
Proceedings of the 1st Workshop on Natural Language Processing for Programming (NLP4Prog 2021), pages 88–94
August 1–6, 2021. ©2021 Association for Computational Linguistics

88

Bag-of-Words Baselines for Semantic Code Search

Xinyu Zhang,1 Ji Xin,1 Andrew Yates,2 and Jimmy Lin1

1 David R. Cheriton School of Computer Science, University of Waterloo
2 Max Planck Institute for Informatics, Saarland Informatics Campus

Abstract

The task of semantic code search is to re-
trieve code snippets from a source code cor-
pus based on an information need expressed
in natural language. The semantic gap be-
tween natural language and programming lan-
guages has for long been regarded as one of
the most significant obstacles to the effective-
ness of keyword-based information retrieval
(IR) methods. It is a common assumption
that “traditional” bag-of-words IR methods are
poorly suited for semantic code search: our
work empirically investigates this assumption.
Specifically, we examine the effectiveness of
two traditional IR methods, namely BM25 and
RM3, on the CodeSearchNet Corpus, which
consists of natural language queries paired
with relevant code snippets. We find that the
two keyword-based methods outperform sev-
eral pre-BERT neural models. We also com-
pare several code-specific data pre-processing
strategies and find that specialized tokeniza-
tion improves effectiveness. Code for repro-
ducing our experiments is available at https:
//github.com/crystina-z/CodeSearch

Net-baseline.

1 Introduction

Community Question Answering forums like Stack
Overflow have become popular1 methods for find-
ing code snippets relevant to natural language ques-
tions (e.g., “How can I download a paper from
arXiv in Python?”). Such forums require commu-
nity members to provide answers, which means
that potential questions are limited to public code,
and a large portion of questions cannot be answered
in real time. The task of semantic code search re-
moves these limitations by treating a code-related
natural language question as a query and using it to
1https://stackoverflow.blog/2020/01/21/
scripting-the-future-of-stack-2020-pla
ns-vision/

retrieve relevant code snippets. In this way, novel
questions can be immediately answered whether in
public or private code repositories.

Consequently, the semantic code search task is
receiving an increasing amount of attention. Sev-
eral early efforts showed promising results apply-
ing neural networks models to various code search
datasets (Gu et al., 2018; Sachdev et al., 2018; Cam-
bronero et al., 2019; Zhu et al., 2020; Srinivas et al.,
2020). To facilitate research on semantic code
search, GitHub released the CodeSearchNet Cor-
pus and Challenge (Husain et al., 2019), providing
a large-scale dataset across multiple programming
languages with unified evaluation criteria. This
dataset has been utilized by multiple recent pa-
pers (Feng et al., 2020; Gu et al., 2021; Sun et al.,
2020; Arumugam, 2020).

Work on semantic code search has focused on
neural ranking models under the assumption that
such methods are necessary to bridge the semantic
gap between natural language queries and relevant
results (i.e., code snippets). Such approaches usu-
ally design a task-specific joint vector representa-
tion to map natural language queries and program-
ming language “documents” into a shared vector
space (Gu et al., 2018; Sachdev et al., 2018; Cam-
bronero et al., 2019). Inspired by progress in pre-
trained models (Devlin et al., 2019), researchers
proposed CodeBERT (Feng et al., 2020), a pre-
trained transformer model specifically for program-
ming languages, which yields impressive effective-
ness on this task.

Beyond utilizing the raw text of code corpora,
another thread of research conducts retrieval using
structural features parsed from code, which are be-
lieved to contain rich semantic information (Srini-
vas et al., 2020). Multiple papers have also pro-
posed incorporating structural information with
neural ranking models (Gu et al., 2021; Sun et al.,
2020; Ling et al., 2021; Guo et al., 2020).

https://github.com/crystina-z/CodeSearchNet-baseline
https://github.com/crystina-z/CodeSearchNet-baseline
https://github.com/crystina-z/CodeSearchNet-baseline
https://stackoverflow.blog/2020/01/21/scripting-the-future-of-stack-2020-plans-vision/
https://stackoverflow.blog/2020/01/21/scripting-the-future-of-stack-2020-plans-vision/
https://stackoverflow.blog/2020/01/21/scripting-the-future-of-stack-2020-plans-vision/


89

In contrast to these comparatively sophisticated
methods, in this work we explore the effectiveness
of traditional information retrieval (IR) methods on
the semantic code search task. This exploration is
of interest for two reasons:

First, while neural methods can take advantage
of distributed representations (i.e., static or con-
textual embeddings) to model semantic similarity,
Yang et al. (2019) found that pre-BERT neural
ranking models can underperform traditional IR
methods like BM25 with RM3 query expansion,
especially in the absence of large amounts of data
for training. Prior work has claimed that tradi-
tional IR methods are unfit for code search (Husain
et al., 2019), but there is a lack of empirical evi-
dence supporting this claim. In fact, in one of the
few comparisons with traditional IR methods avail-
able (Sachdev et al., 2018), BM25 performed well
in comparison to the proposed neural methods on
an Android-specific dataset.

Second, neural approaches are often reranking
methods that rerank candidate documents identi-
fied by a first-stage ranking method. Even dense re-
trieval methods that perform ranking on shared vec-
tor representations directly can benefit from hybrid
combinations with keyword-based signals as well
as another round of reranking (Gao et al., 2020). It
is thus useful to identify the best-performing tradi-
tional IR methods in this domain, so that they can
provide a complementary source of evidence.

Thus, our work has two main contributions: First,
we provide strong keyword baselines for seman-
tic code search, demonstrating that traditional IR
methods can in fact outperform several pre-BERT
neural ranking models even without a semantic
matching ability, which extends the conclusions
drawn by Yang et al. (2019) on ad hoc retrieval
to the semantic code search task. Second, we in-
vestigate and quantify the impact of specialized
pre-processing for code search.

2 Related Work

As discussed above, joint-vector representations
have been widely used in recent work on code
search. NCS (Sachdev et al., 2018) proposed an
approach integrating TF-IDF, word embeddings,
and an efficient embedding search technique where
the word embeddings are learned in an unsuper-
vised manner. CODEnn (Gu et al., 2018) devel-
oped a neural model based on queries and separate
code components. UNIF (Cambronero et al., 2019)

investigated the necessity of supervision and so-
phisticated architectures for learning aligned vector
representations. After concluding that supervision
and a simpler network architecture are beneficial,
the authors further enhanced NCS by adding a su-
pervision module on top. In addition to introduc-
ing the dataset, the CodeSearchNet paper also pro-
posed joint-embedding models as baselines, where
the embeddings may be learned from neural bag
of words (NBoW), bidirectional RNN, 1D CNN,
or self-attention (SelfAtt). In this work, we com-
pare against the best-performing of these baselines,
NBoW and SelfAtt.

Unlike attempts to learn aligned vector represen-
tations from each dataset, CodeBERT (Feng et al.,
2020) built a BERT-style pre-trained transformer
encoder with code-specific training data and objec-
tives, and then fine-tuned the model on downstream
tasks. This approach has been highly successful.

Another line of work tries to enhance retrieval
by incorporating structural information. In work
where queries and code snippets are encoded sep-
arately, this is usually achieved by merging the
encoded structure into the code vector. Sun et al.
(2020) extracted paths from the abstract syntax tree
(AST) of the code and directly used the encoded
path to represent the code snippet. Gu et al. (2021)
built a statement dependency matrix from the code
and transformed it into a vector, which is then
added to the code vector prepared from the text.
Ling et al. (2021) utilized a graph neural network
to embed the program graph into the code vector.
Adopting a different approach, Guo et al. (2020) ex-
tended CodeBERT by adding two structure-aware
pre-training objectives, and showed that the bene-
fits of structural information are orthogonal to the
benefits of large-scale pre-training.

While neural ranking models are popular ap-
proaches to the code retrieval task, we found few
papers that compared them with traditional algo-
rithms. To the best of our knowledge, only Sachdev
et al. (2018) compared their embedding model with
BM25, finding that BM25 performed acceptably.

3 Models

In this section, we describe the traditional IR meth-
ods that we used in our experiments and the neural
ranking models that have been evaluated on the
CodeSearchNet Corpus in previous work (Husain
et al., 2019; Feng et al., 2020).



90

3.1 Traditional IR Baselines

To test the effectiveness of traditional IR methods,
we chose two well-known and effective retrieval
methods as our baselines: BM25 (Robertson and
Zaragoza, 2009) and RM3 (Lavrenko and Croft,
2001; Abdul-Jaleel et al., 2004). Both have been
widely used for ad hoc retrieval and have been
demonstrated to be strong baselines compared to
multiple pre-BERT neural ranking models (Yang
et al., 2019).

BM25 is a ranking method based on the prob-
abilistic relevance model (Robertson and Jones,
1976), which combines term frequency (tf) and
inverse document frequency (idf) signals from in-
dividual query terms to estimate query–document
relevance. RM3 is a query expansion technique
based on pseudo relevance feedback (PRF) that can
be combined with another ranking method such as
BM25. It expands the original query with selected
terms from initial retrieval results (e.g., results of
BM25) and applies another round of retrieval (e.g.,
with BM25) using the expanded query. We omit a
comprehensive explanation of these two methods
here and refer interested readers to the cited papers.

3.2 Neural Ranking Models

We compare the traditional IR methods described
above with three neural ranking models: neural
bag of words (NBoW), self-attention (SelfAtt), and
CodeBERT. Results of the first two models are
reported by Husain et al. (2019), and the last model
by Feng et al. (2020). We use their reported scores
in this paper.

According to Husain et al. (2019), both NBoW
and SelfAtt encode natural language queries and
code into a joint vector space, and then aggre-
gate the sequence representation into a single vec-
tor. The models are trained with the objective
of maximizing the inner products of the aggre-
gated query vectors and code vectors. The two
models only differ in the encoding step, where
NBoW encodes each token through a simple em-
bedding matrix and SelfAtt encodes the sequence
using BERT (Devlin et al., 2019). Feng et al. (2020)
pre-trained a bi-modal (natural language and pro-
gramming language) transformer encoder based
on RoBERTa (Liu et al., 2019), with the hybrid
objectives of Mask Language Model (MLM) and
Replaced Token Detection (RTD). The model is
then fine-tuned for the code search task on each
programming language dataset. We refer readers

Datapoints Unique Docstrings
Total Training Validation Test

Go 346 365 277 118 253 979 11 757 11 382
Java 496 688 372 894 340 380 11 621 20 893

JS 138 625 123 738 111 443 6 876 5 419
PHP 578 118 424 657 387 470 17 843 19 344

Python 457 461 421 263 379 864 20 897 20 502
Ruby 53 279 47 763 43 549 2 089 2 125

All 2 070 536 1 667 433 1 516 685 71 083 79 665

Table 1: Dataset Size Statistics.

to the original papers (Husain et al., 2019; Feng
et al., 2020) for further model details and hyper-
parameters.

4 Dataset and Pre-processing

In this section, we introduce the CodeSearchNet
Dataset (Husain et al., 2019) used in this paper and
the code specific pre-processing strategies (e.g.,
tokenization) to be compared.

4.1 Dataset

CodeSearchNet2 is a proxy dataset prepared from
non-fork open-source Github repositories. It con-
sists of 2M docstring–code pairs and 4M unla-
beled code fragments, where the code fragments
are function-level snippets and their respective doc-
strings (if any) serve as substitutes for natural
language queries. Under CodeSearchNet, there
are two sub-datasets, namely CodeSearchNet Cor-
pus and CodeSearchNet Challenge. The Code-
SearchNet Corpus dataset uses 2M docstrings as
automatically-labeled queries, whereas the Code-
SearchNet Challenge dataset uses another 99 free-
text queries that were manually judged.

In this work we conduct all experiments on the
CodeSearchNet Corpus dataset. The labeled data
are split into training, validation, and test sets in a
ratio of 80:10:10. Table 1 shows the overall dataset
size and the number of unique docstrings in each
data split. The test set is partitioned into segments
of size 1000 at the evaluation stage, and the correct
code snippet for a given query is compared against
the other snippets within the same segment. That
is, the code snippets in the 1000 <docstring,
code snippet> pairs naturally form the dis-
tractor set for each other.

4.2 De-duplication

According to Husain et al. (2019), the crawled
data are filtered according to certain heuristic rules,

2https://github.com/github/CodeSearchNet

https://github.com/github/CodeSearchNet


91

1 # Appends the given string at the end of
the current string value for key k.

2 def putcat (k, v)
3 k = k.to_s; v = v.to_s
4 lib.abs_putcat(@db, k, Rufus::Tokyo.

blen(k), v, Rufus::Tokyo.blen(v))
5 end
6

7 # Appends the given string at the end of
the current string value for key k.

8 def putcat (k, v)
9 k = k.to_s; v = v.to_s

10 @db.putcat(k, v)
11 end

Figure 1: Docstring duplication example (unused doc-
string and extra blank lines are removed).

Docstrings Duplicates (Number / Fraction)
Total Same repo

Go 277 118 18 531 6.7% 15 255 82.3%
Java 372 894 39 067 10.5% 34 072 87.2%

JS 123 738 7 254 5.9% 3 342 46.1%
PHP 424 657 42 058 9.9% 23 515 55.9%

Python 421 263 20 776 4.9% 16 608 79.9%
Ruby 47 763 3 006 6.3% 2 499 83.1%

All 1 667 433 130 692 7.4% 95 291 72.9%

Table 2: Docstring Duplicate Statistics. The Docstring
column is the same as the the Unique Docstring in
Table 1. Total indicates the number and proportion
of duplicate docstrings in each programming language
across the entire dataset. From Same Repo indicates the
number and proportion of docstrings whose duplicates
are found all in the same repository.

including removing (1) pairs where the docstring is
shorter than three tokens, (2) functions that contain
fewer than three lines, contain the “test” substring,
or serve as constructors or standard extension meth-
ods, and (3) duplicate functions. Nevertheless, even
though duplicate functions are removed, queries
prepared from docstrings can still repeat. That
is, different functions can share the same docu-
mentation. Such duplication may result from func-
tion overloading, oversimplified documentation, or
mere coincidence. An example of this duplication
is shown in Figure 1.

Table 2 shows that such query duplication can
be observed in all programming languages to some
degree, and most of the duplication arises from
functions in the same repository. Considering the
number of duplicate docstrings, it is inaccurate to
consider all functions other than the one matched
to the current query as negative samples. In this
work, we aggregate all functions sharing the same
docstring and regard all of them as relevant results.

4.3 Pre-processing
In all experiments, we apply the Porter stemmer
and perform stopword removal using the default
stopwords list in the Anserini toolkit (Yang et al.,
2017), which is a Lucene-based IR system.

On top of this default configuration, we investi-
gate the effectiveness of the following tokenization
and stopword removal strategies specific to pro-
gramming languages:

• no-code-tokenization: No extra pre-processing is
applied other than Porter stemmer and removal
of English stopwords.

• code-tokenization: Tokens in both camelCase
and snake case in code snippets and docu-
mentation are further tokenized into separate to-
kens, e.g., camel case and snake case.3

• code-tokenization + remove reserved tokens: Con-
sidering that reserved tokens in programming
languages intuitively add little value in exact
match methods, we remove the reserved tokens
of each programming language on top of the code-
tokenization condition.

We show length and vocabulary statistics after ap-
plying each pre-processing strategy in Table 3. In
the table, total vocab size is the number of tokens
that appear in either docstring or code, and over-
lapped vocabulary ratio is the percentage of tokens
appearing in both docstring and code in the entire
vocabulary. The table shows that code tokenization
greatly shrinks the vocabulary size and raises the
overlapped vocabulary ratio. Interestingly, reserved
token removal shortens the code snippets length,
but shows little impact on the overall vocabulary
size. This results from the fact that reserved tokens
are commonly contained in variable names as sub-
tokens and thus reappear after code tokenization
(e.g., the variable name class dir would be to-
kenized into class and dir, therefore class
would still appear in the final vocabulary).

5 Experiments

5.1 Experimental Setup
All our experiments were conducted with Capre-
olus (Yates et al., 2020), an IR toolkit integrating
ranking and reranking tasks under the same data
3According to Husain et al. (2019), NBoW and SelfAtt tok-
enize ‘camelCase’ tokens into subtokens (‘camel’ and ‘case’),
which is similar to our code-tokenization setting.



92

Ruby JS Go Python Java PHP

no-code-tokenization
keep reserved tokens

avg docstring length 14 13 20 14 15 8
avg code length 37 73 44 60 47 45
total vocab size 160 175 455 771 651 143 1 255 725 1 248 229 1 061 762
overlapped vocab % 13.58% 10.18% 33.02% 9.92% 8.02% 7.49%

code-tokenization
keep reserved tokens

avg docstring len 15 13 24 14 16 8
avg code len 57 110 64 88 85 72
total vocab size 31 999 76 305 68 877 191 608 105 005 134 729
overlapped vocab % 40.13% 28.24% 36.83% 26.41% 28.62% 21.34%

code-tokenization
remove reserved tokens

avg docstring len 15 13 28 14 16 8
avg code len 48 93 57 78 74 62
total vocab size 31 999 76 305 68 877 191 608 105 004 134 729
overlapped vocab % 40.12% 28.24% 36.83% 26.41% 28.62% 21.34%

Table 3: Average length and vocabulary statistics after applying each pre-processing strategy.

Models Ruby JS Go Python Java PHP
CodeBERT 0.6926 0.7059 0.8400 0.8685 0.7484 0.7062
NBoW 0.4285 0.4607 0.6409 0.5809 0.4835 0.5181
SelfAtt 0.3651 0.4506 0.6809 0.6922 0.5866 0.6011

no-code-tokenization + keep reserved tokens
BM25 0.4484 0.4097 0.6979 0.4317 0.4002 0.3758
BM25+RM3 0.4427 0.4123 0.6761 0.4216 0.3988 0.4062

code-tokenization + keep reserved tokens
BM25 0.5789 0.5522 0.7289 0.5989 0.6022 0.5929
BM25+RM3 0.5735 0.5312 0.7214 0.5865 0.5777 0.5379

code-tokenization + remove reserved tokens
BM25 0.5707 0.5312 0.7317 0.5905 0.5838 0.5399
BM25+RM3 0.5703 0.5269 0.7246 0.5871 0.5794 0.5400

Table 4: MRR on the test set of the CodeSearchNet Corpus where each model searches for the correct code snippet
against the 999 distractors. The highest scores among non-BERT models are highlighted in bold, and the ones
among keyword-only models are underlined. We copied the scores of neural ranking models from Husain et al.
(2019) and Feng et al. (2020).

processing pipeline. We chose the toolkit to en-
hance reproducibility and to support future com-
parisons. Note that although Capreolus is primar-
ily designed for text ranking with neural ranking
models, in this work we do not use any of those
features. The underlying implementation of BM25
and RM3 are provided by the Pyserini toolkit (Lin
et al., 2021), which in turn is built on the Lucene
open-source search library, but Capreolus provides
simplified mechanisms for parameter tuning and
other useful features for end-to-end experiments.

Following the original paper (Husain et al.,
2019), each correct code snippet was searched
against a fixed set of 999 distractors, as described
in Section 4.1. All experiments were evaluated
with Mean Reciprocal Rank (MRR). In all exper-
iments, we tuned the parameters k1 and b for
BM25 and originalQueryWeight, fbDocs,
fbTerms for RM3 on the validation set, then ap-
plied the parameters from the best result on the test
set. Note that since BM25 and RM3 only require
parameter tuning, we did not use the training set
mentioned in Table 1.

k1 [0.7, 1.3], step size 0.1
b [0.7, 1.0], step size 0.1
fbDocs [55, 95], step size 10
fbTerms 2, 5, 7, 10
originalQueryWeight 0.7, 0.8, 0.9

Table 5: BM25 and RM3 parameter values explored.

After pilot experiments on the Ruby and Go
datasets to determine reasonable parameter ranges
to search, we performed a grid search on each lan-
guage dataset over the values shown in Table 5.

5.2 Results and Analysis

The results are shown in Table 4. The first row re-
ports the results of CodeBERT (Feng et al., 2020).
We list this result here to better compare the IR
baselines with the state-of-the-art model in the field.
The next two rows are pre-BERT neural model re-
sults copied from Husain et al. (2019). The remain-
ing rows show the scores of BM25 and RM3 with
the three aforementioned pre-processing strategies
on the six programming language datasets.



93

As Table 4 shows, BM25 and BM25 + RM3 in
general outperform the NBoW and SelfAtt baselines
despite variations in effectiveness across program-
ming languages. The SelfAtt model only shows
sizeable improvement over BM25 on Python and a
modest improvement on PHP. This suggests that the
gap between natural language and programming
languages does not necessarily hinder traditional
IR methods in the code search task, and that dis-
tributed representations are not necessarily better
at addressing this gap.

Comparing the results of BM25 and BM25 +
RM3, we observe that adding RM3, which is gen-
erally considered more effective, does not improve
over BM25 on any of the language datasets. We
suspect the cause of this unanticipated result is that
most of the queries in CodeSearchNet only have a
single relevant document, which may not be suffi-
cient to quantify the benefits of pseudo relevance
feedback techniques. This hypothesis is supported
by a similar observation that adding RM3 degrades
effectiveness on the MS MARCO dataset (Bajaj
et al., 2018), where each query also has few rele-
vant documents (Lin et al., 2020).

The results from each pre-processing strategy
show the necessity of code tokenization, which
improves MRR overall. On the other hand, remov-
ing the reserved tokens does not improve effective-
ness. The possible reasons could be that (1) some
reserved tokens are in the English stopwords list
and would be removed anyway (e.g. for, if,
or, etc.), (2) some special reserved tokens rarely
appear in the query and thus contribute little to
the final score (e.g. elif, await, etc.), and
(3) frequently-appearing reserved words are given
small IDF weights in BM25, which minimizes their
effect (e.g. final, return, var).

6 Conclusion

In this paper we examined the effectiveness of tra-
ditional IR methods for semantic code search and
found that while these exact match methods are not
as effective as CodeBERT, they generally outper-
form pre-BERT neural models. We also compare
the effect of code-specific tokenization strategies,
showing that while splitting camel and snake case
is beneficial, removing reserved tokens does not
necessarily help keyword-based methods.

There are also aspects of semantic code search
that this paper does not cover. Sachdev et al. (2018)
mentioned the nuance between different code com-

ponents, such as how readability can differ for
function names and local variables. We leave for
future work an investigation of whether treating
such components differently improves effective-
ness. Nevertheless, the lesson from our work seems
clear: even with advances in neural approaches, we
shouldn’t neglect comparisons to and contributions
from strong keyword-based IR methods.

Acknowledgements

This research has been supported by the Natu-
ral Sciences and Engineering Research Council
(NSERC) of Canada.

References
Nasreen Abdul-Jaleel, James Allan, W. Bruce Croft,

Fernando Diaz, Leah Larkey, Xiaoyan Li, Don-
ald Metzler, Mark D. Smucker, Trevor Strohman,
Howard Turtle, and Courtney Wade. 2004. UMass
at TREC 2004: Novelty and HARD. In Proceedings
of the Thirteenth Text REtrieval Conference (TREC
2004), Gaithersburg, Maryland.

Lakshmanan Arumugam. 2020. Semantic code search
using Code2Vec: A bag-of-paths model. Master’s
thesis, University of Waterloo.

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng,
Jianfeng Gao, Xiaodong Liu, Rangan Majumder,
Andrew McNamara, Bhaskar Mitra, Tri Nguyen,
Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Ti-
wary, and Tong Wang. 2018. MS MARCO: A Hu-
man Generated MAchine Reading COmprehension
Dataset. arXiv:1611.09268v3.

Jose Cambronero, Hongyu Li, Seohyun Kim, Koushik
Sen, and Satish Chandra. 2019. When deep learn-
ing met code search. In Proceedings of the 2019
27th ACM Joint Meeting on European Software En-
gineering Conference and Symposium on the Foun-
dations of Software Engineering, ESEC/FSE 2019,
page 964–974, New York, NY, USA. Association for
Computing Machinery.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
BERT: A pre-trained model for programming and
natural languages. In Findings of the Association



94

for Computational Linguistics: EMNLP 2020, pages
1536–1547, Online. Association for Computational
Linguistics.

Luyu Gao, Zhuyun Dai, Zhen Fan, and Jamie Callan.
2020. Complementing lexical retrieval with seman-
tic residual embedding. arXiv:2004.13969.

Wenchao Gu, Zongjie Li, Cuiyun Gao, Chaozheng
Wang, Hongyu Zhang, Zenglin Xu, and Michael R.
Lyu. 2021. CRaDLe: Deep code retrieval based
on semantic dependency learning. Neural Networks,
141:385–394.

Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018.
Deep code search. In Proceedings of the 40th Inter-
national Conference on Software Engineering, ICSE
’18, page 933–944, New York, NY, USA. Associa-
tion for Computing Machinery.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, L. Zhou, Nan Duan, Jian Yin,
Daxin Jiang, and M. Zhou. 2020. GraphCode-
BERT: Pre-training code representations with data
flow. arXiv:2009.08366.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
SearchNet Challenge: Evaluating the state of seman-
tic code search. arXiv:1909.09436.

Victor Lavrenko and W. Bruce Croft. 2001. Relevance
based language models. In Proceedings of the 24th
Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,
SIGIR ’01, page 120–127, New York, NY, USA. As-
sociation for Computing Machinery.

Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-
Hong Yang, Ronak Pradeep, and Rodrigo Nogueira.
2021. Pyserini: A Python toolkit for reproducible
information retrieval research with sparse and dense
representations. In Proceedings of the 44th Interna-
tional ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, SIGIR’21, New
York, NY, USA. Association for Computing Machin-
ery.

Jimmy Lin, Rodrigo Nogueira, and Andrew Yates.
2020. Pretrained transformers for text ranking:
BERT and beyond. arXiv:2010.06467.

Xiang Ling, Lingfei Wu, Saizhuo Wang, Gaoning Pan,
Tengfei Ma, Fangli Xu, Alex X. Liu, Chunming Wu,
and Shouling Ji. 2021. Deep graph matching and
searching for semantic code retrieval. ACM Transac-
tions on Knowledge Discovery from Data, 15(5):Ar-
ticle No. 88.

Y. Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, M. Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. arXiv:1907.11692.

Stephen Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: BM25 and be-
yond. Foundation and Trends in Information Re-
trieval, 3(4):333–389.

Stephen E. Robertson and Karen Sparck Jones. 1976.
Relevance weighting of search terms. Journal
of the American Society for Information science,
27(3):129–146.

Saksham Sachdev, Hongyu Li, Sifei Luan, Seohyun
Kim, Koushik Sen, and Satish Chandra. 2018. Re-
trieval on source code: A neural code search. In Pro-
ceedings of the 2nd ACM SIGPLAN International
Workshop on Machine Learning and Programming
Languages, MAPL 2018, page 31–41, New York,
NY, USA. Association for Computing Machinery.

Kavitha Srinivas, I. Abdelaziz, Julian T. Dolby,
and J. McCusker. 2020. Graph4Code: A ma-
chine interpretable knowledge graph for code.
arXiv:2002.09440.

Zhensu Sun, Y. Liu, Chen Yang, and Yu Qian. 2020.
PSCS: A path-based neural model for semantic code
search. arXiv:2008.03042.

Peilin Yang, Hui Fang, and Jimmy Lin. 2017. Anserini:
Enabling the use of Lucene for information retrieval
research. In Proceedings of the 40th International
ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, SIGIR ’17, page
1253–1256, New York, NY, USA. Association for
Computing Machinery.

Wei Yang, Kuang Lu, Peilin Yang, and Jimmy Lin.
2019. Critically examining the “neural hype”: Weak
baselines and the additivity of effectiveness gains
from neural ranking models. In Proceedings of the
42nd International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,
SIGIR’19, page 1129–1132, New York, NY, USA.
Association for Computing Machinery.

Andrew Yates, Kevin Martin Jose, Xinyu Zhang, and
Jimmy Lin. 2020. Flexible IR pipelines with Capre-
olus. In Proceedings of the 29th ACM International
Conference on Information & Knowledge Manage-
ment, CIKM ’20, page 3181–3188, New York, NY,
USA. Association for Computing Machinery.

Qihao Zhu, Zeyu Sun, Xiran Liang, Yingfei Xiong,
and Lu Zhang. 2020. OCoR: An overlapping-
aware code retriever. In Proceedings of the 35th
IEEE/ACM International Conference on Automated
Software Engineering, ASE ’20, page 883–894, New
York, NY, USA. Association for Computing Machin-
ery.


