TFW2V: An Enhanced Document Similarity Method for the
Morphologically Rich Finnish Language

Quan Duong,! Mika Hiimiiléiinen,'> Khalid Alnajjar'-?
firstname.lastname@{helsinki.fi}
1University of Helsinki, 2Rootroo Ltd, Finland

Abstract

Measuring the semantic similarity of different
texts has many important applications in Dig-
ital Humanities research such as information
retrieval, document clustering and text summa-
rization. The performance of different meth-
ods depends on the length of the text, the do-
main and the language. This study focuses
on experimenting with some of the current ap-
proaches to Finnish, which is a morphologi-
cally rich language. At the same time, we pro-
pose a simple method, TFW2V, which shows
high efficiency in handling both long text doc-
uments and limited amounts of data. Fur-
thermore, we design an objective evaluation
method which can be used as a framework for
benchmarking text similarity approaches.

1 Introduction

Identifying documents that describe similar top-
ics is a challenging yet important task. Detecting
similar documents automatically has a wide range
of digital humanities applications such as OCR
post-correction (Dong and Smith, 2018), automatic
clustering and linking of documents (Arnold and
Tilton, 2018; Riedl et al., 2019) and clustering of
semantic fields within a document (Himildinen
and Alnajjar, 2019).

Assessing document similarity automatically be-
comes an important task especially due to the often
unstructured nature of digital humanities research
data (see Mikeli et al. 2020). This makes it possi-
ble to handle large text corpora in a more organized
fashion by clustering similar texts together.

In this paper, we explore different approaches
to textual similarity detection, namely TF-IDF,
USE, Doc2Vec and our own proposed approach
named TFW2V!. Our approach combines the tra-
ditional TF-IDF method with word embeddings to

!Code available: https://github.com/ruathudo/tfw2v

163

improve the overall performance of the text simi-
larity method. Unlike the recent neural approaches
such as BERT (Devlin et al., 2018), RoBERTa (Liu
et al., 2019) or XLNet (Yang et al., 2019b), our
method does not rely on a large external corpus,
but can be fully trained on the texts the similarity
of which one is to assess. This is useful since our
model can then work on corpora that represent a
different era than what modern NLP models are
trained on, or even for languages that do not have
massive text collections readily available or are
spoken by communities that do not have access to
the computational resources needed to train large
neural language models.

2 Related work

A survey conducted by Beel et al. (2016) showed
that 83% of text-based recommendation systems
in digital libraries use TF—IDF. There is also a re-
cent survey paper on the current state of Finnish
NLP (Haméilédinen and Alnajjar, 2021). There is
a number of papers studying automatic detection
of genres (Dalan and Sharoff, 2016; Worsham and
Kalita, 2018; Gianitsos et al., 2019), which, as a
task, is not too far from ours. However, in this sec-
tion, we focus mainly on approaches on document
similarity.

Kim et al. (2019) have combined multiple doc-
ument representation approaches, which are TF-
IDF, LDA and Doc2Vec, to classify documents in a
semi-supervised fashion. Their results indicate that
combining the features of the aforementioned mod-
els enhanced the performance of the classification
task. Truscd (2019) has compared how different
text representation models perform when training
a Support Vector Machine (SVM) classifier. The
results show that Doc2Vec was the superior model
for the task addressed by the author, which is text
categorization. Duong et al. (2021b) also showed

Proceedings of the Workshop on Natural Language Processing for Digital Humanities (NLP4DH), pages 163—172
co-located with ICON-2021, December 16-19, 2021, Silchar, India. ©2021 NLP Association of India (NLPAI)

https://doi.org/10.26615/978-952-94-5833-2_019

that clustering Finnish text is more effective by
Doc2Vec compared to LDA.

A recent study by Marcificzuk et al. (2021)
compared WordNet —a manually constructed net-
work of concepts—, TF-IDF and word embeddings
extracted from Doc2Vec and BERT for unsuper-
vised classification of Polish text documents. Their
study showed that manually constructed knowl-
edge bases, i.e. WordNet in this case, is a valuable
resource for the task. Yang et al. (2016) merged
TF-IDF and Word Embeddings similarity scores to
build the recommendation system for similar bug
reports.

Li et al. (2019) have used text representation
models to extract keywords from short texts col-
lected from social media by employing a Tex-
tRank (Mihalcea and Tarau, 2004) algorithm which
constructs a network and traverses it using random
walk to discover the most important concepts. Text
representation models have also been utilized with
deep neural networks to classify text by Dogru
et al. (2021). TF-IDF and word embeddings have
also been used to assess the similarity of entities
(Hamaldinen et al., 2021). In particular, the authors
used the aforementioned methods to extract and
predict properties for Pokémon.

3 Experiments

In this section, we apply four of the existing
approaches to predict similarity of documents:
Doc2Vec, Universal Sentence Encoder (USE), term
frequency—inverse document frequency (TF-IDF)
and average weighted word vector (AvgWV). Later
on, we propose a new method to optimize TF-IDF
by using a word embeddings model (TFW2V). All
the experiments use the same datasets, the sampling
process of which will be presented in the following
section.

3.1 Dataset

We run the experiments based on the Yle News
corpus. This corpus contains news articles pub-
lished from 2011 to 2018 by the Finnish broad-
casting company Yle (Yleisradio). The corpus is
distributed through the Language Bank of Finland
(Kielipankki)? and is freely available for research
use>. There are more than 700,000 articles writ-
ten in Finnish, each of which belongs to different
http://urn.fi/urn:nbn:fi:

1b-2017070501

3 According to the license we cannot redistribute datasets
derived from these data.

categories with top-level categories such as Sport,
Politics and Transportation. These categories have
been defined by human authors and they have been
coupled with keyword tags. For example, an article
about a hockey match has the tags: urheilu (sports),
Jjddkiekon (ice-hockey), miesten (men’s), sm-liiga
(The Finnish National League). The keyword tags
illustrate well the contents of each article.

Our study focuses on tackling the text similarity
problem for documents as opposed to individual
sentences or paragraphs. For this reason, we de-
cided to filter the corpus to include only the articles
that are between 200 and 600 words for the ex-
periments. Next, we randomly sample 10 datasets
from the filtered corpus so that each dataset con-
tains 2000 unique articles. Thus, all datasets are
independent from each other with no overlap. We
only optimize the models for the first dataset as the
training set. For testing, the models are applied to
the rest of datasets with the extracted parameters
without any modification.

3.2 TF-IDF

The first method we experiment with is TF-IDF. As
stated in section 2, this is a very simple method but
it is very effective in many cases. The idea of this
method can be expressed as follows: In a document,
if a term (word) appears more frequently, it is given
more weight, or a more important score. In contrast,
if a term appears in many other documents in the
corpus, it is regarded as less important or assumed
to be a common word not descriptive enough for the
document. The concurrence of these two metrics
is combined in the equation below, to indicate the
importance of a term in the text.

N

DFZ-)

In this equation, the W; ; is the weight of a term
i in document j, T'F; ; is frequency of term ¢ in
document j, N is the number of documents in the
corpus and D F; refers to the number of documents
where the term ¢ appears. The weights hence tend
to filter out common terms and emphasize the im-
portant keywords of a given document. The value
of TF-IDF weight is in range [0, 1].

Before running the experiment, the text data is
cleaned by removing punctuation and stopwords
using NLTK (Bird et al., 2009). For each sampled
dataset, we calculate the TF-IDF weights for all
documents. The pairs of terms and weights are
feature vectors for each document. By using the

W@j = TFZ'J‘ X log(

164

http://urn.fi/urn:nbn:fi:lb-2017070501
http://urn.fi/urn:nbn:fi:lb-2017070501

cosine similarity function, we can measure the sim-
ilarity between feature vectors. In order to not
depend on magnitudes of vectors but their angles,
this is a common metric to compute the semantic
similarity for encoded text (Singhal, 2001). After
having similarity scores calculated, they are saved
for each pair of documents in dataset and sorted
in descending order. From now, the top N similar
documents can be queried from a given document.

3.3 Average Weighted Word Vectors

Extending from the previous section 3.2, we
introduce a combined method between TF-IDF
and word embeddings algorithms called average
weighted word vectors (AvgW V). This method was
used in several previous researches to get a better
representation for text document. Rani and Lobiyal
(2021) used this method to get the representation
of sentences in document to find the similarity be-
tween them. With the same approach, Charbonnier
and Wartena (2018) applied to map the definition
of an acronym with it context. The idea of this
method is very easy to conduct. Both word embed-
dings and TF-IDF are trained for the given corpus.
The representation of a document is the average
of embedded vectors multiplied with the TF-IDF
scores (weights) for all words in that document.
By that, the TF-IDF scores punish the insignificant
words and the influenced words have more impact
on the averaged vector. The equation below is used
to formulate the method.

N

Where B is the vector representation of a doc-
ument, /N is the number of word features. For
each word 7, we calculate the product of its TF-IDF
score (T'F") with its word vector (W) to get a new
weighted vector. All weighted vectors correspond-
ing to the word features are then averaged as the
representation of document D.

The word embeddings model used in our ex-
periment is based on Word2Vec from the work of
Mikolov et al. (2013). The model was trained in
20 epochs using the Gensim library with a vector
size of 128, skip-gram method, negative windows
of 5 for each sample dataset. Inherit from previ-
ous TF-IDF section 3.2, the averaged vectors are
applied cosine distance to get the similarity score
for documents.

165

3.4 Doc2Vec

Documents originally stored in text format are con-
venient for humans to read, but they pose a chal-
lenge for computational tasks. Transforming from
characters to a fixed length numeric representation
is helpful for many purposes, for example: docu-
ment retrieval, semantic comparison. One vector
representation of text has been introduced by Har-
ris (1954) as a bag of words method. Even though
this method is easy to compute and it shows the
efficiency in many cases, there are still some weak-
nesses such as the lack of importance given to the
word order and it suffers from data sparsity and
high dimensionality. It is also missing the seman-
tic meaning between the words, for example, the
words “dog” and “cat” are more similar than “dog’
and “car” but they are treated equally in the Bag of
Words method.

Doc2Vec (Le and Mikolov, 2014) is a document
embeddings algorithm that comes to solve the issue
from Bag of Words. The advantage of Doc2Vec is
to vectorize a whole text document regardless of
its length and to provide the semantic relationship
of words.

We use the existing implementation of Doc2Vec
in Gensim library (Rehiiek and Sojka, 2010). Be-
fore training, the text is tokenized and all stop-
words are removed using NLTK. The setup on
Doc2Vec model is kept in default with a dimen-
sionality to 100 for vector size, negative sampling
of 5 words and train for 30 epochs. We train model
for each dataset separately. Thus there are 10 differ-
ent Doc2Vec models corresponding to the datasets.
Cosine similarity is again applied to these dense
document vectors from the Doc2Vec model to get
the similarity scores between documents.

bl

3.5 Universal Sentence Encoder

The next approach we experienced is using the
Universal Sentence Encoder (USE) (Yang et al.,
2019a) model for multi-languages. The USE model
was trained based on the Transformer architecture
(Vaswani et al., 2017) for over 16 languages which
shows a very good performance for various seman-
tic textual similarity tasks. However, this model
does not support Finnish.

Reimers and Gurevych (2020) introduced a
novel way to transfer knowledge of a sentence
encoder model from one language to another.
On that paper, DistilmBERT (Sanh et al., 2019)
model, a distilled version of BERT (Devlin et al.,

2018) trained on 104 different languages *, was
selected as student model. It is then adapted to
USE model (Yang et al., 2019a) (as a teacher
model) to support 50+ languages including Finnish.
The pre-trained model was published with the
name “distiluse-base-multilingual-cased-v2” in
the Sentence-Transformers library (Reimers and
Gurevych, 2019).

We applied the pre-trained model without any
modifications. The maximum length support for
the text is 512 tokens. The whole document is
encoded automatically by the model and output as
a dense vector. With the collected vectors we are
able to compare the similarity between documents
using cosine similarity.

3.6 Enrich TF-IDF by Word Embeddings
(TFW2YV)

The following part of this paper moves on to de-
scribe our modified version of TF-IDF algorithm.
As introduced in section TF-IDF 3.2, this algorithm
is very simple to compare similarity of documents.
However, it also has many drawbacks. Firstly, the
position of words in text is completely ignored.
Secondly, because of relying on the lexical features,
it skips semantic relationship of words. For exam-
ple, with the synonyms or plural form of words,
TF-IDF treats them as separated features without
any linking. This will have a huge impact on mor-
phologically rich languages such as Finnish, which
contains many inflectional forms for all words and
their compounds (see Duong et al. 2021a) even
when lematization is applied. To overcome the
issues, we propose a new algorithm that uses a
word embeddings model to enrich the TF-IDF re-
sult. The details of the algorithm are presented in
pseudo code 1.

0.05
The

0.1
quick

0.1
brown

0.5
fox

0.2
jumps

0.05
over

The
0.05

the
0.05

mat
0.15

sat
0.3

cat
0.4

on
0.05

Figure 1: The two texts have the words Fox and Cat
with high TF-IDF weights. At the same time, they have
semantic similarity in the Word2Vec model, so that the
documents can be linked. Same is applied to the words
Jumps and Sat

The general idea of the algorithm can be ex-

“Provided through the Transformers Python library
(Wolf et al, 2019) https://huggingface.co/
distilbert-base-multilingual-cased

166

plained as follows. We train a word embeddings
model from the same corpus, so the words or terms
of documents have semantic relationships. The
word embeddings model can be used to measure
the similarity of two terms. Turning now to TF-IDF
output, the terms or features of a document con-
tain the important information with higher weights.
These important terms of two documents can be
semantically linked by using a trained word embed-
dings model. An example is shown in the figure 1
to better explain.

The level of similarity between two group fea-
tures is used to give additional reward on the final
similarity score between a pair of documents. For
example, if document A has important features
(term1, term3, term8) and document B has impor-
tant features (term?2, term3, term9), the similarity
score between document A and B can be added a
small portion from the semantic similarity score
between two features group. Similar to AvgWV
section 3.3, the Word2Vec (W2V) model was used
for word embeddings. The model was trained in 20
epochs using the Gensim library with a vector size
of 128, skip-gram method, negative windows of 5
for each sample dataset.

To determine how much reward should be added
to the TF-IDF similarity score, we design three pa-
rameters: MinWeight, MaxTerm and Alpha. Let
take a look at the algorithm 1. Given a list of fea-
tures (terms with weights) from a document and a
list of similar documents as the result from TF-IDF,
we want to change the result or re-rank it. Firstly,
the features are sorted in the descending order of
weight. The MinWeight parameter is used to filter
important features, higher it is, less features are
kept for comparison (lower bound). In some cases,
the number of features considered as essential is
too high, and we want to trim them to a certain num-
ber by the MaxTerm number (upper bound). For
the list of similar documents, we apply the same
process. After that, we get the similarity score
between given features and compared features by
W2V model. Note that, the W2V model generated
by Gensim provides a method to compute similar-
ity score of two set of words by averaging vectors
for each set °. Next, the new similarity score is
calculated by the following formula:

WV Score x Alpha + SimScore
1+ Alpha

*https://radimrehurek.com/gensim/
models/keyedvectors.html#gensim.models.
keyedvectors.KeyedVectors.n_similarity

NewScore =

https://huggingface.co/distilbert-base-multilingual-cased
https://huggingface.co/distilbert-base-multilingual-cased
https://radimrehurek.com/gensim/models/keyedvectors.html#gensim.models.keyedvectors.KeyedVectors.n_similarity
https://radimrehurek.com/gensim/models/keyedvectors.html#gensim.models.keyedvectors.KeyedVectors.n_similarity
https://radimrehurek.com/gensim/models/keyedvectors.html#gensim.models.keyedvectors.KeyedVectors.n_similarity

Algorithm 1 Enrich TF-IDF

procedure ENRICHTFIDF(Features, SimDocs, W2V, MinW eight, MaxTerm, Alpha)

sort Features (TermID, Weight)

in DESC order of Weight

filter Features have Weight < MinWeight
trim Features to MaxTerm if length Features > MaxTerm
for SimFeatures, SimScore in SimDocs do

sort SimFeatures (TermID, Weight)

in DESC order of Weight

filter SimFeatures have Weight < MinWeight

trim SimFeatures to MazxTerm if length SimFeatures > MaxTerm
WV Score =W2V.calculate_similarity(Features, SimFeatures)

NewScore = (WV Score x Alpha + SimScore)/(1 4+ Alpha)

save NewScore
end for
end procedure

Where the SimScore is the similarity score from
TF-IDF, WVScore is the similarity score from
W2V model for the important features, and Al-
pha is the parameter to decide how W2V similarity
influences the current score. When Alpha is equal
to 0, it has no effect, and when it is set to 1, the new
score is the average of the two scores. Larger Al-
pha will have a higher recall which is bound to link
an increasing number of unexpected documents to-
gether, while a smaller number yields a more con-
servative end result. In our experiments, we empiri-
cally set MinWeight = 0.08, MaxLength = 20
and Alpha = 0.1. These parameters are consistent
for all datasets. Finally, the results are re-ranked
for the new similarity scores.

4 Evaluation

Turning now to the evaluation, as previously stated,
we have 10 independent datasets for benchmarking.
All the experimented parameters from the mod-
els are applied consistently for those datasets. We
assess the performance of the 5 methods TF-IDF,
AvgWYV, Doc2Vec, USE and TFW2V by three cri-
teria: Top-N Precision, Top-N BLEU score and
Top-N ranking loss. We will explain those metrics
in the following sections of the paper.

4.1 Ground Truth

The ground truth for evaluation is created by the
tags attached to articles. Because the tags are man-
ually labeled by human authors to illustrate the
content of articles, comparing the similarity be-
tween sets of tags can reflect the similarity of arti-
cles. There are many ways to measure similarity
of two sets, such as counting overlapping tags. In

167

machine translation, BLEU score (Papineni et al.,
2002) is a popular method to evaluate the translated
sentence quality. BLEU method calculates the sim-
ilarity between two sets of words, very close to
our case. The difference is only that two sentences
in machine translation have N-grams dependence
while similarity of two sets of tags are not relied
on the position of tags. We use a simplified ver-
sion of BLEU score, which is calculating score for
unigrams without considering other higher order
N-grams. After having BLEU scores for all docu-
ment pairs, we sort them in descending order for
evaluation.

4.2 Top-N Precision

The first metric is Top-N Precision. The metric
can be presented as in the Top-N documents pre-
dicted as the most similar to a given one, i.e. how
many documents are correctly ranked. For instance,
given a document with top 100 similar documents,
there are 40 documents that are ranked correctly
in the top 100, the precision for it is 40%. The
precision is calculated for all 2000 documents and
averaged for each dataset. The formula below is to
calculate the precision, where the D),..q is a set of
predicted documents, D, is a set of ground truth,
and N is the number of documents for Top-N:

z Dpred N Dreal
N

In the figure 2, the precision for Top-30 is
presented. For all the 10 datasets in figure 2,
the TFW2V model outperforms the other mod-
els clearly with an 26.09% average (avg) accu-
racy. The Doc2Vec model has the lowest accu-
racy (12.70% avg). While the USE model shows

Precision =

2!

o

2

Precision (%)
G S

=
o

w

=}

1 2 3 4 5 6 7 8 9

N Doc2Vec

10

Datasets

Figure 2: Precision accuracy for all datasets on Top-30 similarity. Higher is better.

28

zﬁ =

24

N
N

Precision (%)
)
o

Al

16

14

=

° —
=
12 =
Doc2Vec-30 USE-30 TFIDF-30 AvgWV-30 TFW2V-30 Doc2Vec-100 USE-100 TFIDF-100 AvgWV-100 TFW2V-100

Model - Top N

Figure 3: Precision accuracy for all datasets on Top-30 and Top-100 similarity. Higher is better.

much better results compared to Doc2Vec (18.15%
avg), it is still inferior to TF-IDF (25.76% avg).
The AvgWYV is approximately comparable with
Doc2Vec with slightly better numbers (13.17%
avg). Similar results also take place for the Top-
100, where the TFW2V surpassed the other models
in every dataset. Therefore, to have a better vi-
sualization, we use boxplot to illustrate not only
the difference between models, but also the Top-N
variants.

The figure 3 demonstrates the precision for both
Top-30 and Top-100 results. It is interesting that
the results from Doc2Vec (18.51% avg), AvgWV
(18.38% avg) and USE (21.64% avg) are signif-
icantly improved for the Top-100. This can be

168

explained as the more relaxing the boundary, the
higher the chance a document is predicted correctly
in the Top-N list. However, the TF-IDF result has
not improved. Despite depending on the TF-IDF
results, TFW2V-100 still shows a slight increase
(26.41% avg) compared to Top-30 results.

4.3 Top-N BLEU score

The next metric is Top-N BLEU score to measure
how relevant a group of similar documents is to a
given document. The way to conduct this metric
is very similar to calculating the BLEU score for
ranking in the Ground Truth section 4.1. We cal-
culate the BLEU score on a unigram level for the
tags of a given document against the Top-N similar

240

I

220

200

HH

BLEU Score

160

T
p

140

I

T —
[

T =
= =

Doc2Vec-30 USE-30 TFIDF-30 AvgWV-30

TFW2V-30 Doc2Vec-100

USE-100 TFIDF-100 AvgWV-100 TFW2V-100

Model - Top N

Figure 4: Sum of BLEU scores for 2k documents in each dataset. All datasets are evaluated for Top-30 and

Top-100 similarity. Higher is better.

documents tags. These scores are then averaged
for N similar documents. From there, we sum all
the averaged BLEU scores for 2000 documents in
a dataset. The averaged BLEU score is calculated
as follow:

SN BLEU(T,T)
N

where 7' is the tags from a given document and
T; is the tags from similar documents and N is the
number of Top-N. From the results we observed,
the TFW2V model again outperforms the other
models in all datasets. The boxplot in figure 4
shows the precise expression of performances for
all models. We can see, Doc2Vec still remains less
effective, around 160 for Top-30 and 139 for Top-
100 on average. Similar numbers to Doc2Vec come
from AvgWV method. The USE model results (186
and 145) are still lower compared to TF-IDF (228
and 160). Our proposed model TFW2V showed the
improvement to TF-IDF with 233 and 166 scores
on both Top-30 and Top-100 respectively.

The overall result for Top-30 is higher than Top-
100. This is understandable as the more documents
in Top-N there are, the more irrelevant ones making
to the list will make the average scores decrease.

Score =

4.4 Top-N Ranking loss

The final metric we want to introduce is Top-N
Ranking loss. This metric reflects how far a pre-
dicted position of similar documents is to the real

169

order in ground truth for the Top-N. For example,
in Top-30, we compare 30 predicted document or-
ders to their real orders. If a predicted document
has the position 5 and its real position is 45, the
loss between the two orders is 40. Thus, the aver-
age loss for all documents is calculated using the
Mean Absolute Error (MAE) function. The MAE
loss is then divided for the length of the dataset
(length of max rank) for normalization. The for-
mula below is for calculating MAE loss between
two positions P (ground truth) and P (prediction)
for each document in Top-N with S is the length of
the dataset.

SN P — B
N xS

Loss =

We got the result for this metric illustrated in
figure 5. This time, both Doc2Vec and AvgWV
models show the highest loss at Top-30 with loss
around 0.29. Interestingly, they are a bit better
than the USE model at Top-100 (0.30 vs 0.31).
TF-IDF is still obviously impressive compared to
the previous ones with 0.24 for Top-30 and 0.29
for Top-100. Though, TFW2V is continuing to
achieve the best result with the lowest losses of
0.23 and 0.28 for Top-30 and Top-100 respectively.
This also indicates that the TFW2V model gives
less irrelevant documents in Top-N than the other
models.

0.32

<
N
@

T
T

Ranking Loss

o
N
o

—
T

0.22

—
T

HH
2l
i
all
i

Doc2Vec-30 USE-30 TFIDF-30 AvgWV-30

TFW2V-30 Doc2Vec-100

USE-100 TFIDF-100 AvgWV-100 TFW2V-100

Model - Top N

Figure 5: MAE Ranking loss for all datasets on Top-30 and Top-100 similarity. Lower is better.

5 Conclusion

In summary, we have presented a simple method
to improve the TF-IDF algorithm by using a word
embeddings model. The proposed method outper-
forms the more complex models like Doc2Vec and
USE. We also compared it to a popular method
AvgWYV which use the same combination of TF-
IDF and Word2Vec but in different way. It is very
obvious that our proposed approach is surpassing
the AvgWV model. The weakness of AvgWYV is
that it’s hard to control the averaged vector repre-
sentation of a document when all words and their
TF-IDF weights are taken into account. Addition-
ally, the impact from word vectors could come to
too strong in some cases, which create the bias in
the final decision.

In our method TFW2V, we can control the effect
of word embedding model on the similarity score.
At the same time, not all the words are considered
into the enhancing process but the important ones.
Thus, it is more stable, flexible and controllable
to apply in various purposes. For example, in the
document retriever system, the parameters can be
set to get the relevant result as priority. On the other
hand, in a recommender system, the parameters can
be adjusted to get more creative result, thus it can
look up for the under-discovered articles.

It is clearly observable that with a morphologi-
cally rich language like Finnish, TF-IDF still works
very effectively. However, by combining it with a
Word2Vec model and our algorithm 1, the result

170

is significantly enhanced. The method is entirely
unsupervised and works well with a small dataset
like in our experiment with only 2000 samples.

In the future work, we will experiment this
method for more languages and different lengths
of document. The source code of this project will
be provided as a Python library® which is easy to
install and apply for any DH research. The lack
of dependency on neural language models trained
on massive amounts of data makes our approach
applicable in scenarios where such amounts of text
are unfeasible to obtain.

References

Taylor Arnold and Lauren Tilton. 2018. Cross-
discourse and multilingual exploration of textual cor-
pora with the DualNeighbors algorithm. In Pro-
ceedings of the Second Joint SIGHUM Workshop on
Computational Linguistics for Cultural Heritage, So-
cial Sciences, Humanities and Literature, pages S0—
59, Santa Fe, New Mexico. Association for Compu-
tational Linguistics.

Joeran Beel, Bela Gipp, Stefan Langer, and Corinna
Breitinger. 2016. Research-paper recommender sys-
tems : a literature survey. International Journal on
Digital Libraries, 17(4):305-338.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python: analyz-
ing text with the natural language toolkit. " O’Reilly
Media, Inc.".

®https://github.com/ruathudo/t fw2v

https://www.aclweb.org/anthology/W18-4506
https://www.aclweb.org/anthology/W18-4506
https://www.aclweb.org/anthology/W18-4506
https://doi.org/10.1007/s00799-015-0156-0
https://doi.org/10.1007/s00799-015-0156-0
https://github.com/ruathudo/tfw2v

Jean Charbonnier and Christian Wartena. 2018. Us-
ing word embeddings for unsupervised acronym dis-
ambiguation. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 2610-2619, Santa Fe, New Mexico, USA. As-
sociation for Computational Linguistics.

Erika Dalan and Serge Sharoff. 2016. Genre classifica-
tion for a corpus of academic webpages. In Proceed-
ings of the 10th Web as Corpus Workshop, pages 90—
98, Berlin. Association for Computational Linguis-
tics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
deep bidirectional transformers for language under-
standing.

Hasibe Busra Dogru, Sahra Tilki, Akhtar Jamil, and
Alaa Ali Hameed. 2021. Deep learning-based clas-
sification of news texts using doc2vec model. In
2021 Ist International Conference on Artificial Intel-
ligence and Data Analytics (CAIDA), pages 91-96.

Rui Dong and David Smith. 2018. Multi-input atten-
tion for unsupervised OCR correction. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 2363-2372, Melbourne, Australia. As-
sociation for Computational Linguistics.

Quan Duong, Mika Haméldinen, and Simon Hengchen.
2021a. An unsupervised method for OCR post-
correction and spelling normalisation for Finnish. In
Proceedings of the 23rd Nordic Conference on Com-
putational Linguistics (NoDaLiDa), pages 240-248,
Reykjavik, Iceland (Online). Linkoping University
Electronic Press, Sweden.

Quan Duong, Lidia Pivovarova, and Elaine Zosa.
2021b. Benchmarks for unsupervised discourse
change detection. In Proceedings of the 6th Inter-
national Workshop on Computational History.

Efthimios Gianitsos, Thomas Bolt, Pramit Chaudhuri,
and Joseph Dexter. 2019. Stylometric classification
of ancient Greek literary texts by genre. In Proceed-
ings of the 3rd Joint SIGHUM Workshop on Com-
putational Linguistics for Cultural Heritage, Social
Sciences, Humanities and Literature, pages 52—60,
Minneapolis, USA. Association for Computational
Linguistics.

Mika Héamildinen and Khalid Alnajjar. 2019. Let’s
face it: Finnish poetry generation with aesthetics and
framing. In 12th International Conference on Nat-
ural Language Generation, pages 290-300, United
States. The Association for Computational Linguis-
tics.

Mika Himildinen and Khalid Alnajjar. 2021. The cur-
rent state of Finnish NLP. In Proceedings of the
Seventh International Workshop on Computational
Linguistics of Uralic Languages, pages 65-72.

171

Mika Hamildinen, Khalid Alnajjar, and Niko Partanen.
2021. How cute is Pikachu? gathering and ranking
Pokémon properties from data with Pokémon word
embeddings. arXiv preprint arXiv:2108.09546.

Zellig S Harris. 1954. Distributional structure. Word,
10(2-3):146-162.

Donghwa Kim, Deokseong Seo, Suhyoun Cho, and
Pilsung Kang. 2019. Multi-co-training for docu-
ment classification using various document represen-
tations: Tf-idf, 1da, and doc2vec. Information Sci-
ences, 477:15-29.

Quoc Le and Tomas Mikolov. 2014. Distributed repre-
sentations of sentences and documents. In Interna-

tional conference on machine learning, pages 1188—
1196.

Jun Li, Guimin Huang, Chunli Fan, Zhenglin Sun, and
Hongtao Zhu. 2019. Key word extraction for short
text via word2vec, doc2vec, and textrank. Turkish
Journal of Electrical Engineering & Computer Sci-
ences, 27(3):1794-1805.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Eetu Mikeld, Krista Lagus, Leo Lahti, Tanja
Sdily, Mikko Tolonen, Mika Hamildinen, Samuli
Kaislaniemi, and Terttu Nevalainen. 2020. Wran-
gling with non-standard data. In Proceedings of the
Digital Humanities in the Nordic Countries 5th Con-
ference, number 2612 in CEUR Workshop Proceed-
ings, pages 81-96, Germany. CEUR-WS.org.

Michat Marcinczuk, Mateusz Gniewkowski, Tomasz
Walkowiak, and Marcin Bedkowski. 2021. Text doc-
ument clustering: Wordnet vs. TF-IDF vs. word em-
beddings. In Proceedings of the 11th Global Word-
net Conference, pages 207-214, University of South
Africa (UNISA). Global Wordnet Association.

Rada Mihalcea and Paul Tarau. 2004. Textrank: Bring-
ing order into text. In Proceedings of the 2004 con-
ference on empirical methods in natural language
processing, pages 404—411.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311-318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

https://www.aclweb.org/anthology/C18-1221
https://www.aclweb.org/anthology/C18-1221
https://www.aclweb.org/anthology/C18-1221
https://doi.org/10.18653/v1/W16-2611
https://doi.org/10.18653/v1/W16-2611
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.1109/CAIDA51941.2021.9425290
https://doi.org/10.1109/CAIDA51941.2021.9425290
https://doi.org/10.18653/v1/P18-1220
https://doi.org/10.18653/v1/P18-1220
https://aclanthology.org/2021.nodalida-main.24
https://aclanthology.org/2021.nodalida-main.24
http://ceur-ws.org/Vol-2981/paper5.pdf
http://ceur-ws.org/Vol-2981/paper5.pdf
https://doi.org/10.18653/v1/W19-2507
https://doi.org/10.18653/v1/W19-2507
https://doi.org/10.18653/v1/w19-8637
https://doi.org/10.18653/v1/w19-8637
https://doi.org/10.18653/v1/w19-8637
https://doi.org/https://doi.org/10.1016/j.ins.2018.10.006
https://doi.org/https://doi.org/10.1016/j.ins.2018.10.006
https://doi.org/https://doi.org/10.1016/j.ins.2018.10.006
https://aclanthology.org/2021.gwc-1.24
https://aclanthology.org/2021.gwc-1.24
https://aclanthology.org/2021.gwc-1.24
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135

Ruby Rani and Daya K. Lobiyal. 2021. A weighted
word embedding based approach for extractive text

summarization. Expert Systems with Applications,
186:115867.

Radim Rehiifek and Petr Sojka. 2010. Software
Framework for Topic Modelling with Large Cor-
pora. In Proceedings of the LREC 2010 Workshop
on New Challenges for NLP Frameworks, pages 45—
50, Valletta, Malta. ELRA. http://is.muni.cz/
publication/884893/en.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing.
Association for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2020. Mak-
ing monolingual sentence embeddings multilin-
gual using knowledge distillation. arXiv preprint
arXiv:2004.09813.

Martin Riedl, Daniela Betz, and Sebastian Padé. 2019.
Clustering-based article identification in historical
newspapers. In Proceedings of the 3rd Joint
SIGHUM Workshop on Computational Linguistics
for Cultural Heritage, Social Sciences, Humanities
and Literature, pages 12—17, Minneapolis, USA. As-
sociation for Computational Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. ArXiv,
abs/1910.01108.

Amit Singhal. 2001. Modern information retrieval: A
brief overview. IEEE Data Eng. Bull., 24:35-43.

Maria Mihaela Truscd. 2019. Efficiency of svm clas-
sifier with word2vec and doc2vec models. In Pro-
ceedings of the International Conference on Applied
Statistics, volume 1, pages 496-503.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998—6008.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Fun-
towicz, et al. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv
preprint arXiv:1910.03771.

Joseph Worsham and Jugal Kalita. 2018. Genre identi-
fication and the compositional effect of genre in liter-
ature. In Proceedings of the 27th International Con-
ference on Computational Linguistics, pages 1963—
1973, Santa Fe, New Mexico, USA. Association for
Computational Linguistics.

172

Xinli Yang, David Lo, Xin Xia, Lingfeng Bao, and Jian-
ling Sun. 2016. Combining word embedding with
information retrieval to recommend similar bug re-
ports. In 2016 IEEE 27th International Symposium
on Software Reliability Engineering (ISSRE), pages
127-137.

Yinfei Yang, Daniel Cer, Amin Ahmad, Mandy
Guo, Jax Law, Noah Constant, Gustavo Hernandez
Abrego, Steve Yuan, Chris Tar, Yun-Hsuan Sung,
Brian Strope, and Ray Kurzweil. 2019a. Multi-
lingual universal sentence encoder for semantic re-
trieval.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le.
2019b. Xlnet: Generalized autoregressive pretrain-
ing for language understanding. Advances in neural
information processing systems, 32.

https://doi.org/https://doi.org/10.1016/j.eswa.2021.115867
https://doi.org/https://doi.org/10.1016/j.eswa.2021.115867
https://doi.org/https://doi.org/10.1016/j.eswa.2021.115867
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/2004.09813
http://arxiv.org/abs/2004.09813
http://arxiv.org/abs/2004.09813
https://doi.org/10.18653/v1/W19-2502
https://doi.org/10.18653/v1/W19-2502
https://www.aclweb.org/anthology/C18-1167
https://www.aclweb.org/anthology/C18-1167
https://www.aclweb.org/anthology/C18-1167
https://doi.org/10.1109/ISSRE.2016.33
https://doi.org/10.1109/ISSRE.2016.33
https://doi.org/10.1109/ISSRE.2016.33
http://arxiv.org/abs/1907.04307
http://arxiv.org/abs/1907.04307
http://arxiv.org/abs/1907.04307

