National Technical University of Athens

Lyrics and Vocal Melody Generation conditioned on Accompaniment

Thomas Melistas
School of ECE

Greece
melistas.th@gmail.com

Abstract

In this paper we present a previously unex-
plored task, the generation of lyrics and vo-
cal melody for a given instrumental music
piece in the symbolic domain. We model the
above as a sequence-to-sequence task, using
a memory efficient Transformer architecture,
which we train on text event sequences that
describe entire songs. Towards this end, we
build a suitable dataset and apply musical anal-
ysis, compressing the instrumental part and
making it key-independent. We further de-
sign a novel architecture to decouple lyrics and
melody generation, making it possible to use
pretrained language models and conditioning
on lyrics. Finally, Mellotron is used to turn the
generated sequences into singing audio.

1 Introduction

A significant part of research on singing has
focused on information retrieval tasks, such as
lyrics or melody transcription (Stoller et al., 2019;
Nishikimi et al., 2019), as well as on singing voice
synthesis (Nishimura et al., 2016). Generating the
(symbolic) content of singing, namely lyrics and
vocal melody, has only recently started gaining
more attention. Relevant work has focused on gen-
erating lyrics for a specific music style or melody
and lyrics-conditioned vocal melody generation.

Vocal music coexists with instrumental in most
contemporary genres. However, despite the grow-
ing interest on studying the relation of lyrics and
vocal melody, the connection of both to the ac-
companiment remains overlooked. In this work
we aspire to fill this substantial gap.

We model the instrumental-conditioned gener-
ation of vocal melody and lyrics as a seq2seq
task. First, we create pairs of text event se-
quences, which we use to train a baseline encoder-
decoder Transformer architecture. We then pro-
pose a way to decouple lyrics from vocal melody
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generation, by inserting another decoder. Finally,
we bring this symbolic output into the audio do-
main and perform a subjective evaluation study,
using a singing voice synthesis model. In con-
trast to previous works that study vocal generation
on the sentence level, we model full songs, which
presents additional technical challenges.

Our main contributions to the field are the fol-
lowing: (a) We introduce the task of lyrics and vo-
cal melody generation conditioned on the accom-
paniment. (b) We build a suitable dataset for this
task by enforcing consistent tokenization. We ap-
ply musical analysis to compress the instrumental
part up to 20% of the original, resulting to faster
training. (c) We optimize the Transformer archi-
tecture in order to model full song sequences of
up to 60k tokens in a single GPU. (d) We pro-
pose an architecture that decouples lyrics and vo-
cal melody generation, providing the ability to use
pretrained language models and predefined lyrics.

We release all code, datasets and some gener-
ated samples'.

2 Related Work

Conditional Vocal Melody Generation In
(Madhumani et al., 2020) a combination of word
and syllable embeddings is used as input to an
LSTM encoder (Hochreiter and Schmidhuber,
1997) that uses a vector to attend to three separate
decoders, for note, duration and rest. Yu et al.
(2021) use an LSTM that takes as input lyrics
embeddings and noise vectors to sample MIDI
sequences, which are provided to another LSTM
alongside text embeddings and classified as real or
fake. Another approach (Liu et al., 2020) studies
singing voice generation without any melody
or lyrics information, using GANs (Goodfellow
et al., 2014) conditioned also on accompaniment.

'github.com/gulnazaki/lyrics—melody
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Lyrics Generation In (Vechtomova et al.,
2020) an LSTM-VAE creates latent representa-
tions of lyrics that condition lyrics generation
on audio embeddings. Lu et al. (2019) use an
encoder-decoder LSTM to generate lyrics, tak-
ing into account the only rhythmic quality of the
melody. In (Watanabe et al., 2018) conditioning
is done by concatenating each syllable to a local
window of the corresponding melody note, before
feeding it as input to an LSTM language model.

3 Dataset Description

Our dataset is built upon a subset of the Lakh
MIDI Dataset (LMD) (Raffel, 2016) that consists
of 45, 129 uniquely matched MIDI files.

3.1 Creating A More Consistent Dataset

LMD is not oriented towards the analysis of vo-
cals. Therefore, many files do not include a vocal
melody or synchronized lyrics. Moreover, the an-
notation of lyrics is not always consistent. Many
tracks include different sentence and verse separa-
tors, mixing of MIDI lyrics and metadata, as well
as inconsistent division of lyrics into sung sylla-
bles. The latter depends not only on the annota-
tor but on the way the lyrics are sung, resulting,
among others, to irregular tokenization of words.

In order to formalize our dataset, we construct
a pre-processing pipeline. We keep only English
lyrics, remove any metadata and use standard sen-
tence and verse separators. To derive the vocal
part, we assign each lyric to the closest note and
choose the track with the most matches. To make
the division of lyrics consistent and reversible at
inference time we enforce a strict syllabified for-
mat, using Phonetisaurus (Novak et al., 2015) for
grapheme-to-phoneme conversion. We split words
into syllables, each one ending at a vowel. If a
note corresponds to n > 1 syllables we divide it
to n equal duration notes and if a syllable spans
n > 1 notes we match it to the first one and assign
the next n — 1 notes to a special symbol.

After completing the above process we are left
with 8505 valid MIDI tracks.

3.2 Text Event Format

We create separate text event sequences for the in-
strumental and the vocal parts.

All sequences consist of the following types of
tokens: (1) Note on (a note of this pitch starts), (2)

Note off (a note ends), (3) Wait time (time passed
in MIDI ticks?).

wait time event note on event

‘W_2000’,"'W_84', '‘GUITAR_ON_54', 'BASS_ON_42', 'DRUMS_ON_35",
'DRUMS_ON_51", 'W_4', 'DRUMS_OFF_35', '/DRUMS_OFF_51", 'W_4',
'GUITAR_OFF_54', 'W_34', 'BASS_OFF_42'

note off event

Figure 1: Instrumental Text Event Representation

We restrict notes in the piano range, shifting
octaves if needed, resulting in 88 MIDI pitches.
All instruments are grouped into 8 classes (Guitar,
Bass, etc.) and each name is appended to the cor-
responding note token. An instrumental sequence
can be seen in Figure 1.

<in> new word <a>
(boundary event)

'IHO N, 'ON_72', 'W_490', '_OFF_","W_100", 'N_W', '"AH0', 'ON_69', 'W_245",
' OFF_', "W_245', 'N_W', "M AA1", 'ON_72", 'W_300", '_OFF_", 'W_220',
‘RKAHO T, "ON_72", 'W_245',\_0FF_', * R_","ON_70',"W_150', "_OFF_,

<ma> i
<rket> ma: extension event

Figure 2: Vocal Text Event Representation with
phonemes corresponding to the lyrics: in a marke(-e)t

Vocal sequences contain additional tokens: (1)
Syllable/phoneme (syllable of the following note),
(2) Extension (following note extends previous
syllable), (3) Boundary (comma, word, line or
verse separators) events.

For lyrics we use the extracted phonemes to re-
duce the vocabulary and account for rhyming and
homophones. Figure 2 shows a vocal melody se-
quence with phonemes preceding each note.

3.3 Chord Reduction

The above representation results in very long se-
quences when applied to full instrumental tracks,
imposing infeasible memory requirements and
slow training. A more compact representation can
benefit both model performance and robustness.
Vocal scores in jazz or orchestral music com-
monly use a reduced representation of the accom-
paniment that informs the singer about the har-
monic and rhythmical structure of a song. Inspired
by this, we create a chord reduction of the instru-
mental, using the music2/ library (Cuthbert and
Ariza, 2010). Individual instruments are merged
and every new note results in the formation of a

*Takes values in [1, 2000] (more tokens needed for larger

durations). Each tick corresponds to % seconds, T being

tempo in Beats Per Minute and R being the file resolution in
Pulses Per Quarter Note.



new chord. This method achieves a substantial re-
duction factor of é, as shown in Table 1.

\ Vocal \ Instrumental | Reduced ‘

1645 13041 3220
6115 59120 11730

median
max

Table 1: Number of tokens for Vocal, Instrumental and
Reduced Instrumental Sequences

We decide not to include the percussion part
and instead use notions such as beats and down-
beats events, which give more abstract but con-
crete rhythmical information. Besides the signif-
icant reduction in the instrumental sequences, we
avoid inserting noise to the process, since drum
parts are interpreted as pitches by music21.

3.4 Roman Numeral Analysis

To further capitalize on this chord representation,
we employ a type of musical analysis, called Ro-
man Numeral Analysis. Its core idea is that chords
and notes can be represented by a degree of the
musical scale they belong in®. Usage of roman nu-
merals reduces the token vocabulary and enables
us to model the relative position of chords, es-
sentially performing data augmentation, since all
songs are transposed to a common but abstract key.

note on event

downbeat event (roman numeral chord)

rest event beat event

AN
' DB_',"_REST_",'W_960","_B_*, "ON_I', "W_2000', 'W_1360",
"ON_I', "'W_160", "ON_I', "W_80", 'ON_I', 'W_240","_B_", "ON_V6",
"W_240', "ON_V6', "W_2000", 'W_1360", 'ON_V6', "W_240"

Figure 3: Instrumental Text Event Representation with
Roman Numeral Chords, Rests, Downbeats and Beats

We get a key estimation using the Krumhansl-
Schmuckler algorithm (Temperley, 1999) and
based on that we represent each chord as a roman
numeral. An example of this representation for in-
strumental sequences can be seen in Figure 3%,

We apply a similar procedure for the vocal
melody, by converting each note to a scale de-
gree. Since pitch information is important to get
more expressive vocal performances, we comple-
ment each token with its octave number.

3Uppercase roman numerals are used to represent major
chords, while lowercase represent minor ones. Numbers de-
note inversions and extra chord notes.

*Since the formed chords mostly succeed each other di-
rectly, we do not need note off events and instead use rest
events when required.

4 Proposed Method

4.1 Encoder-Decoder Architecture

We optimize a Transformer architecture to model
long sequences and use it as our baseline to gener-
ate vocal sequences, given the instrumental.

A drawback of the Transformer architecture is
that the memory footprint of the dot-product at-
tention mechanism scales quadratically with the
sequence length. To avoid this, we use the Per-
former (Choromanski et al., 2020), an architecture
that achieves linear space and time complexity by
using a mechanism called FAVOR+, which makes
an unbiased linear estimation of full-rank softmax
attention.

We further use reversible layers (Gomez et al.,
2017), storing the activations of only the last layer,
and feed-forward chunking as showcased in (Ki-
taev et al., 2020). We perform layer normaliza-
tion before each sublayer (pre-norm) (Chen et al.,
2018), reporting more stable training, with no
need to do warm-up. Finally, we use learnable po-
sitional embeddings and tie the token embeddings
of the decoder (Press and Wolf, 2017).

4.2 Decoupled Architecture

We augment the above architecture by adding a
separate decoder for lyrics. We use the encod-
ings of its last layer to further condition the vocal
melody decoder, adding a second cross-attention
layer to it (Libovicky et al., 2018). The architec-
ture is presented in detail in Figure 4.

It should be noted that in this architecture lyrics
are generated without any instrumental condition-
ing. While we experimented with models that also
use cross-attention in the lyrics decoder, we found
them to perform poorly and be much harder to
train in comparison to this simplified version.

We train our model to minimize the sum of the
cross-entropy losses of the lyrics text and the vo-
cal sequence (without phonemes). The lyrics de-
coder can use its own tokenization and the two
sequences are merged at inference time, follow-
ing the syllable tokenization process of Subsection
3.1. This decoupling allows us to predefine lyrics
and use prior knowledge, which we achieve by us-
ing a language model pretrained on English lyrics.

To this end, we use a distilled® version of GPT-2
(Radford et al., 2019) that fits our low-resource re-
quirements. We load the model’s weights into an

Shttps://huggingface.co/distilgpt2
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Figure 4: The Decoupled Architecture includes an in-
strumental encoder (bottom left), one decoder for lyrics
(top left) and one decoder for vocal melody (right) with
two cross-attention sublayers. The vocal melody de-
coder is conditioned by both instrumental and lyrics.

unconditional and causal decoder with FAVOR+
attention, which we then fine-tune on a dataset
of 263,666 complete song lyrics. The purpose
of this is twofold. As discussed in (Choroman-
ski et al., 2020), fine-tuning is necessary for a Per-
former model to utilize the weights of a pretrained
Transformer. Moreover, it helps our model adapt
to the style of lyrics text (verse-chorus structure,
repetition of words, onomatopoeia, etc.).

4.3 Experimental setup

We train (a) an encoder-decoder model on the
full instrumental representation of Subsection 3.2
(Vanilla Full - model A), (b) an encoder-decoder
on the reduced representation of Subsections 3.3,
3.4 (Vanilla - model B) and (¢) a decoupled model
on the latter representation (Decoupled - model C).

We use 6 layers with inner dimension of 512
and 8 attention heads for all models. The AdamW
optimizer (Loshchilov and Hutter, 2019) is used
with 0.001 learning rate and 0.1 weight decay.

During generation we use top-k sampling (Fan
et al., 2018) keeping the top 0.1 tokens. We also
take advantage of structural constrains in our rep-
resentation (e.g. note on followed by wait time
events only), by masking the valid tokens during
inference.

We report that training for 6 epochs with batch

size 8 takes a total of 74.6, 26.9 and 49.2 hours
in an NVIDIA Tesla T4 GPU for models A, B and
C respectively.

4.4 Subjective Evaluation

For 5 random instrumental tracks in the test set, we
convert the outputs of our three models to audio,
using a singing voice synthesis model called Mel-
lotron (Valle et al., 2020). We then mix it with the
synthesized instrumental. We ask 28 participant to
choose between these samples on the basis of: (a)
Rhythmic/Melodic Quality: how musical or inter-
esting the vocal part is, (b) Relation to the Music:
how well the vocal part fits with the instrumental,
(c¢) Lyrical Content: quality of the generated lyrics.
Table 2 shows the mean model preference values
for all three objectives.

Melody | Relation | Lyrics

Vanilla Full | 0.369 0.246* | 0.070
Vanilla 0.257%* 0.374 0.052
Decoupled | 0.374 0.380 | 0.878*

Table 2: Mean value of each model preference for all
28 users. * denotes statistical significance (p < 0.05)
using one-tail paired t-test (pairwise)

We observe that the reduced representation
favors the instrumental-vocal relation, since it
is more compact, but produces less interesting
melodies. The decoupled model performs well on
both metrics, which can be attributed to the sep-
arate modeling of the sequences, but does not re-
flect the independence between instrumental and
lyrics. Finally, the lyrics generated by the decou-
pled model are significantly superior, which can be
linked to the usage of a pretrained language model.

Using objective metrics to better understand the
performance of these models remains to be done.

5 Conclusions

In this paper, we presented a pipeline to generate
lyrics and vocal melody for any given instrumen-
tal MIDI file, using Transformer-based models. To
this end, we have built and released a dataset ori-
ented towards generation and study of vocals. We
report that compressing the instrumental represen-
tation leads to substantially faster training and fa-
vors its connection to the vocal part. We further
propose a decoupled architecture that allows us to
use prior knowledge from language models and
therefore generate more convincing lyrics.
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