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Abstract

In this paper, we present a deep learning code
completion model for the R programming lan-
guage. We introduce several techniques to uti-
lize language modeling based architecture in
the code completion task. With these tech-
niques, the model requires low resources, but
still achieves high quality.

We also present an evaluation dataset for the R
programming language completion task. Our
dataset contains multiple autocompletion us-
age contexts and that provides robust valida-
tion results. The dataset is publicly available.

1 Introduction

Code completion feature (for simplicity we will re-
fer to it as autocompletion) is used in an integrated
development environment (IDE) to suggest the next
pieces of code during typing. Code completion en-
gines can accelerate software development and help
to reduce errors by eliminating typos.

In recent years quality improvements in the code
completion task have been achieved with the trans-
former language models. Models with a huge
amount of parameters usually demonstrate better
performance (Brown et al., 2020), but in practice
code completion is executed on a user laptop with
limited computational resources. At the same time
code completion should run as fast as possible to
be considered as a convenient development tool.

In this paper, we show that the autocompletion
task can be solved with a fairly good quality even
with a small transformer-based model. We propose
several techniques to adapt the model which was
originally designed for NLP tasks to our task.

It is hard to build a good autocompletion system
for dynamically typed languages without machine
learning methods (Shelley, 2014). Let us consider

1https://github.com/arti32lehtonen/
rcompletion evaluation dataset

an autocompletion of a function argument scenario.
In static languages, an argument type is determined
in the function definition. We can collect variables
of this type from the scope in which the function is
called. These variables may be used as an autocom-
pletion output. However, in dynamic languages the
argument type information is omitted. Since all
dynamic languages are interpreted, variable types
can not be obtained without running a program or
special tools usage.

We choose a dynamic R programming language
for our experiments. To the best of our knowledge,
there are no papers about code completion based
on deep learning for the R programming language
specifically.

We also propose an evaluation dataset for the
R programming language collected from the open-
source GitHub projects1. Our dataset is divided
into several groups specific for different code us-
age contexts. For example, there is a separate group
containing package imports and another one con-
taining function calls.

2 Related Work

There are many ways to design code completion
models. One of the methods is a frequency-based
system. The statistical language model is used to
rank a set of possible completions extracted by
the rule-based methods (Tu et al., 2014). Bruch
et al. (2009) proposed proposed a ranking machine
learning model, which additionally takes a feature
vector describing completion context as an input.

Lately, deep learning approaches have gained
popularity. Completions are generated by autore-
gressive models such as LSTM or transformer-
based language models (Li et al., 2017) trained
on a large source unlabeled code corpora. Some
large models such as GPT3 (Brown et al., 2020)
can even perform a full-line autocompletion with

https://github.com/arti32lehtonen/rcompletion_evaluation_dataset
https://github.com/arti32lehtonen/rcompletion_evaluation_dataset
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promising quality. Alon et al. (2019) suggest to pre-
dict the next node of the abstract syntax tree (AST)
of the program to get completions. Liu et al. (2020)
propose to predict the token and its type jointly to
improve completion performance for identifiers.

3 Model

3.1 Baseline model
We use conventional GPT-2 (Radford et al., 2019)
architecture with Byte Pair Encoding (BPE) tok-
enization (Sennrich et al., 2015), but with fewer
layers and heads and a lower hidden size. We train
it on a standard language modeling task, predicting
the next BPE token xt from the previous ones:

Llm =
∑
t

log p(xt|x<t)→ max (1)

However, we use special preprocessing to make
this task easier. In particular, we apply R lexer
to a source code to get so-called program tokens.
We use that information to replace numerical and
string literals by type-specific placeholders, delete
comments and remove vector content.

At inference time we exploit beams search and
softmax with temperature. To prevent generation of
the repeating elements we use penalized sampling
(Keskar et al., 2019).

3.2 Variable Name Substitution
As we know, transformers suffer from O(n2) com-
plexity with n as input length. It limits their ability
to exploit large contexts and therefore limits code
completion quality. If we take only the last tokens
as input, it can dramatically reduce a model quality
in a code completion task. For example, it is very
complicated to get a variable with a rare name in
the model output if it is declared at the start of the
program and never used after that.

While BPE tokenization allows us to represent
rare words with fixed-size vocabulary, they can still
have damaging effect on the training and the infer-
ence stages. We observe that rare variable names in
a source code unnecessarily extend input sequence
length, thus reducing effective context length. We
tried to use some transformer modifications such as
Reformer (Kitaev et al., 2020) to reduce inference
time but the quality drop was very high.

Here we propose a simple idea of replacing a rare
variable name with a placeholder (varK, where K
is the variable index number) if its frequency is
less than a certain threshold. Also, we should note,

that by such replacement the language modeling
task becomes a bit easier. Since there is no need to
remember complex variable names and the model
can concentrate on predicting more useful token
sequences.

Proposed substitution increases quality and
speed not only because of the context size. It is
impossible to get a long name variable from the
model output because there is a limit on the number
of generation iterations. While such transformation
allows us to generate a variable of any length.

3.3 Prefix Generation

We observe some discrepancy between training ob-
jective and model usage cases. Usually, the user
can improve completion results by typing in several
first characters of the desired token. The problem
is that during inference user may invoke an auto-
completion service, while the pointer is still in the
middle of the BPE token of the desired output. So,
at the training stage the tokenization is determined,
while during inference it can take an arbitrary form.
When the word is typed in by the user, its prefixes
may be decomposed into BPE tokens in several
different ways. For example, if a user wants to
get the variable maxDf consisting of max and df
BPE tokens, then the typed m can lead only to an
unlikely sequence m, ax, df.

We try to work around this issue by utilizing to-
ken prefixes. To incorporate signal from the prefix,
we propose to roll the pointer back to the start of the
program token and to utilize only those BPE tokens
that match our prefix during beam search. Search-
ing tokens with the right prefix is computationally
expensive (O(D) for each call, D is a dictionary
size). To overcome the computational cost we use
the trie data structure to store all the BPE tokens
(O(m) for each call, m is the maximum length of
the BPE token in the dictionary).

3.4 Beam Search with Early Stopping

We investigated full-line code completion setting,
where we try to predict a sequence of program to-
kens till the end of the line. We selected the average
number of correct program tokens predicted as our
quality metric. We found out, that if we restrict
model size and use regular language modeling ob-
jective, the model starts to hallucinate after 1-2
program tokens. So we decided to restrict our in-
ference only to 1 program token, introducing early
stopping into the beam search routine.
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It is easy to understand if a generated sequence
is exhausted in a single token completion task. The
lexer is applied to extract program tokens after
each beam search iteration. If at some point the
lexer output contains more than one program token,
the generation process is stopped for the current
sequence. We also stop the beam search if we have
already obtained k complete tokens, where k is a
hyperparameter. It helps to accelerate the inference
and has nearly no negative effect on model quality.

3.5 Distillation

Distillation is a model compression procedure in
which a student model is trained to match the out-
puts of a large pre-trained teacher model. Some
works (Bucila et al., 2006; Hinton et al., 2015)
show that distilled model can perform even better
than a trained from scratch model with the same
architecture and the same amount of parameters.

For distillation, we use the cross entropy loss
along with the KL divergence between the student
and teacher outputs (Equation 3, where ps is a stu-
dent model, pt is a teacher model, and α is hyper-
parameter to balance losses).

q(x, t) = −(1− α) log ps(xt|x<t) +

+ αKL (ps(xt|x<t) || pt(xt|x<t)) (2)

Ldist =
∑
t

q(x, t)→ min (3)

4 Dataset

The dataset used for the model training consists of
500k R Markdown files (Rmd). Non-code infor-
mation is erased from each file and the rest of the
text is transformed into a script. Additionally, in
one of the experiments we use a larger dataset that
contains more than 4kk with both R and Rmd files.

The evaluation dataset was collected from the
Github open-source projects and consists of 35k
examples from the 9k R files. There is an issue
with the using of the open-source project codes for
the evaluation. It is very likely for the training and
the test sets to intersect. A lot of repositories have
forks with minimal differences and it is very hard
to distinguish them from the source one. That is
why we evaluate most of our models on R files only
while training on Rmd files to avoid encountering
the training samples in the test set.

Some papers investigate autocompletion be-
haviour on real-world autocompletion logs. Aye
et al. (2020) showed that autocompletion models

after operator $ 2158
after operator %>% 1493
after operator -> 43
after operator :: 1024
after operator <- 3748
after operator = 4488
c key argument 598
c positional argument 1776
f key argument 8920
f positional argument 6730
library 748
new line variable 1774
new line function 1113
with prefix 15470
without prefix 19143

Table 1: Dataset group sizes

trained as language models on an unlabelled cor-
pus perform much worse on the real-world logs
than models trained on a logs dataset initially. Hel-
lendoorn et al. (2019) showed a difference in the
distributions of the completed tokens between the
real completion events and the synthetic evaluation
datasets.

Not having the real logs available, we decided to
divide our synthetic evaluation dataset into several
groups. It is useful to validate a model behaviour
on different autocompletion contexts. This way, the
model can be fine-tuned to improve quality in con-
crete autocompletion situations, such as a package
import or a function call completion. Firstly, we
divide the dataset into prefix and non-prefix groups.
The last program token is always incomplete in the
prefix group. Also, we divide our examples into
groups by the usage context. For example, there is
a group with the filling of the function arguments
and a group with new variables declaration.

The first type of dataset groups corresponds to
completion events following the concrete operators
($, %>%, ->, :: <-, =). Another type covers auto-
completion events during the positional or keyword
arguments completion in vectors or functions. The
next one consists of packages import usage con-
texts. The last one corresponds to the completion
of a variable or a function name at the start of the
new line.

5 Experiments

The code completion task may be considered a
ranking problem. We use mean reciprocal rank
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score (MRR) and mean Recall@5 score for eval-
uation in our experiments. There is only one rele-
vant element a in the autocompletion task and with
search results denoted as s the formulas can be
written as follows.

RR(a, s) =

{
i−1, if si = a

0, if a /∈ s

Recall@k(a, s) =

k∑
i=1

I[a = si]

5.1 Implementation Details
Our aim is to build a model light enough to run
smoothly on an average laptop. We evaluate our
models on a laptop equipped with Intel Core i7
with 6 cores and 16 GB RAM. The average time
for the single autocompletion event should be close
to 100ms and RAM consumption should not exceed
400MB.
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Figure 1: Mean inference time over 50k objects for
different model parameters

Figure 1 presents average inference times for
our model with all the proposed modifications. We
keep the number of heads = 4 and vary hidden
size and number of layers. It can be seen that the
model with the hidden size = 256 and number of
layers = 4 is the most complicated model that still
satisfies the performance requirements.

5.2 Quality and Inference Speed
In this experiment, we evaluate each of our pro-
posed modifications from the section 3. We apply
modifications one by one and measure metrics and
mean inference time for each of them. We use a
transformer model with parameters from the previ-
ous experiment (hidden size = 256, heads amount
= 4, number of layers = 4) as the baseline. For all
experiments, we use Adam (Kingma and Ba, 2017)

optimizer with the default parameters, cosine an-
nealing learning rate scheduler (Smith and Topin,
2018) with upper learning rate boundary 5e-3 and
gradient norm clipping by 10.

The results show that without the prefix gen-
eration modification the model is unable to take
advantage of the given prefixes. It should be noted
that almost 45% of the examples from the evalua-
tion dataset contain unfinished tokens with a given
prefix. Additional manipulations with the prefix
slow down the model but it is compensated by the
following two modifications. Variable name sub-
stitution during the prepossessing leads to both
quality improvement and inference speed up. Gen-
eration early stopping procedure accelerates the
inference without any ranking drawback.

MRR Recall@5 time
baseline 0.319 0.364 150 ms
+ prefix
generation

0.64 0.709 195 ms

+ variable
replacing

0.673 0.748 183 ms

+ BS early
stopping

0.676 0.751 98 ms

Table 2: Model modifications performance

5.3 Big Dataset Effect
One of the standard methods to improve model per-
formance in data science is to collect more data.
As we mentioned before, we can not guarantee to-
tal fairness of the evaluation process in this setup,
but we try to make sure that all the training exam-
ples are removed from the test set by eliminating
possible duplicates.

MRR Recall@5
l4 s256 0.676 0.751
l6 s1024 0.683 0.751
+ more data 0.761 0.815
+ distillation 0.701 0.767

Table 3: Increasing dataset size and distillation effects

We consider multiple types of models in this
experiment. The first one is the best model from
experiment 5.2. The second experiment is similar
to the first one but consists of six layers instead of
four and has hidden size of 1024 instead of 256.
The third experiment has the same architecture as
the second one and is trained on a larger training set.
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w/o prefix with prefix both
MRR Recall@5 MRR Recall@5 MRR Recall@5

after operator $ 0.596 0.669 0.727 0.779 0.656 0.719
after operator %>% 0.566 0.714 0.840 0.895 0.702 0.804
after operator -> 0.218 0.276 0.214 0.286 0.217 0.279
after operator :: 0.614 0.716 0.798 0.858 0.709 0.789
after operator <- 0.563 0.659 0.787 0.849 0.666 0.746
after operator = 0.624 0.707 0.765 0.793 0.682 0.743
c key argument 0.659 0.706 0.796 0.824 0.719 0.758
c positional argument 0.752 0.820 0.815 0.846 0.778 0.831
f key argument 0.713 0.784 0.840 0.876 0.771 0.826
f positional argument 0.719 0.812 0.803 0.852 0.755 0.829
library 0.183 0.299 0.775 0.870 0.463 0.570
new line function 0.586 0.704 0.676 0.771 0.630 0.737
new line variable 0.274 0.316 0.329 0.377 0.299 0.344

Table 4: Distilled model performance on separate groups. Rows correspond to autocompletion contexts. Results
for no prefix subset, prefix subset, and entire dataset are split into columns.

We apply Adaptive Softmax (Grave et al., 2017)
during the first training iterations to speed up the
training process. The fourth experiment is a result
of distillation of the third one into the model with
the architecture from the first experiment.

As we see from the results (Table 3) both increas-
ing training set size and distillation have positive
effect on the metrics. The distilled model outper-
forms all the models trained on a small dataset,
even the more complicated ones.

5.4 Error Interpretation

Table 4 shows the distilled model performance on
different parts of the evaluation dataset. In general,
the additional prefix information allows achieving
a higher score. Groups related to function argu-
ments and vector content have the highest MRR
score. It is an interesting observation since the vec-
tor content is eliminated during the preprocessing
step. It seems that vector argument filling is very
close to function argument filling semantically and
the model is able to perform well in this situation
without any relevant training samples.

The additional prefix information is very impor-
tant for a library group. Library calls are usu-
ally located at the start of the program. If there is
no last token prefix then the only reasonable model
behaviour is to predict the most common comple-
tion.

Autocompletion usage after the <- operator
means that we want to get a variable computation
statement based on a variable name. In opposite,

usage after the -> means that we want to get a
variable name based on given computations. Cor-
responding groups at the table show that we are
much better at the first one completion group. It
makes sense as the user has no limits in the variable
name design. Another reason for the low quality
for the after operator -> is a low amount of
examples for this operator in the training data. That
is why the quality for the new line variable
group is better even though the task is harder.

6 Conclusions

In this work, we present a model for the R pro-
gramming language completion. We introduced
simple but effective techniques, which can improve
a code completion quality, while not affecting the
model architecture or the training objective. Thus,
these techniques can be easily combined with other
works in the field and any dynamic programming
language. We also present an evaluation dataset
for the R programming language containing differ-
ent autocompletion contexts. The diversity of our
dataset provides a robust estimation.
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