks
nicotine Smoke
eating Eat heavy meals
exercise Work out/exercise
passivity Physically not active
napping Nap during the day
obligationDuties Too many duties
stressMoodAnxiety Experience stress

Table 4: Class labels for habits/lifestyles.

B User Goal and Simulated Dialogue

An example of a user goal is shown in Figure 4.
To simulate a dialogue, we used the dialogue tem-
plate with a set of handcrafted rules to select a
coach’s next question. Each question is followed
by the answer by using the sampled user goal. If
the question cannot be answered by the user goal,
we randomly select an answer either Yes or No. The
simulated dialogue is then paraphrased by replac-
ing user answers with samples from the paraphrase
data set. Table 5 illustrates the examples of a simu-
lated dialogue and an augmented dialogue.
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(a) Issue label distribution in the answer data set. (b) Issue label distribution in the paraphrase data set.

(c) Impact label distribution in the answer data set. (d) Impact label distribution in the paraphrase data set.

(e) Habit label distribution in the answer data set. (f) Habit label distribution in the paraphrase data set.

Figure 3: Class label distributions of the collected data sets. Note that the answer data set and the paraphrase data
set have identical habit class label distribution but the former contains binary values (i.e., True, False) and the latter
contains free-text values (i.e., paraphrased sentences).
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A simulated dialogue
Coach So, tell me a little bit, what is going on with your sleep?
User I just can’t get to sleep.

I lie in bed awake, have trouble falling asleep.
I think too much about work issues and need to stop doing that.
I try to fall asleep, but I just lay there. The sleep doesn’t come for me quickly and I have to

wait and wait until my body finally falls asleep.
Coach How often does it happen? Do you experience that issue more than three times a week?
User Yes.
Coach How long does your issue last in general? More than 30 minutes?
User No.
Coach Tell me how your sleep issues are affecting you?
User My exhaustion really affects my work. I’m not sharp like I used to. I feel tortured.

I do less because I’m exhausted.
I need more time to get things done, and I don’t have the creativity and energy that I would
want to deliver top quality work.
Because I have not received enough sleep I do not focus as well. This causes my performance
to not be as well as it should.

Coach Do you also experience daytime fatigue?
User No
Coach Do you experience stress or mood swings?
User No
Coach Do you engage with digital devices/screen, in particular, a few hours before going to bed?
User Yes

I’m around screens all the time and it affects my sleep.
I end up being on my computer working all day and when I’m not working I’m watching TV
or on my phone. I do these things immediately before going to bed and while in bed.
Most of the time leading up to going to bed for us is watching TV. But really this is just about
the only time I have to look through facebook, and emails on my phone too. So it’s like I’m
getting a double whammy of light from these devices.

Table 5: An example of a simulated dialogue based on the dialogue template with a sampled user goal and para-
phrased sentences. Italic texts are the source texts extracted from the user goal and underlined italic texts are target
sentences sampled from the paraphrased data set. Three randomly sampled paraphrased sentences per user answer
are reported.
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{
’explicit’:{

’main_issue’: ’troubleFallingAsleep
’,

’main_issue_text’: "I just can’t
get to sleep.",

’main_impact’: ’performance’,
’main_impact_text’: "My exhaustion

really affects my work. I’m not
sharp like I used to. I feel

tortured.",
},
’implicit’: {

’passivity’: False,
’alcohol’: False,
’nicotine’: False,
’caffeine’: False,
’media’: True,
’exercise’: False,
’drinking’: False,
’eating’: False,
’stressMoodAnxiety’: False,
’obligationDuties’: False,
’napping’: False

}
}

Figure 4: An example of a user goal.
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Abstract

Understanding the intent of medical questions
asked by patients, or Consumer Health Ques-
tions, is an essential skill for medical Conver-
sational AI systems. We propose a novel data-
augmented and simple joint learning approach
combining question summarization and Rec-
ognizing Question Entailment (RQE) in the
medical domain. Our data augmentation ap-
proach enables to use just one dataset for joint
learning. We show improvements on both
tasks across four biomedical datasets in accu-
racy (+8%), ROUGE-1 (+2.5%) and human
evaluation scores. Human evaluation shows
joint learning generates faithful and informa-
tive summaries. Finally, we release our code,
the two question summarization datasets ex-
tracted from a large-scale medical dialogue
dataset, as well as our augmented datasets1.

1 Introduction

In order to answer questions, Conversational AI
systems have to first understand the intent of ques-
tions (Chen et al., 2012; Cai et al., 2017). This is
particularly important for medical conversational
agents (Wu et al., 2020), as Consumer Health Ques-
tions (CHQ) are often long and contain periph-
eral information not needed to answer the question.
Approaches to medical question understanding in-
clude query relaxation (Ben Abacha and Zweigen-
baum, 2015; Lei et al., 2020), question entailment
recognition (Ben Abacha and Demner-Fushman,
2016, 2019b; Agrawal et al., 2019) and summariza-
tion (Ben Abacha and Demner-Fushman, 2019a).

We approach the problem of medical question
understanding using joint learning of medical ques-
tion pairs in the two tasks of question summariza-
tion and Recognizing Question Entailment (RQE).
Previous work on combining summarization and
entailment uses at least two datasets – one for each

1https://github.com/KhalilMrini/
Medical-Question-Understanding

task. We start from the observation that, given a
pair of questions A and B, where A is the longer
question, A entails B if and only if B is a summary
of A. Using this observation, we propose a data
augmentation scheme to use a single dataset for
joint learning, instead of two. Then, we propose a
simple, simultaneous joint learning approach with
fully shared model parameters.

Our findings show that joint learning performs
significantly better than single-task training. Our
joint learning approach brings about an 8% increase
in accuracy in the RQE task compared to single-
task training, and shows an average of 2.5% in-
crease in ROUGE-1 F1 scores across three medical
question summarization datasets. Additionally, we
perform human evaluation and find our approach
generates more informative question summaries.
Our results suggest the RQE objective makes our
summaries more similar in style to the CHQ. Fi-
nally, we release the two consumer health ques-
tion summarization datasets we extracted from an
existing large-scale medical dialogue dataset, our
augmented datasets and our code.

2 Background and Related Work

2.1 Recognizing Question Entailment (RQE)
The task of RQE was introduced by Ben Abacha
and Demner-Fushman (2016) in the context of med-
ical question answering. It is closely related to
the task of Recognizing Textual Entailment (RTE)
(Dagan et al., 2005, 2013), and early definitions
of question entailment (Groenendijk and Stokhof,
1984; Roberts, 1996). Ben Abacha and Demner-
Fushman (2016) define RQE as follows: given a
pair of questions A and B, question A entails ques-
tion B if every answer to B is a correct answer to
A, and answers A either partially or fully.

2.2 Transfer Learning for Medical QA
Language models that use multi-task learning and
transfer learning have become ubiquitous in various
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NLP applications, including BioNLP. BERT (De-
vlin et al., 2019) has been fine-tuned using biomed-
ical text from PubMed (Beltagy et al., 2019), PMC
(Lee et al., 2020), and/or the MIMIC III dataset
(Johnson et al., 2016; Huang et al., 2019; Alsentzer
et al., 2019). In this paper, we use pre-trained
BART models (Lewis et al., 2019).

Transfer learning was a popular approach at the
2019 MEDIQA shared task (Ben Abacha et al.,
2019) on medical NLI, RQE and QA. The question
answering task involved re-ranking answers, not
generating them (Demner-Fushman et al., 2020).
For the RQE task, the best-performing model (Zhu
et al., 2019) uses transfer learning on NLI and en-
semble methods.

In contemporaneous work of ours (Mrini et al.,
2021), we participate in the question summariza-
tion task of the 2021 MEDIQA shared task (Ben
Abacha et al., 2021). We show that transfer learn-
ing using medical RQE can improve performance
on medical question summarization.

2.3 Summarization and Entailment

There is a growing body of work combining sum-
marization and entailment (Lloret et al., 2008;
Mehdad et al., 2013; Gupta et al., 2014).

Falke et al. (2019) use textual entailment pre-
dictions to detect factual errors in abstractive sum-
maries generated by state-of-the-art models. Pa-
sunuru and Bansal (2018) propose an entailment
reward for their abstractive summarizer, where the
entailment score is obtained from a pre-trained and
frozen natural language inference model.

Pasunuru et al. (2017) propose an LSTM
encoder-decoder model that incorporates entail-
ment generation and abstractive summarization.
They use separate natural language inference and
summarization datasets, and train by optimizing
the two objectives alternatively. Guo et al. (2018)
build upon the work of Pasunuru et al. (2017), and
add question generation as an auxiliary task.

Li et al. (2018) propose an encoder-decoder sum-
marization model, with an entailment-aware en-
coder with a separate classification module, and an
entailment-rewarded decoder. They follow closely
the multi-task setting of Pasunuru et al. (2017).

3 Joint Learning for Consumer Health
Question Understanding

We consider the joint learning of medical question
summarization and Recognizing Question Entail-

ment (RQE). In both tasks, a question pair includes
a first medical question, written in an informal style
by a patient – thus called a Consumer Health Ques-
tion (CHQ). The second medical question is shorter,
and often written in a formal style by medical ex-
perts: it is a Frequently Asked Question (FAQ).
The inspiration for our joint learning scheme stems
from the observation that a CHQ entails an FAQ, if
and only if the FAQ is a summary of the CHQ.

Our data-augmented joint learning approach to
consumer health question understanding has two
main components. First, we use our equivalence
observation to propose a scheme for data augmen-
tation. Second, we show our joint learning model
architecture and learning objective.

3.1 Data Augmentation
Instead of using separate datasets as in previous
work, we propose to augment datasets to train
jointly, such that we have the same amount of sum-
marization and RQE pairs.

For summarization datasets, we create equivalent
RQE pairs. For each existing summarization pair,
we first choose with equal probability whether the
equivalent RQE pair is labeled as entailment or
not. If it is an entailment case, we create an RQE
pair identical to the summarization pair. If it is not
an entailment case, the CHQ of the RQE pair is
identical to the CHQ of the summarization pair, and
the FAQ of the RQE pair is a different, randomly
selected from the FAQs of the same dataset split.

Inversely, for the RQE dataset, we create equiva-
lent summarization pairs. For each existing RQE
pair, we consider two cases. If the RQE pair is
labeled as entailment, we create an identical sum-
marization pair. If the RQE pair is labeled as not
entailment, we create a summarization pair that is
identical to a randomly selected entailment-labeled
RQE pair from the same dataset split.

3.2 Joint Model
We adopt the architecture of BART Large (Lewis
et al., 2019), a model that set a new state of the
art in XSum (Narayan et al., 2018) and CNN-
Dailymail (Hermann et al., 2015), two popular ab-
stractive summarization benchmark datasets.

BART is an encoder-decoder seq2seq model,
that can train generation as well as classification
tasks, such as RQE. BART trains for abstractive
summarization by feeding the source text (CHQ)
to the encoder, and the negative log-likelihood loss
is computed between the decoder output and the
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CHQ: Hi I have an un-opened prescription of Atorvastatin. How long 
is the lifespan in an Un-Opened container that has been stored 
at room temp (roughly 60degrees)?   Thanks.

FAQ: For how long can Atorvastatin be stored at room temperature?

Shared 
Encoder

Shared 
Decoder

RQE 
Head

CHQ; FAQ

Entailment 
Prediction

Generated FAQ 
(Generated Summary) 

CHQ

Recognizing Question 
Entailment (RQE)

Question Summarization

Figure 1: An example medical question pair. The first
question is a Consumer Health Question (CHQ) and the
second question is a Frequently Asked Question (FAQ).
We use BART (Lewis et al., 2019) to jointly train ques-
tion summarization (bottom) and RQE (top). We show
how BART takes input differently for each task.

reference summary (FAQ). BART trains for classi-
fication by feeding the full input to the encoder – in
the case of RQE, the full input is the concatenation
of the CHQ and FAQ. An added classification head
attached to the last decoder output then generates a
prediction. We compute the binary cross-entropy
loss based on the classification head’s prediction
and the RQE label. We show an overview of our
joint training in Figure 1.

We propose to optimize a single loss function
that is the sum of the objectives of both tasks. At
each training step, we have a summarization ques-
tion pair that is used for the negative log-likelihood
loss, and an RQE question pair that is used for the
Binary Cross-Entropy (BCE) loss. Given a CHQ
embedding x, the corresponding FAQ embedding
y, and the entailment label lentail ∈ {0, 1}, we
optimize the following loss function:

Ljoint = −logp(y|x; θ) + BCE(x,y, lentail; θ)
(1)

For RQE, we consider two loss alternatives, in
which we create summarization pairs that are iden-
tical to the RQE pairs, regardless of entailment.
In the first alternative we simply remove the neg-
ative log-likelihood loss for pairs labeled as not
entailment. In the second alternative, we flip the
negative log-likelihood loss for pairs labeled as
not entailment, such that we try to maximize the
summarization loss instead of minimizing it.

Dataset Train Dev Test
MeQSum 400 100 500
HealthCareMagic 181,122 22,641 22,642
iCliniq 24,851 3,105 3,106
MEDIQA RQE 8,588 302 230

Table 1: Statistics of the medical dataset splits.

4 Experiment Setup

4.1 Datasets

We consider three medical question summarization
datasets and one medical RQE dataset, all in En-
glish. Table 1 shows dataset statistics.

(1) MeQSum (Ben Abacha and Demner-
Fushman, 2019a) is a medical question summa-
rization dataset released by the U.S. National Insti-
tutes of Health (NIH). It contains 1,000 consumer
health questions summarized into FAQ-style single-
sentence questions by medical experts. The authors
used the first 500 datapoints as training and the last
500 as testing. We use a randomly selected 100
datapoints from the training set as our dev set.

We extract the (2) HealthCareMagic and (3)
iCliniq question summarization datasets from Med-
Dialog (Zeng et al., 2020), a large-scale medical di-
alogue dataset collected from two online healthcare
service platforms: HealthCareMagic.com
and iCliniq.com.

These two datasets include first a one-sentence
question describing the medical condition of the
patient, followed by two long utterances: one from
the patient that includes a description of the prob-
lem and a question, and then one from the doc-
tor that includes the response. To form medical
question summarization datasets, we consider the
single-sentence descriptions as summaries of the
patient utterances. HealthCareMagic’s summaries
are more abstractive and are written in a formal
style, unlike iCliniq’s patient-written summaries.
We create a 80/10/10 split for train/dev/test sets.

(4) MEDIQA RQE is the RQE dataset of the
2019 MEDIQA shared task (Ben Abacha et al.,
2019). The test set comprises manually written
question pairs, whereas the train and dev sets
(Ben Abacha and Demner-Fushman, 2016) are au-
tomatically collected. This difference explains the
higher dev set results in Ben Abacha et al. (2019).
Similarly to MeQSum, the question pairs match a
longer CHQ received by the US National Library
of Medicine (NLM) and a FAQ from the NIH.
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Dataset MeQSum HealthCareMagic iCliniq
Metric R1 R2 RL R1 R2 RL R1 R2 RL
Seq2seq Attentional Model (Nallapati et al., 2016) 24.8 13.8 24.3 - - - - - -
Pointer-Generator Networks (PG) (See et al., 2017) 35.8 20.2 34.8 - - - - - -
PG + Data Augmentation (Ben Abacha and Demner-
Fushman, 2019a)

44.2 27.6 42.8 - - - - - -

PG + Coverage Loss (See et al., 2017) 39.6 23.1 38.5 - - - - - -
PG + Coverage Loss + Data Augmentation (Ben Abacha and
Demner-Fushman, 2019a)

41.8 24.8 40.5 - - - - - -

BART (Lewis et al., 2019) 45.7 26.8 40.8 44.5 22.3 39.7 48.7 28.0 43.5
BART + Data-Augmented Joint Learning 48.5 29.7 44.9 42.1 20.7 37.9 53.5 36.5 48.6

Table 2: Results on the test set comparing BART with and without joint learning of question summarization. The
R1, R2 and RL metrics refer to the F1 scores of ROUGE-1, ROUGE-2 and ROUGE-L (Lin, 2004).

4.2 Setup

All of our models use the BART large architecture,
with different pre-trained models for transfer learn-
ing. For the question summarization experiments,
we use the BART Large model pre-trained on the
XSum dataset (Narayan et al., 2018). For the RQE
experiments, we pre-train a BART Large model on
the RTE dataset (Dagan et al., 2005; Haim et al.,
2006; Giampiccolo et al., 2007; Bentivogli et al.,
2009) from the GLUE benchmark (Wang et al.,
2018), and re-use the same classification head for
RQE.

4.3 Training Settings

We train for 100 epochs for the MeQSum dataset,
and for 10 epochs for all other datasets. We report
ROUGE F1 scores for the question summarization
datasets, and accuracy for the RQE dataset, as it is
a binary classification task with two labels: entail-
ment and not entailment.

For the question summarization datasets, the neg-
ative log likelihood on the dev set is used to select
the best model. For the RQE dataset, the RQE ac-
curacy on the dev set is the metric used to select
the best model.

For single-task training, we use binary cross
entropy for RQE, and negative log-likelihood for
question summarization.

The learning rate for RQE experiments is 10−5

and for the question summarization experiments, it
is 3 ∗ 10−5. We use an Adam optimizer where the
betas are 0.9 and 0.999 for summarization, and 0.9
and 0.98 for RQE. In all experiments, the Adam
epsilon is 10−8, and the dropout is 0.1.

4.4 Inference

At test time, we evaluate each task completely sep-
arately. For RQE, we feed the concatenation of the

CHQ and FAQ as input to the model. For question
summarization, we only feed the CHQ as input to
the model. This way, we ensure that the model
never sees the reference FAQs when being evalu-
ated for question summarization.

5 Results and Discussion

5.1 Summarization Results

In their introduction of MeQSum, Ben Abacha
and Demner-Fushman (2019a) show results with
seq2seq models and pointer-generated networks.
They additionally propose to augment MeQSum
using semantically selected relevant pairs from the
Quora Question Pairs dataset (Iyer et al., 2017). We
report these baselines as well as our BART baseline
results.

We show our summarization results in Table
2. On MeQSum and iCliniq, our joint learn-
ing objective achieves increases between 3 and
8 points across all three metrics – a significant
improvement despite MeQSum being extremely
low-resource. On the more abstractive and larger
HealthCareMagic dataset, there is a decrease of 2
points compared to the BART baseline.

5.2 Human Evaluation

Given that ROUGE is notoriously unreliable, we
hire 2 volunteer annotators, and we pick 40 gener-
ated summaries from each model in each summa-
rization dataset, resulting in 240 generated sum-
maries (FAQs). We collect 960 evaluations us-
ing best-worst scaling. The annotators could also
choose to judge both generated FAQs as equal with
regards to the given criteria. We show the annota-
tors the generated FAQs in a random order, so that
they do not know which model generated which
FAQ. We evaluate the generated summaries on 4
criteria:
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Datasets Fluency Coherence Informative Correct
MeQSum +21.25% +12.50% +5.00% –1.25%
HealthCareMagic +3.75% +8.75% +11.25% +2.50%
iCliniq 0% –1.25% –2.50% 0%

Table 3: Human Evaluation results on 120 samples
from the question summarization datasets. The percent-
ages indicate the added value of our joint learning.

Loss Function Accuracy
Joint Learning 78.1%
Removing NLL if not entailment 73.1%
Maximizing NLL if not entailment 72.8%

Table 4: RQE accuracy results on the dev set of our
joint loss compared to the two loss alternatives. NLL is
Negative Log-Likelihood, the summarization loss.

• Fluency: which generated FAQ is more gram-
matically correct, and easier to read and to
understand?

• Coherence: which generated FAQ is better
structured and more organized?

• Informativeness: which generated FAQ cap-
tures the most out of the concern of the patient
who wrote the CHQ?

• Correctness: which generated FAQ is more
factually correct given the CHQ?

Our human evaluation results are in Table 3.
Scores are generally in favor of our approach in
MeQSum and HealthCareMagic. There is a high
increase in informativeness for HealthCareMagic,
and the results for iCliniq show that our approach
gives summaries of roughly similar quality as the
BART baseline. The ROUGE score increases in the
extractive iCliniq and decreases in the abstractive
HealthCareMagic indicate that our approach’s sum-
maries are more faithful to patient writing styles,
suggesting a stronger influence from entailment.

5.3 RQE Results
We compare the joint loss function of equation 1
with the two loss alternatives in section 3.2. We
show the results on the dev set in Table 4. Our

Method Accuracy
BART (Lewis et al., 2019) 52.1%
Feature-based SVM (Ben Abacha and
Demner-Fushman, 2016)

54.1%

BART + Data-Augmented Joint Learning 60.0%

Table 5: Accuracy results on MEDIQA RQE test set.

joint loss function fares the best, exceeding the
alternatives by 5%. The results suggest that opti-
mizing RQE jointly with question summarization
does help improve performance on the RQE side
as well. The difference with the alternative where
we remove NLL for not-entailment pairs shows
that optimizing our joint learning objective is more
efficient than alternating single-task objectives.

We show our RQE results in Table 5. We see an
8% increase on the test set compared to optimizing
only on the RQE objective. Our findings show that
joint learning helps both tasks equally.

6 Conclusions

We propose a novel data-augmented joint learning
approach for the tasks of RQE and question sum-
marization. Our data augmentation method extends
a dataset such that it can be used for both tasks. Our
results show improvements in both tasks, across
three question summarization datasets (+2.5% in
ROUGE-1 F1) and one RQE dataset (+8% accu-
racy). We perform a human evaluation for our
generated summaries: we find that our approach
generates more informative summaries for formally
written FAQs, and summaries that are faithful to
patient writing styles in the more extractive iCliniq
dataset. Finally, we make our datasets, code and
training details publicly available.
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Abstract

In medical dialogue summarization, sum-
maries must be coherent and must capture all
the medically relevant information in the di-
alogue. However, learning effective models
for summarization require large amounts of la-
beled data which is especially hard to obtain.
We present an algorithm to create synthetic
training data with an explicit focus on captur-
ing medically relevant information. We utilize
GPT-3 as the backbone of our algorithm and
scale 210 human labeled examples to yield re-
sults comparable to using 6400 human labeled
examples (∼30x) leveraging low-shot learning
and an ensemble method. In detailed experi-
ments, we show that this approach produces
high quality training data that can further be
combined with human labeled data to get sum-
maries that are strongly preferable to those
produced by models trained on human data
alone both in terms of medical accuracy and
coherency.

1 Introduction

With increasing usage of telehealth platforms
(Mann et al., 2020), large scale ecosystems of
providers and patients have become apparent. This
has exacerbated the need for comprehensive visit
summaries of the medical dialogues by the attend-
ing practitioner in order to facilitate accurate hand-
offs to other care providers or as a means of record-
ing the interaction. However, having providers
write summaries after each encounter is not only
time consuming but also costly, limiting the scala-
bility of telehealth platforms (Shanafelt et al., 2016)

In these settings, an automated summarizer that
can assist the practitioners can be extremely valu-
able. However, an important challenge of end-to-
end medical dialogue summarization is the lack of
large scale annotated datasets. Annotation of medi-
cal dialogues is expensive and slow because they
need to be curated by trained experts. This is fur-
ther compounded by the fact that labeled data may

not be publicly shared because of patient privacy
concerns and HIPAA regulations.

Recent approaches to summarization (Qi et al.,
2020; Zhang et al., 2019) use transfer learning
where a pre-trained model (e.g. through self su-
pervision of learning a language model) is fine
tuned with a labeled dataset. However, fine-tuning
still requires hundreds to thousands of labeled ex-
amples to obtain reasonable performance. Meth-
ods such as (Joshi et al., 2020) aim to partially
overcome these issues through modeling strategies
that directly learn important inductive biases from
smaller amounts of data. In addition, (Joshi et al.,
2020) also handled data sparsity by leveraging a
key insight of sequential nature of information flow
in a medical dialogue: global summary of the dia-
logue can be composed from local dialogue turns
(snippets). This enables collecting training data for
snippets as opposed to the full conversation - an
insight, we use in our paper as well.

Recently, OpenAI developed GPT-3, a neural
language model that is capable of natural language
generation and completion of tasks like classifi-
cation, question-answering, and summarization
(Brown et al., 2020). The focus of that work is
to enable task-agnostic and zero-shot or low-shot
performance as opposed to a pre-trained model that
needs to be fine-tuned separately on every down-
stream task. In this paper, we investigate the fol-
lowing question: How can a low-shot learner such
as GPT-3 be leveraged to scale training data for
medical dialogue summarization models? In an-
swering this question within the context of GPT-3
as a black box proprietary API1, we took into ac-
count multiple considerations:

• Medical Correctness (Joshi et al., 2020): Med-
ical summarization warrants high recall and
therefore the summarizer should be good at (1)
capturing all the medical information (med-

1https://beta.openai.com/
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ications, symptoms, etc.) discussed in the
dialogue and (2) discern all the affirmatives
and negatives on medical conditions correctly
(e.g. no allergies, having a cough for 2 days).

• Privacy Concerns: At inference time, an API
call to external services such GPT-3 may not
always be possible due to HIPAA and privacy
concerns.

• Practitioner in the loop: The technique needs
to be easily amenable to a feedback loop that
allows for leveraging manually curated human
labels. This feedback loop is extremely impor-
tant because the diversity and the long tail of
data distribution in medical dialogue means
that there can be parts of the summary that
need to be edited by practitioners for medi-
cal correctness and completeness. Note that
these edits can be used as additional data for
improving the underlying model.

Taking into account these considerations, this paper
makes the following contributions (Figure 1 for a
quick overview):

• We introduce a medically-aware GPT-3 data
labeler, GPT-3-ENS , that combines medical
knowledge and an ensemble of GPT-3 for the
purpose of medical dialogue summarization.

• We introduce the idea of using GPT-3-ENS as
a dataset generator to facilitate learning an
in-house summarization model. Our experi-
ments show that we can obtain the same per-
formance as that of human labeled dataset
with 30x smaller amount of human labeled
data. With only 210 expert curated summaries
and GPT-3 as a labeled data simulator, we can
mimic the performance of a summarization
model trained on 6400 expert curated sum-
maries.

• By combining generated datasets from GPT-
3-ENS with a human labeled dataset, we
show that we can obtain better performance
than models trained on either one of the data
sources.

The rest of the paper is structured as follows: § 2
discusses related work, § 3 explores whether GPT-
3 can be used directly for medical summarization,
§ 4 introduces our approach, § 5 and § 6 describe

our datasets and metrics respectively while § 7 il-
lustrates our experiments. We end the paper with
§ 8 discussing our conclusions and future work.

Figure 1: Overview of our proposed approach: we train
models on a mix of GPT-3-ENS synthesized and hu-
man labeled data to get performance better than models
trained on either of the sources

2 Related work

Summarization Emergence of sequence to
sequence models and attention mechanisms
(Sutskever et al., 2014) has led to rapid progress on
extractive (Nallapati et al., 2017) , abstractive (Nal-
lapati et al., 2016; Zhang et al., 2019) and hybrid
models (See et al., 2017; Gu et al., 2016) for sum-
marization. Much of the recent work has shown
these models to generate near-human coherent sum-
maries while retaining reasonable factual correct-
ness.
Dialogue summarization: While most neural
summarization has focused on news corpora, recent
work has tried to tackle unique challenges associ-
ated with summarizing dialogues. (Goo and Chen,
2018) proposes using dialogue history encoders
based on the type of dialogue section to inform
the generation. (Liu et al., 2019a) propose using
key points as a means of categorizing sections of
dialogue.
Medical dialogue summarization Existing work
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(Alsentzer and Kim, 2018; Zhang et al., 2018; Liu
et al., 2019b; Krishna et al., 2020a,b; Joshi et al.,
2020) in this space focuses on effective summa-
rization by incorporating medical knowledge from
a modeling perspective. Our work also focuses
on incorporating medical knowledge from a data
labeling perspective. We show how we leverage
pretrained language models and low-shot learning
(Brown et al., 2020) to collect labeled data for med-
ical dialogue summarization. We also show how
this data can improve performance over models
that are trained solely on existing human labeled
data.

3 Background: Can GPT-3 serve as a
medical summarizer?

Ignoring the privacy concerns and practitioner-in-
the-loop considerations, we first explore whether
GPT-3 (Brown et al., 2020) is a good medical sum-
marizer by itself.

GPT-3 takes as input a priming context to per-
form the task on a previously unseen example.
Priming context refers to the text description of
a task and a few demonstrations of the task being
accomplished (in our case, that would be dialogue
snippet summarization).

Table 1 column 2 provides examples of sum-
maries generated by the GPT-3 model. We can
clearly see that it misses a number of important
pieces of information in the snippets – first, missing
medical concepts making the summary unusable
(Rows 1-2). Second, the model may not always
get the affirmations correct (Row 3). Third, the
summary may repeat redundant information from
the doctor’s queries (Row 4).

Based on these observations, we might prema-
turely conclude that GPT-3 can not be used for
medical summarization task. However, our key
observation in exploring GPT-3 is that it is sensi-
tive to the priming context (also reported in (Liu
et al., 2021)), as the model does not learn but just
adheres to the examples given. As we show in 4,
we exploit this variability in GPT-3 output via en-
sembling and infusion of medical knowledge so
that it can be used as a part of an effective low-shot
learning approach to medical summarization.

4 Infusing Medical Knowledge in GPT-3
for use as a Data Generator

We are interested in a model that uses only a small
amount of human labeled data to learn an effec-

Snippet GPT-3 GPT-3-ENS
DR: Thank you so much
for sharing. Are you on
any regular medications
for that?
PT: My only regular med-
ication is birth control -
Apri. Low dosage.

On birth con-
trol.

Only regular
medication is
birth control
-Apri. Low
dosage.

DR: You had mentioned
the headache starting af-
ter stopping the medica-
tions. Have you had sim-
ilar headache while stop-
ping medications before?
PT: Yes
PT: Well that’s a compli-
cated question
PT: I’m not really sure
DR: Okay, no worries.
Wanted to know a bit
more since you had men-
tioned about them. That’s
all.

Yes. Stopping
medications be-
fore.

Yes, has
headache
while stopping
medications
before. Is not
sure.

DR: Do you have pain
when you notice penile
discharge?
PT: no i’m not

Did not no-
tice penile
discharge. No
pain.

Doesn’t
have pain
when notic-
ing penile
discharge.

DR: I have a few ques-
tions to ask. How long
have you been having this
vaginal discomfort?
PT: only a few days,
since like friday or satur-
day maybe

I have a few
questions to
ask. How long
has she been
having vaginal
discomfort?

Has been hav-
ing vaginal
discomfort
for only a few
days, since
friday or
saturday.

Table 1: Input dialogue snippets along with summaries
generated by GPT-3 in column 2 and our approach,
GPT-3-ENS , in column 3.

tive medical dialogue summarizer. At the same
time, we want such a model to be used in a practi-
cal practitioner-in-the-loop setting where medical
correctness and patient privacy are of paramount
importance.

In order to achieve these goals, we propose a
two-pronged approach

1. Introduce GPT-3-ENS where we infuse med-
ical knowledge into GPT-3 and use it within
an inner loop to make it effective at medical
summarization.

2. Leverage GPT-3-ENS as a data generator to
obtain a large training set 2 to train an in-house
medical dialogue summarization model. Such
an in-house model can be used at inference

2Unlike data at inference time, training data is fixed and
can be ensured to be privacy protected
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time without the practical constraints related
to protecting patient privacy that would re-
quire full de-identification to be applied in
any conversation, if we were to access the
GPT-3 service. It also lends itself well to the
practioner-in-the-loop setting.

4.1 GPT-3-ENS : Medically-aware ensemble
of GPT-3

As discussed in 3, GPT-3 is quite sensitive to the
priming context. While one approach may be to
provide GPT-3 with the most informative context
for a task, this itself is a daunting task and can
potentially be tackled if we had a large number of
labeled examples (which is the exact problem we
want to tackle with GPT-3).

Drawing on the learning from vast literature in
ensembling techniques c.f. (Bishop et al., 1995),
our first key insight is that if we can generate multi-
ple summaries from GPT-3 using a variety of prim-
ing contexts, then we should be able to ensemble
these outputs to identify the summary that is ideal
for the dialogue. This insight leads to a question
on how to ensemble multiple text summaries. The
answer to this question relies on the core require-
ment for medical summarization: we care about
the coverage of medical concepts mentioned and
therefore the best ensembling function is the one
that returns the summary with the most medical
information in the dialog input.

In Algorithm 1 we provide our approach to the
medically aware GPT-3 ensemble GPT-3-ENS .
We assume access to a small set of labeled exam-
ples L. For each input dialog snippet, D, we get K
summaries, by invoking GPT-3 each time with N
examples sampled randomly without replacement
from L. We also assume access to a medical en-
tity extractor that can discern the medical concepts
from both the dialogue snippet and the summary.
The algorithm returns the best summary that has the
highest recall in terms of capturing the medical con-
cepts in the dialogue. For this purpose, we use an
in-house medical concept extractor MEDICALEN-
TITYRECOGNIZER that can identify medical con-
cepts from a given piece of text. This extractor has
access to the universe of medical concepts based
on Unified Medical Knowledge Systems 3, which
includes patient symptoms, disorders, laboratory
tests and medications. Note that any medical en-
tity recognizer (cf. (Fu et al., 2019) and references

3https://www.nlm.nih.gov/research/
umls/index.html

therein) that has coverage for all these types of
medical concepts found in medical conversations
can be used.

Algorithm 1 Medically aware GPT-3 ensemble
summarizer (GPT-3-ENS )
Require: dialogue snippet T , ensembling trialsK,

universe L of labeled examples, medical entity
extractor MedicalEntityRecognizer, GPT3

1: C∗ ←MedicalEntityRecognizer(T )
2: for i← 1, · · · ,K do
3: S ← sample N examples from L
4: summaryi ← GPT3(S, T )
5: Ci ←MedicalEntityRecognizer(

summaryi)
6: end for
7: best← argmaxi

|Ci∩C∗|
|C∗|

8: return summarybest

Reconsider Table 1 for qualitative comparison
between GPT-3 and GPT-3-ENS . We can see that
summaries obtained using GPT-3-ENS capture the
medical concepts comprehensively (shown in bold)
and also have better grammatical structure. We also
quantitatively validate the summaries on a small
data set distinct from what is used for priming(see
§ 6.2 for guidelines). In Figure 2, based on doctor
evaluation, we can see that GPT-3-ENS is signifi-
cantly better at summarization than GPT-3 .

Figure 2: Doctor evaluation of which among GPT-
3 and GPT-3-ENS summaries they considered “best”
showing that GPT-3-ENS is a better approach for la-
beling

4.2 GPT-3-ENS as a data labeler

We use GPT-3-ENS described in 4.1 as our labeled
data generator. In particular, we use our approach

69



to collect a large amount of labeled examples that
serve as inputs to training an off-the-shelf sum-
marization model. This resolves the concern of
using GPT-3 in a real world application where the
patient’s conversation (in its raw form) needs to
be exchanged with an external third party such as
OpenAI/GPT-3 which may not have design/privacy
regulations around HIPAA. In our approach, how-
ever, with the help of experts, it is easy to ensure
that the dialogues that will used for priming as well
as in the training set are chosen following privacy
protocols.

5 Datasets

We collected a random subset of medical conver-
sation dialogues from our chat-based telemedicine
platform. Often medical conversation follows a
linear ordering of medical history gathering (under-
standing patient symptoms) that enables creating
the summary of the dialog by stitching together
summaries of the snippets in chronological order
(Joshi et al., 2020). Therefore, we split each dia-
logue into a series of local dialogue snippets using
a simple heuristic: the turns between two subse-
quent questions by a physician corresponds to a
snippet. The length of these snippets ranged any-
where from two turns (a physician question and
patient response) to ten turns.

We had medical doctors4 summarize these
snippets. The doctors were asked to summarize
the sections as they would for a typical clinical
note by including all of the relevant history taking
information. If a local snippet did not contain any
history taking information it was excluded from
annotations. For example in the beginning or end
of conversations there may be turns that are purely
greetings and not part of the patient history taking
process. Further some snippets maybe purely
educational in nature and are excluded as well.
We eventually obtained a total of 6900 labeled
snippet-summary pairs.

Human labeled dataset train/test split: From the
6900 labeled snippet-summary pairs (denoted as
H6900), we generated a randomly sampled test set
T = 500 that we use in all our evaluations.

The dataset H6900 − T is used to generate the
priming dataset for GPT-3 related models as well
as the datasets we use to train our summarization

4These are the same doctors who practice on the same
telemedicine platform.

models.

GPT-3-ENS dataset: Let GCFk
p be the dataset of

size p generated using GPT-3-ENS with k ensem-
bling trials. To generate dataset GCFK=k, we re-
quire {Hn}ki=1 datasets (note the independence on
p), and thus n × k labeled examples for priming.
These n× k examples are randomly sampled from
the universe of human labeled examplesH6900−T .
In our experiments, we sample without replacement
so that no examples are reused across the k tries.
To allow comparison between our experiments with
different K values, we use the same seed for ran-
dom sampling.

6 Evaluation Metrics

Multiple studies have shown that automated met-
rics in NLP do not always correlate well to human
judgments as they may not fully capture coherent
sentence structure and semantics (Stephen Roller,
2020; Kryściński et al., 2019). Since medical dia-
logue summarization would be used to assist health
care, it is important for doctors to evaluate the qual-
ity of the output.

6.1 Automated metrics

While we measure model performance on standard
metrics of ROUGE (Lin, 2004) 5, we also measure
a model’s effectiveness in capturing the medical
concepts that are of importance, and their negations
(Joshi et al., 2020)
Medical Concept Coverage: The concept cover-
age set of metrics captures the coverage of medical
terms in the model’s output summary with respect
to the ground truth. In particular, let C be the set of
medical concepts in the reference summary and Ĉ
be the set of concepts in the summary output by the

model. Then, Concept recall =
∑N

n=1 |Ĉ(n)∩C(n)|∑N
n=1 |C(n)|

and Concept precision =
∑N

n=1 |Ĉ(n)∩C(n)|∑N
n=1 |Ĉ(n)| .

We use these to compute a Concept F16 We use
an in-house medical entity extractor to extract med-
ical concepts in the summary. Medical concepts in
the decoded summary that weren’t present in the
original conversation would be false positives and
vice versa for false negatives.

5We use the following package with default configuration:
https://github.com/google-research/
google-research/tree/master/rouge

6Note if there are no concepts detected in the snippet and
summary by the entity extractor, then a conservative F1 score
of 0 is given for that example.
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Negation Correctness: To measure the effective-
ness of the model to identify the negated status of
medical concepts, we use Negex (Harkema et al.,
2009) to determine negated concepts. Of the con-
cepts present in the decoded summary, we evaluate
precision and recall on whether the decoded nega-
tions were accurate for the decoded concepts and
compute a negation F16.

6.2 Doctor Evaluation

We also had doctors, who serve patients on our tele-
health platform, evaluate the summaries produced
by the models. Given the local dialogue snippets
and the generated summary, we asked them to eval-
uate the extent to which the summary captured fac-
tually correct and medically relevant information
from the snippet. Depending on what percentage
of the concepts were correctly mentioned in the
decoded summary of the provided snippet, the doc-
tors graded the summaries with All (100%), Most
(at least 75%), Some (at least 1 fact but less than
75%), None (0%) labels.

We also formulated a comparison task where
given summaries generated by different models
and the associated dialogue, they were asked which
summary was the "best" from a usability perspec-
tive. Usability was defined as whether the summary
could stand in as a replacement for reading the di-
alogue snippet i.e. whether it captures the correct
concepts from the snippet and whether the nega-
tions are accurate. The doctors had the ability to
use “all” and “none” in this task depending on if all
models being compared captured a good summary
or if none of them did.

To avoid bias, the doctors do not know the model
that produced the summary in both the experiments.
In the comparison task, the summaries were pro-
vided in randomized order so that there is no bias
in the order of presentation of the summaries.

7 Experiments and Results

Additional models considered: To evaluate the
efficacy of GPT-3-ENS as a source of labeled
data generator, we considered models with distinct
objective functions for abstractive and hybrid
(abstractive/extractive) summarization. We used
PEGASUS (Zhang et al., 2019) for abstractive
summarization and Dr. Summarize which we
denote as DRSUM (Joshi et al., 2020) for
extractive summarization. For DRSUM , we also
use their best performing variant (referred as

2M-PGEN in (Joshi et al., 2020)) which penalizes
generator loss and favors extractive copying.

Implementation Details: We used GPT-3 via the
API released by OpenAI7. Maximum response
length was set to 128 tokens, temperature to 0.6 and
presence and frequency penalties both set to 0. For
GPT-3-ENS , we use K = 10 ensembling trials for
all our experiments, unless otherwise specified. We
observed that N = 21 was the maximum number
of examples we could prime GPT-3 with given the
maximum context window length of 2048 tokens
for the API. We therefore fix the size of our priming
dataset to be 21 in all experiments which invoke
GPT-3. Hence we set L to be a random subset of
210 examples from H6900 − T .

We followed parameter settings for DR-
SUM from (Joshi et al., 2020) for pretraining on the
CNN-Dailymail dataset. We then fine-tuned on our
summarization task dataset with a batch size of 16,
source_max_tokens = 400, response_max_tokens
= 200 and max_grad_norm clipped at 2.0, for two
epochs with a learning rate of 0.15 using Adagrad
optimizer.

We used the PEGASUS implementation that is
pretrained on CNN-Dailymail8 provided by (Wolf
et al., 2020). We fine-tuned it on our summarization
task dataset with an effective batch size of 256,
source_max_tokens = 512, response_max_tokens
= 128 for two epochs using Adafactor9 optimizer
at the default settings in Hugging Face. For both
PEGASUS and DRSUM , we used a beam size of
four for decoding.

7.1 Training summarization models using
data labeled by GPT-3-ENS

We compare PEGASUS and DRSUM trained on
human labeled data H6400 and GPT-3-ENS syn-
thesized data GCFK=10

6400 . Note that synthesizing
GCFK=10

6400 needed all of 21 · 10 = 210 human la-
beled examples, where 21, as a reminder, is the
maximum number of inputs that can be used for
priming.

Table 2 compares quantitative performance of
PEGASUS and DRSUM trained on these two
datasets. The main observation is that with only

7https://beta.openai.com/
8https://huggingface.co/google/

pegasus-cnn_dailymail
9https://huggingface.co/transformers/

main_classes/optimizer_schedules.html#
adafactor-pytorch
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Models
Train Data

Source
Metrics

Negation
F1

Concept
F1

ROUGE-L
F1

PEGASUS

H6400 21.09 35.96 55.59
GCF k=10

6400 28.89 40.02 53.43
GCF k=10

12800 26.70 40.21 56.66
GCF k=10

25600 28.61 40.58 58.44

DRSUM

H6400 26.75 39.95 52.70
GCFk=10

6400 24.29 37.55 48.47
GCFk=10

12800 26.66 38.49 49.18
GCFk=10

25600 26.08 39.47 50.85

Table 2: Automated evaluation of summarization mod-
els trained with different data labeling methodologies.
Note that the amount of human labeled data is still
pretty low (210), compared to 6400 when we do not
use our approach.

210 human labeled examples, our approach GPT-3-
ENS is able to generate a large amount of training
data for both pre-trained summarization models,
PEGASUS and DRSUM , in such a manner that
they yield comparable (or better perfomance) than
if they had been trained with only 6400(∼30x) hu-
man labeled examples.

For PEGASUS , the summarization performance
improves drastically compared to model fine-tuned
using only the human labeled data. We hypothesize
that data generated from GPT-3-ENS can serve as
quality training data for abstractive models such
as PEGASUS but not so much for hybrid models
such as DRSUM due to GPT-3 being a generative
language model. The summaries written by our
human doctors have writing structure similar to
that of a hybrid summarization model such as DR-
SUM that is more extractive in nature. This can
explain why DRSUM did not show performance
gain when using generated data from GPT-3-ENS .
The key, however, is that it still did perform on par.

In the same Table 2, we also present the results
with increased amounts of data (12800 and 25600)
from GPT-3-ENS . There is little or no further im-
provement in the automated metrics of concept and
negation F1. However, ROUGE-L F1 improves
reflecting the improvements in coherency of the
summaries. We leave this area as future work to
explore.

7.2 Effect of combining human labeled data
with data labeled by GPT-3-ENS

Since GPT-3 relies on limited local priming con-
text (N = 21) it may not be agile in providing
robust summaries for a multitude of variations in

snippets, focusing on the exploitation part of the
exploration-exploitation trade-off. We hypothesize
that best summaries then will be synthesized by a
model trained on a dataset with human and GPT-
3-ENS labeled examples. To evaluate this, we in-
troduced a mixing parameter α, the ratio of GPT-3-
ENS labeled examples to human labeled examples.
For instance, with 6400 human labeled examples,
α = 0.5 implies the dataset contains 6400 human
labeled examples along with 0.5 ∗ 6400 = 3200
GPT-3-ENS generated examples. We experiment
with α = 0.5, 1, 2, 3.

From Table 4, we observe that for both PEGA-
SUS and DRSUM , mixture of human labeled and
GPT-3-ENS data consistently improves almost all
automated metrics for all α values10 The lift in
metrics is lower for DRSUM , again illustrating the
idea we highlighted in § 7.1 of GPT-3-ENS data
being more amenable to abstractive models such
as PEGASUS than for hybrid or extractive-biased
models such as DRSUM . Table 3 provides qualita-
tive comparison between summaries generated by
each of these models.

For simplicity, we chose the smallest GPT-3-
ENS mix i.e. α = 0.5 for human evaluation where
we ask doctors to evaluate summaries from model
trained on human, GPT-3-ENS and human+GPT-3-
ENS data. Figure 3 and Figure 4 show that doctors
prefer summaries from the model trained on the
mixture data over those produced by models trained
on human or GPT-3-ENS data alone, in terms of
amount of medical information captured as well as
the overall quality of the summary. Furthermore,
Figure 3(b) also shows that for PEGASUS , doc-
tors prefer the summaries from a model trained on
GCFK=10

6400 (which needed only 210 human labeled
examples) over those produced by a model trained
on 6400 human labeled examples.

8 Conclusion

We introduced a medically-aware GPT-3 data la-
beler, GPT-3-ENS , for the task of medical con-
versation summarization. At the heart of the ap-
proach is a medically aware ensembling criterion
that ensembles multiple summaries for an input
from a powerful low-shot learner such as GPT-3.
We showed that this approach can generate quality

10Note here that the claim is not that increasing α improves
metrics but that mixing GPT-3-ENS and human labeled data
improves metrics over models trained only using human data.
We leave it as a future work on how to trade-off between
human and GPT-3-ENS labeled data.
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Snippet Model trained on H6400
Model trained on
GCFK=10

6400
Model trained on
H6400+GCFK=10

3200

DR: Have you ever been
tested for any underlying
health conditions such as
diabetes, hypothyroidism
or polycystic ovarian
syndrome?
PT: No
PT: I have been told I have
prediabetes

Has not been tested for
any underlying health con-
ditions.

Hasn’t tested for any under-
lying health conditions such
as diabetes, hypothyroidism
or polycystic ovarian syn-
drome

Has not been tested for
any underlying health con-
ditions. Has been told has
prediabetes.

DR: DR: Do you have pus
appearing discharge from
the site?
PT: Yes. If the bubbles pop
it leaks out a watery sub-
stance

Has pus appearing from the
site. Pus appearing from the site Pus discharge from the site.

If bubbles pop it leaks out a
substance.

Table 3: Input conversation snippets along with summaries generated by models trained on different data

Models
Train Data

Source
Metrics

Negation
F1

Concept
F1

ROUGE-L
F1

PEGASUS H6400 21.09 35.96 55.59
α = 0.5 H6400 +GCFK=10

3200 30.14 43.49 62.45
α = 1 H6400 +GCFK=10

6400 30.70 43.73 60.63

α = 2 H6400 +GCFK=10
12800 29.43 41.02 59.85

α = 3 H6400 +GCFK=10
25600 31.93 44.68 61.05

DRSUM H6400 26.75 39.95 52.70
α = 0.5 H6400 +GCFK=10

3200 27.51 40.46 53.39
α = 1 H6400 +GCFK=10

6400 27.18 40.36 51.00

α = 2 H6400 +GCFK=10
12800 27.19 40.68 53.07

α = 3 H6400 +GCFK=10
25600 26.33 39.89 52.29

Table 4: Combining human labeled datasets with
datasets generated using our proposed approach

Figure 3: Doctor evaluation of amount of medical in-
formation covered by summaries provided by PEGA-
SUS models and which ones they considered “best”

Figure 4: Doctor evaluation of amount of medical
information covered by summaries provided by DR-
SUM models and which ones they considered “best”

training data for medical dialogue summarization
models while ensuring medical correctness. We
show that using a very small number of human la-
beled examples, 210, we are able to produce more
medically correct and better quality summaries
than using roughly thirty times as many human
labeled examples for two different summarization
models. In this work we used a simple ensembling
technique that dialogue summaries should retain all
the medical information discussed in the dialogue.
Future work could be to improve our ensembling
function to take into account other medical priors
such as affirmations and importance/relevance of
the information in the dialog.
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Snippet Summary Prompt
PT: Today spit out a bit of mucus
and noticed a bit of blood.
DR: Okay, how long have you
been on these medications?
PT: About 2 years

Has been on these medications for
about 2 years

Today spit out a bit of mucus
and noticed a bit of blood.[STOP]
Okay, how long have you been
on these medications?[SEP]About
2 years[SUMMARIZED]Has been
on these medications for about 2
years.[STOP]

DR: Is the bleeding from the anal
opening and not the vagina? Has
something similar happened be-
fore?
PT: yes from the anal opening

The bleeding is from the anal open-
ing.

Is the bleeding from the anal open-
ing and not the vagina? Has
something similar happened be-
fore?[SEP]yes from the anal open-
ing[SUMMARIZED]The bleeding
is from the anal opening.[STOP]

Table 5: Prompt for GPT-3 given two examples

A GPT-3 Prompt

We utilize a fairly simple prompt to have GPT-3
generate summaries. Each example (snippet_text,
summary_text) is concatenated to the empty
string with the following transformation: "{snip-
pet_text}[SUMMARY]{summary_text}[STOP]"
to form the prompt. We seperate the conversational
turns in snippet_text with the "[SEP]" token.
Table 5 shows a prompt that would be generated
and used to prime GPT-3 given two examples. As
mentioned in § 7 in our experiments we use 21
examples to generate a prompt
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