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Abstract

Named entity recognition is of high interest to
digital humanities, in particular when mining
historical documents. Although the task is ma-
ture in the field of NLP, results of contemporary
models are not satisfactory on challenging doc-
uments corresponding to out-of-domain gen-
res, noisy OCR output, or old-variants of the
target language. In this paper we study how
model transfer methods, in the context of the
aforementioned challenges, can improve his-
torical named entity recognition according to
how much effort is allocated to describing the
target data, manually annotating small amounts
of texts, or matching pre-training resources. In
particular, we explore the situation where the
class labels, as well as the quality of the doc-
uments to be processed, are different in the
source and target domains. We perform ex-
tensive experiments with the transformer ar-
chitecture on the LitBank and HIPE historical
datasets, with different annotation schemes and
character-level noise. They show that annotat-
ing 250 sentences can recover 93% of the full-
data performance when models are pre-trained,
that the choice of self-supervised and target-
task pre-training data is crucial in the zero-shot
setting, and that OCR errors can be handled by
simulating noise on pre-training data and re-
sorting to recent character-aware transformers.

1 Introduction

Due to the massive effort to digitize and transcribe
historical documents, the field of digital humanities
is facing the challenges of digesting and analyzing
large quantities of texts.

With the continuous advancements of natural lan-
guage processing (NLP), there is a growing interest
in applying tools such as named entity recognition
(NER) on historical documents. Indeed, identify-
ing people, places, and other historical entities is
crucial to understand the historical context, and
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Models LitBank HIPE
Off Spacy, en_core_web_sm 21.27 12.35
the Spacy, en_core_web_trf 28.36 19.60
shelf Stanford CoreNLP 23.59 31.23
Boros et al. - 63.20

SOTA Juetal. 68.30* -
Ours Zero-shot 70.44 13.73
Full 81.53 62.32

Table 1: Off-the-shelf NER performance on historical
texts from the LitBank and HIPE test sets in a zero-shot
setting and performance of State-Of-The-Art systems
trained on target data. Reported values are F1-scores.
* denotes a somewhat different experimental setting,
which makes this result incomparable.

having the ability to do so automatically is a major
step forward.

It facilitates the exploration of massive corpora
by identifying, counting and extracting textual
clues, among others to enrich a database, which can
help to systematically explore the information re-
ported in these documents. But the variety present
in historical texts, compared to modern ones, makes
the evaluation and application of NLP techniques
quite difficult. In particular, apart from the fact
that these documents relate to different domains,
the evolution of language, as well as the noise due
to optical character recognition (OCR) errors, pre-
clude using off-the-shelf systems.

NER success, like for other NLP tasks, is highly
dependent on the corpus on which the system has
been trained, and most of the available named entity
(NE) corpora use contemporary texts with contem-
porary concerns. For example, off-the-shelf NER
systems such as SpaCy (Honnibal et al., 2020) or
Stanford’s CRF-NER (Manning et al., 2014) do
not yield acceptable results on historical texts as
evidenced in Table 1. Therefore, domain adap-
tation and the zero-shot setting are very relevant
to applying NLP on historical documents. In this
study, zero-shot setting denotes the training of a
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system on contemporary data and an evaluation on
historical data.

The goal of this study is to evaluate the effort re-
quired to obtain relevant NER results on historical
documents. This effort can relate to annotation in
the target domain, transfer of contemporary models,
pre-training on matching resources, or adaptation
to OCR errors. Compared to other domain trans-
fer approaches (Jia et al., 2019; Liu et al., 2020;
Sachan et al., 2018), where the evaluation is carried
out on specific contemporary domains, this work
considers NER from a historian’s point of view:
we wish to process historical texts and understand
why some approaches do not yield usable results.
In that context, would off-the-shelf systems be ap-
propriate? If not, can we reduce the amount of
annotation needed to obtain reasonable results by
using existing resources? And finally, if so, is this
approach robust to the characteristic difficulties of
historical documents?

Our contribution is to tentatively answer the fol-
lowing questions: (1) What annotation effort in
the target historical domain? (2) Is it worth adapt-
ing initial pre-trained word representations? (3)
What is the impact of OCR errors on transfer per-
formance? We perform experiments on the Lit-
Bank (Bamman et al., 2019) and HIPE (Ehrmann
et al., 2020) annotated historical NER datasets us-
ing prototypical NER systems built on the previous
and current generation of models, trained on con-
temporary annotations from ACE 2005 (Walker
et al., 2006) and various amounts of target data.

2 Related work

NER is a typical sequence labeling task where the
aim is to locate and classify named entities men-
tioned in unstructured text into pre-defined cate-
gories such as person names, organizations, loca-
tions, etc. The research around this task has al-
lowed obtaining very good results on modern docu-
ments. For example, on the CoNLL-03 dataset the
results reach up to 94.9% of Fl-score. From the
numerous existing approaches, we describe a few
representative recent works. Wang et al. (2020b)
propose an Automated Concatenation of Embed-
dings to build adequate system input representa-
tions for structured predictions. It will calculate
error based on results of the training process and
then compare it with other combinations to finally
find out the most suitable concatenation embedding
layer for the problem. Yamada et al. (2020) propose
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a model that treats words and entities in a given text
as independent tokens, and outputs contextualized
representations of them. Their Transformer based
language model pre-trained on both large-scale text
corpora and knowledge graphs achieves SOTA per-
formance on various entity related tasks. Wang
et al. (2021) propose to use external contexts to
improve model performance by retrieving and se-
lecting a set of semantically relevant texts through
a search engine and constructed a new representa-
tion through the concatenation of a sentence and
its external contexts.

Given the progress on this task and its need for
applications, many off-the-shelf models pre-trained
on modern data are made available. Spacy (Hon-
nibal et al., 2020), Flair (Akbik et al., 2019),
Stanza (Qi et al., 2020), AllenNLP (Gardner et al.,
2018) offer models trained on OntoNotes 5.0, Stan-
ford CoreNLP (Manning et al., 2014) provides a
model trained on a mixture of CoNLL, MUC-6,
MUC-7 and ACE.

In this paper we mainly focus on NER in English
but this task is also a subject of research in other lan-
guages. For instance, Cao et al. (2018) proposed an
adversarial transfer learning strategy to make full
use of the boundary information shared by tasks
and prevent the task-specific functions of Chinese
word segmentation. Rahimi et al. (2019) process 41
languages using truth inference to model the trans-
fer annotation bias from diverse source-languages
models. Xie et al. (2018) created a 0-shot NER
systems by aligning monolingual embeddings from
English to Spanish, German, and Dutch, and then
translated the English CoNLL dataset into these
languages, and built a self-attentive Bi-LSTM-CRF
model using the translated languages.

Cross domain NER Cross-domain approaches
have been developed to enhance the generalization
of NER models to a given target domain.

Most existing approaches are in a supervised set-
ting where both source and target domains have
labeled data, the goal being to improve perfor-
mance over only using instances from the target
data. Baselines jointly train models on source and
target data with shared parameters, add adaptation
layers on top of source models for capturing target
domain specifics, or design label-aware feature rep-
resentations for NER adaptation (Daumé III, 2007;
Wang et al., 2018a).

More specific methods use multi-task ap-
proaches which have been shown to be effective for



this cross-domain task, to reduce the gap between
the two domains. For example, Jia et al. (2019)
propose to use extrinsic data in both the source
and target domains to train language models for
domain adaptation. Wang et al. (2018b) propose
a parameter transfer learning between feature rep-
resentations from Bi-LSTM and two conditional
random fields. Wang et al. (2020a) propose a multi-
task learning objective that learns domain labels as
an auxiliary task and Zhou et al. (2019) propose a
Dual Adversarial Transfer Network which aims at
addressing representation difference and resource
data imbalance problems.

Methods such as transfer learning also show that
knowledge sharing is effective for cross-NER. For
instance, Lee et al. (2018) utilize transfer learn-
ing by initializing a target model with parameters
learned from source-domain NER, and rely on la-
beled target domain data to finetune the model. Cao
et al. (2018) propose an adversarial transfer learn-
ing framework for Chinese NER task, which can
exploit task-shared word boundaries features and
ensure proper information usage from the word seg-
mentation task. Lin and Lu (2018) perform adap-
tation across two domains using adaptation layers
augmented on top of the existing neural model.
Yang et al. (2019) propose a fine-grained knowl-
edge fusion model to balance the learning from the
target data and learning from the source model.

NER on historical texts Given the number of
general NER papers produced over the last few
decades in the NLP field, studies targeting histori-
cal texts and literary documents are still scarce.

In general, research on this subject have not only
experimented with NER applied to historical mate-
rials but also many of them have addressed some
of the most pressing challenges involved in the
use of current state-of-the-art NER systems on his-
torical texts: disparate quality of digitization and
OCR, handling of non-European or classical lan-
guages, or dealing with spelling variations. Packer
et al. (2010) experimented with recognition of per-
son names in noisy OCR texts using a Dictionary-
Based, Regex-Based, Maximum Entropy Markov
and CRF models, and evaluated the output against
hand-labelled test data. Grover et al. (2008) built a
rule-based NER system for recognizing names of
places and persons in digitized records by focusing
on issues caused by the high level of variance in
the use of word-initial upper-case letters, as well as
issues connected to the use of OCR technology. Ro-
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driguez et al. (2012) evaluated four tools for NER
on historical texts including OpenNLP (Kwartler,
2017) and Stanford NER. They showed that the
Stanford NER system had the overall best per-
formance. Rodrigues Alves et al. (2018) show
that character-level word embedding, combined
with a Bi-LSTM-CRF model, can help reduce the
impact of OCR errors and handle rare words in
19-21C scholarly books and journals. More re-
cent approaches (Schweter and Mirz, 2020) eval-
uated the impact of word embeddings at the level
of their learning and their combination, on this
task. Labusch et al. (2019) apply a model based on
multilingual BERT embeddings, which is further
pre-trained on large OCRed historical German un-
labelled data and subsequently finetuned on several
NER datasets. They show that an appropriately pre-
trained BERT model delivers decent performance
in a variety of settings. Boros et al. (2020) added a
two task-specific transformer layers on top of the
pre-trained BERT to alleviate data sparsity issues.
However, the use of recent word representations,
such as BERT, is not totally suitable, as its ability
to handle noisy data remains a point to be clarified
as to its robustness (Sun et al., 2020).

Compared to them, we do not seek to optimize
the performance on specific historical data, but
rather propose a replicable transfer procedure link-
ing the effort to be provided on the target domain
in order to have performance relative to those ob-
tained on contemporary data.

3 Datasets

In this study, we deal with target domain annotated
datasets (historical texts), and source domain anno-
tated datasets (contemporary texts, typically news).
Table 2 outlines dataset statistics for both domains.
Two target datasets are used, each with two dif-
ferent subdomains, specific difficulties towards this
task and a non-comparable annotation guideline.
LitBank (Bamman et al., 2019) is an anno-
tated dataset of 100 English-language literary
public-domain texts from Project Gutenberg, an-
notated with ACE entity categories except for the
weapon category (person, location, geopolitical en-
tity (GPE), facility, organization (ORG), and vehi-
cle). In contrast to existing datasets built primarily
on news (focused on GPEs and ORGs), literary
texts offer strikingly different distributions of en-
tity categories, with much stronger emphasis on
people and description of settings. All texts were



Domain | Dataset Train Dev Test | NE freq. Types | Text sources Time Period
Target LitBank 29,894 4,133 3,425 18% 7 | Novels 1852-1923

HIPE 0 2575 1,301 9% 5 | Newspapers 1798-2018
Source ACE 2005 | 34,669 4,336 3,777 24% 7 | News, speech, web 2003-2004

Table 2: Datasets statistics. train/dev/test columns represent the number of named entities. NE freq. represents
the ratio between the number of entities and the number of words. Types indicates the number of different entity

categories.

published before 1923, with the majority falling
between 1852 and 1911.

HIPE (Ehrmann et al., 2020) is a collection of
digitized documents covering three different lan-
guages: English, French, and German. The docu-
ments come from archives of several Swiss, Luxem-
bourgish, and American newspapers. The corpus
was manually annotated by native speakers accord-
ing to the HIPE impresso guidelines, which are
derived from the Quaero' annotation guide. The
corpus is annotated with 5 types of entities: per-
son, location, organization, time and production.
The time-span of the whole corpus goes from 1798
to 2018. The particularity of this dataset is that
it contains OCR errors, with no gold alignment.
Feuilleton, tabular data, crosswords, weather fore-
casts, time schedules and obituaries were excluded
as well as articles that were fully illegible due to
OCR errors. In this study, only the English part of
this corpus is used: annotations are only available
for development and testing, but not for training.

One source dataset is used. ACE 2005 (Walker
et al., 2006) Multilingual Training Corpus was de-
veloped by the Linguistic Data Consortium (LDC)
and contains approximately 1,800 documents of
mixed genre texts in English, Arabic, and Chinese
annotated for entities, relations, and events. The
genres include newswire, broadcast news, broad-
cast conversation, blog, discussion forums, and
conversational telephone speech. The dataset is an-
notated with 7 entity types: person, location, GPE,
facility, organization, vehicle, and weapon. We fol-
lowed the same pre-processing of the data as those
presented by Bamman et al. (2019).

In general, all corpora share annotations in per-
sons, locations and organizations, these three types
also represent the majority of annotations. ACE
and LitBank share 100% of their entity types and
ACE and HIPE share 3 out of 6 entity types, which
represents 92.5% of entity instances of shared type
in the test set. A shared entity type is an entity type

"http://www.quaero.org/media/files/bibliographie/quaero-
guide-annotation-2011.pdf

with the same name (e.g., Person).

4 Experimental Settings

We used three different systems which represent the
typical kind of systems that could be implemented
in an industry-provided solution for historical NER
given current technology.

BERT (Devlin et al., 2019), with an extra layer
to predict NER categories. The pre-trained contex-
tual embeddings are finetuned on the source/target
dataset using their proposed approach. It’s a de
facto baseline for NLP systems, and is imple-
mented with the transformers library (Wolf et al.,
2020). We also used BERT models (BERT-Hist)
(Hosseini et al., 2021) finetuned on 47,685 books
(5.1B tokens) in English from the year 1760 to
1900 from the Microsoft British Library Corpus.
This model, compared to BERT-Base learned from
Wikipedia and Bookcorpus, allows us to question
the impact of diachronic language changes on these
embeddings applied to the historical domain.

CharBERT (Ma et al., 2020) which accounts for
characters in addition to BPE tokens. The model
is pre-trained with a Noisy LM objective for ob-
taining robust character-level representations. We
expect such model to perform well on noisy OCR,
and rely on the available implementation?.

LSTM-CRF (Lample et al., 2016) initialized
with FastText (Bojanowski et al., 2016) non-
contextual embeddings, an architecture that has
shown its robustness for NER and is standard in
many available systems. This allows to compare
its performance to contextual ones. The Flair li-
brary (Akbik et al., 2019) is used for this model.

All results presented in the experiments section
are averages over 10 random initializations. Since
the objective is not to maximize performance on
a particular dataset or on a particular architecture,
the same hyperparameters for all experiments of a
given system are used.

The learning rate is initialized to 0.1 for the
LSTM-CREF and to 3e-5 for the transformers. For

*https://github.com/wtma/CharBERT
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the three architectures, the size of the hidden lay-
ers are set to 512 and the training is performed
on 3 epochs on the source data (10 epochs for the
LSTM-CRF) and finetuned on 10 epochs on the
target data. The rest of the parameters are the de-
faults proposed by the libraries for the different
models. NER performance is computed with F1-
score (F1). Because not all corpora contain nested
entities, the embedded entity mention is removed
and the smaller mention is kept in the case where
the datasets proposed this type of entity. Moreover,
as previously mentioned, the HIPE dataset do not
share all entity types. The evaluation of a system is
only performed on the entity types of the test set,
and all the predicted entities that are not part of the
test set tagset are removed prior to evaluation.

5 Experiments

5.1 What annotation effort in the target
domain?

The low performance of off-the-shelf systems, ex-
emplified in Table 1, suggests that adaptation is
necessary.

First, systems are evaluated according to the
amount of annotated data in the target domain. For
this experiment, the ACE English NER dataset is
considered as the source domain, and LitBank and
HIPE as the target domain. LitBank originates
from the same annotation guidelines as ACE while
HIPE is based on different guidelines. We first pre-
train the different systems on the source domain
data, then we finetune them on the target domain
samples with a varying quantity of inputs, from 10
sentences to the maximum number of sentences
available in the target corpus, up to 6k sentences
for LitBank, which is already a large number of
annotated sentences. We compare this approach to
a system trained only on the target data. This exper-
iment allows evaluating the expected performance
given the annotation effort in the target domain,
and outlines the importance of pre-training. The
results of this experiment are given in Table 3.

First, when the systems are already pre-trained,
depending on the amount of target data used, the re-
sults, independently of the system used, vary from
17.7% to 27.3% of F1 using 10 sentences and from
46.8% to 61.1% of F1 using the whole HIPE corpus.
In the case where our systems were only trained on
the HIPE dataset, the three systems obtain 0% F1
for a training on 10 sentences and can vary from
39.1% to 57.6% using the whole corpus.
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When pre-trained on ACE data, the three sys-
tems present similar score evolutions according to
the amount of data used (modulo the maximum
value obtained by each system). Only 10 sentences
of the target dataset are required to achieve perfor-
mance that is more than one third of the maximum
performance that could be achieved using the entire
dataset. Compared to training only on 10 sentences,
without pre-training, where the systems fail to learn.
By using 50 sentences from the target dataset one
can obtain more than two thirds of the maximum
performance, so compared to training without pre-
training on source data, 50 sentences is still in-
sufficient to generalize on the test set, except for
CharBERT, which in this case manages to get more
than half of the maximum performance. Above
this quantity of annotated sentences, the finetuning
approach presents a constant improvement while
keeping results superior to training from scratch
on the target data. However, from 250 annotated
sentences BERT and LSTM-CRF have enough data
to learn without ACE data, at this stage, these two
systems can get about 75% of the maximum per-
formance. Concerning CharBERT, it recovers 95%
of the maximum performance using about half of
the available data.

The results obtained on LitBank are similar to
those observed on HIPE except that in the case of
finetuning from ACE, the target dataset shares the
same annotation guideline as the source and doesn’t
contain noise, which explains the high performance
even with low amounts of target data.

However, since this dataset provides more anno-
tated sentences, the analysis can be taken further.
At 400 sentences on LitBank, in the case of a pre-
training on ACE, systems are within 92-96% of the
maximum performance when using 6000 sentences.
But in the case of training from scratch on the tar-
get, performance is well below with 86%, 79% and
61% of the maximum F1 for CharBERT, BERT
and LSTM-CREF respectively. When using 6000
sentences, except for LSTM-CREF, not using pre-
training gives the same results as when using it. In
practice, having 6000 annotated sentences already
requires a big annotation effort. In these results,
transfer approaches show that they require fewer an-
notated sentences than training from scratch from a
more realistic amount of 1000 annotated sentences.
Indeed, for BERT and LSTM-CREF, in the case of
pre-training on ACE and with the addition of 250
annotated sentences on the target corpus, better



LitBank HIPE
Models / Splits 10 50 250 400 1000 3000 6000 10 50 250 400 444
Pre- CharBERT | 68.1 71.0 751 76.0 776 798 80.6 | 273 469 579 61.1 611
trained BERT 694 733 759 768 789 80.7 809 | 252 478 546 574 58.1
LSTM-CRF | 559 624 676 694 715 747 755 | 177 31.6 441 46.8 46.8
CharBERT | 00.0 30.5 640 692 745 788 80.1 | 000 33.8 542 573 57.6
Only BERT 000 00.0 543 637 729 790 804 | 000 000 426 515 521
LSTM-CRF | 00.0 00.0 245 444 578 683 729 | 000 004 29.6 37.6 39.1

Table 3: F1 obtained on the targets test set depending on the system used as well as the amount of training on the
target used in the case where our systems are already pre-trained on ACE and in the case where our systems were

only trained on the target.

BookCorpus
Wikipedia
MLM NER
Finetuning Finetuning
New York Times
Gutenberg

M

Target
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BERT ACE 05

NER Target

Dataset

()

®)

Figure 1: A three-step procedure: (1) BERT representa-
tions are first finetuned on two million sentences from
unannotated corpora (BookCorpus fiction, Wikipedia,
New York Times newspaper, or Gutenberg fiction), (2)
the representations are further finetuned to train an ACE
NER system thanks to an added decision layer, and (3)
that model is finally finetuned on the target NER anno-
tated dataset.

performances are obtained (75.9% and 67.6% of
F1 respectively) than using models trained from
scratch on 1000 sentences (72.9% and 57.8% of F1
respectively). CharBERT requires 400 annotated
sentences when it is pre-trained on ACE to obtain
better performance than a system learned only on
1000 sentences from LitBank. This increase can
be explained by the fact that CharBERT requires
less data than other systems to learn on new data.
Indeed, 50 annotated sentences allows obtaining
30.5% of F1 with CharBERT compared to 0% with
the other systems.

Due to the different annotation guidelines, the
type of data and the quality of the documents used,
cross-NER to a historical domain requires at least
some annotation in the target domain. Neverthe-
less, we could see that pre-training a system on
contemporary data allows to considerably decrease
the amount of annotation needed. Through these
experiments two thresholds are observed, the first
one at 250 sentences, which allows obtaining very
promising results on a distant domain on a low
budget. The second, estimated at 1000 sentences,
allows obtaining almost optimal performance.
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5.2 Is it worth adapting initial word
representations?

A realistic scenario for digital humanities is to have
access to large annotated corpora in the target do-
main. However, reaching the scale of data required
for pre-training a BERT-like language model is un-
likely in the target domain and training such models
from scratch is still computationally expensive. Jia
et al. (2019) show that finetuning contextual embed-
dings with pre-training task on a relatively small
amount of unannotated texts can improve trans-
fer results. The approach, called domain adaptive
pre-training (DAPT), consists in adapting word rep-
resentations prior to training and transferring the
NLP task at hand. Therefore, we evaluate the im-
pact of finetuning the BERT representations to the
target texts prior to training the NER system com-
pared to using a BERT trained on historical data
(Hosseini et al., 2021). The experimental procedure
is described in Figure 1.

The four pre-training datasets have been selected
for the following reasons. Perfect match: Guten-
berg is the source corpus for LitBank, it represents
the perfect adaptation corpus due to its proximity
to the target. Genre match, time mismatch: The
New York Times corpus represents a partial match
since, like HIPE, it is a newspaper corpus, but it
is not from the same period nor from the same
source. Similar genre and time: By finetuning
the representations on Bookcorpus we want to fo-
cus the representations on its literary side in order
to observe the improvement obtained on LitBank,
without totally modifying the distribution follow-
ing the addition of new data. Complete mismatch:
Wikipedia does not share anything with the target
but is a general domain corpus.

As a comparison, we add randomly initialized
BERT baselines to question the importance of the
match between the pre-training domain and the
source and target domains. Finally, we finetuned a



Pre-training LitBank

Only  0-shot Full
No init baseline 34.00 10.71 34.02
BERT-Base 80.40 70.44 80.80
BERT-Hist 79.76 6391 80.09
Book Corpus 79.60  66.66 79.63
Wikipedia 79.83  67.01 80.20
New York Times 78.69  65.13  79.75
Gutenberg 81.03 64.64 81.53
LitBank-NER 80.53 7031 8041

Table 4: NER F1 performance obtained on the LitBank
test sets according the unannotated corpus on which
BERT pre-training tasks are finetuned. A zero-shot
scenario (only trained ACE), a full training scenario
(trained ACE then finetuned on target data) and in the
case where our systems were only trained on the target
are compared.

Pre-training HIPE

Only  0-shot Full
No init baseline 08.34 01.72 08.44
BERT-Base 52.10 1344 58.14
BERT-Hist 60.96 09.61 58.34
Book Corpus 51.63 11.60 53.51
Wikipedia 5298 13.73 56.19
New York Times 51.26 11.96 54.88
Gutenberg 56.41 1297 57.86
HIPE-NER 53.50 09.84 55.14

Table 5: NER F1 performance obtained on the HIPE test
sets according the unannotated corpus on which BERT
pre-training tasks are finetuned. A zero-shot scenario
(only trained ACE), a full training scenario (trained ACE
then finetuned on target data) and in the case where our
systems were only trained on the target are compared.

BERT only on the NER training data of the target.

The results of this experiment (table 4 for Lit-
Bank and table 5 for HIPE) show that finetuning
word representations has a small, often negative,
impact on NER performance. In the full training
scenario, using DAPT improves NER in the Lit-
Bank case (+0.78 compared to BERT) by using
matching data (Gutenberg). Surprisingly, that same
data corresponds to the worst results for zero-shot
on LitBank (-5.79 points). On HIPE, where no
target training data are available, BERT-base is the
most stable in the transfer scenarios and perfor-
mance is very low in the 0-shot setting across the
board, due to mismatch in annotation guidelines.
In addition, for this data set, being distant in anno-
tation and domain from our source data, learning
using only the target data with historical embed-
dings leads to better results (60.96).
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Figure 2: Procedure used to evaluate the impact of noise
on the transfer models. The dotted arrow corresponds
to the second part of the experiments.

5.3 What is the impact of OCR errors on
transfer performance?

Historical texts are often the result of digitization
and OCR from the original paper documents. This
process leads to inevitable errors due to the quality
of the source material and the variability of the
print or handwriting.

The last experiment presented in this paper eval-
uates the impact of OCR errors on NER. Given the
target corpora, it’s difficult to evaluate their real im-
pact. On the one hand the HIPE texts contain OCR
errors, but we do not have manually corrected texts,
and on the other hand, the LitBank texts are OCR-
error free. Therefore, we chose to simulate an OCR
system by randomly adding errors to LitBank.

Following previous work (Pruthi et al., 2019),
we change the original character sequence by delet-
ing, inserting, and substituting characters within
it. Figure 2 illustrates the procedure that is used
in order to mimic OCR errors and to evaluate their
influence on the NER task. In order to obtain a
realistic error distribution, the error probabilities
are computed from the ICDAR 17 corpus, which
contains both OCR from several systems and ref-
erence texts. This approach allows to control the
amount of noise applied to the dataset, simulating
various OCR difficulty settings. As a first step,
transfer quality from regular ACE to noisy LitBank
is evaluated with BERT, BERT-Hist and CharBERT
systems, the assumption being that the latter shall
cope better with errors. The results as a function of
the amount of noise injected into the target corpus
are shown in table 6. In a second step, the same
transfer is evaluated after corrupting the source
data (ACE) using the same process. We varied the
amount of noise from 0% to 10% calculated as
the character error rate. Results are presented in
tables 7 and 8.

Obviously, the two systems are sensitive to noise,
and as the amount of noise increases, F1 decreases.
First, it can be seen in Table 6 that combining a



Noise Only 0-shot Full

BERT-Hist BERT  CharBERT | BERT-Hist BERT  CharBERT | BERT-Hist BERT  CharBERT
0% 79.74 80.40 80.10 63.91 70.44 67.38 80.08 80.80 80.61
1% 79.01 78.46 79.46 64.37 67.73 66.17 79.09 78.96 79.92
2.5% 76.28 75.69 77.72 61.61 64.03 63.86 76.78 76.45 78.14
5% 73.27 71.46 75.36 58.29 57.81 60.58 73.93 71.97 75.79
10% 67.00 63.83 70.52 47.71 47.76 48.50 67.87 65.20 70.39

Table 6: Results obtained on the LitBank test depending on the amount of noise injected in the target corpus in a
0-shot scenario (trained on ACE), in a full training scenario (trained on ACE, finetuned on LitBank) and when our

systems were only trained on LitBank.

Noise 0-shot

BERT-Hist BERT  CharBERT
0% 65.67 70.44 67.38
1% 64.95 68.03 66.76
2.5% 62.46 65.23 65.52
5% 59.15 60.73 62.25
10% 52.80 51.70 57.63

Table 7: Results obtained on the LitBank test depending
on the amount of noise injected in the source and target
corpora in a 0-shot scenario (trained on ACE).

Noise Full

BERT-Hist BERT  CharBERT
0% 80.08 80.80 80.61
1% 79.37 78.69 79.54
2.5% 76.88 76.06 77.60
5% 73.72 72.14 75.50
10% 68.33 65.34 70.69

Table 8: Results obtained on the LitBank test depending
on the amount of noise injected in the source and target
corpora in a full training scenario.

system learned on clean data with noisy test data,
CharBERT is less sensitive to noise compared to
BERT the more degraded the data are. And the
same goes for BERT-Hist which was learned from
text created by OCR. In the case where we evaluate
only the systems learned on ACE in a zero-shot
scenario, the two systems show different behavior
regarding noise. When the target data are noisy
at 10%, we observe a strong drop of the F1, due
to a drop in recall for BERT and BERT-Hist and
to a drop in precision for CharBERT. In general,
the results show that CharBERT is more robust
to noise but suffers from the same performance
degradation as BERT when only trained on clean
data, but evaluated on noisy data. However, when
a model first trained on clean data is finetuned with
noisy texts, CharBERT’s performance is much bet-
ter than BERT’s with a difference of 5.19 points of
F1 at the 10% noise level. This difference, reduced
to 2.52 points of F1 with BERT-Hist.

Compared to the previous results, when the same
noise distribution is applied to the source dataset

(Tables 7 and 8), performance is similar when fine-
tuning on the noisy target dataset. However, in
the case where the models trained on noisy ACE
are directly evaluated on noisy LitBank, a large
improvement is observed compared to when ACE
is not noisy. Indeed, recall for the BERT models
improves compared to when the source data was
clean. The same behavior is observed for Char-
BERT, where also the recall improves.

However, in the zero-shot case, BERT learned
as well as CharBERT up to 2.5% noise. Above
that, the noisier the data are, the more robust Char-
BERT is compared to BERT, with a performance
improvement of 5.93 points of F1 with 10% noise.
Reduced to 4.83 points of F1 with BERT-Hist.

In view of the LitBank results with simulated
noise, a similar approach can be applied for the
source data when processing the HIPE corpus. We
finetune CharBERT on ACE with 10% noise from
the IDCAR 17 distribution and then finetune this
model on HIPE which has its own natural OCR
error distribution. The results show that training
on noisy data, even though the noise follows a
different error distribution, improves the results
(+1.22 points) on a noisy dataset. However, in the
zero-shot scenario, we have a drop of 0.56 points.

6 Discussion

We identify replicable steps for the application of
NER on historical documents. First, select contem-
porary resources, pre-trained models or annotated
datasets, using a guideline close to the target needs.
Then annotate a few sentences on the target data to
adapt the learned models on the source data. 250
sentences can recover 93% of the full-data perfor-
mance and 1000 sentences 98%. In a second step,
the choice of the model will depend on the quality
of the target documents to process. If the target
is noisy, CharBERT, even compared to a BERT
learned on historical noisy data, is more robust to
process this type of documents. Moreover, if the
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quality information of the target documents is avail-
able, applying noise following the same distribu-
tion to the source documents will allow the system
to be more robust on the target data. Finally, DAPT
can be applied if a large amount of unannotated
target data is available (> 2M sentences) and if
some target data is annotated. This approach does
not seem to work in the case where no annotated
target data is available. In the case of 0-shot, using
word embeddings adapted to the source data will
bring better performance on the target data.

7 Conclusion

In this work, we investigate the potential transfer
of contemporary named entity recognition models
to the historical domain.

Experiments show that finetuning contemporary
pre-trained transformers allows reducing consid-
erably the annotation effort and can be further re-
duced by making an informed choice of the data
sources for transfer. Adapting pre-trained word
representations prior to learning the task (DAPT)
allows a low-cost adaptation to the target domain
and improves performance in the full settings de-
pending on the dataset. Processing noisy data is
still challenging but the choice of an architecture
relying on pre-trained character representations,
and the simulation of target noise on the source
domain allows recovering acceptable performance
compared to a BERT baseline.

To further this study, we would like to systemati-
cally look into recent transformer architectures and
pre-train them on large corpora of historical texts
instead of crawled web data. It would be an oppor-
tunity to infuse the models with knowledge of the
target temporal span. In addition, we would like to
study how levels of NER performance impact his-
torian’s findings, and whether current technology
is acceptable for reliably mining large quantities of
historical documents.
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