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Abstract

Incremental intent classification requires the
assignment of intent labels to partial utter-
ances. However, partial utterances do not
necessarily contain enough information to be
mapped to the intent class of their complete
utterance (correctly and with a certain degree
of confidence). Using the final interpretation
as the ground truth to measure a classifier’s
accuracy during intent classification of partial
utterances is thus problematic. We release in-
CLINC, a dataset of partial and full utterances
with human annotations of plausible intent la-
bels for different portions of each utterance, as
an upper (human) baseline for incremental in-
tent classification. We analyse the incremental
annotations and propose entropy reduction as
a measure of human annotators’ convergence
on an interpretation (i.e. intent label). We ar-
gue that, when the annotators do not converge
to one or a few possible interpretations and yet
the classifier already identifies the final intent
class early on, it is a sign of overfitting that can
be ascribed to artefacts in the dataset.

1 Introduction

In non-incremental spoken dialogue systems (SDS),
modules process complete utterances sequentially:
the Automatic Speech Recognition (ASR) module
must detect an end of turn before the transcribed
speech can be processed by the Natural Language
Understanding (NLU) module, in which utterances
are often assigned an intent label. The sequen-
tial execution of such systems not only increases
response latency, but also affects the perceived
naturalness of the interaction. Natural conversa-
tions typically proceed incrementally: people rely
on multiple cues to build partial interpretations of
incomplete input, check if the communication is
successful, and adapt their production accordingly
(Clark, 1996), sometimes completing the interlocu-
tor’s turn, barging in, or responding before the turn
is over (Jaffe and Feldstein, 1970; Brady, 1968).

Incremental dialogue systems, on the other hand,
make use of incremental processors to enable more
efficient, flexible, and effective interactions with
users (Schlangen and Skantze, 2011). For example,
the ASR module of an incremental, task-oriented
SDS continuously processes incoming speech sig-
nals and posts hypothesized transcriptions. Then,
the downstream NLU module analyses the increas-
ingly longer portions of the final utterance, before
the user finishes their turn. These early hypotheses
produced by an incremental NLU (iNLU) module
can in turn be consumed by downstream modules
as soon as they are posted. Thanks to incremen-
tal processing, an SDS can approximate various
characteristics of human dialogue, such as timing
backchannel responses or optimizing turn-taking
between speakers (Baumann and Schlangen, 2011;
Skantze and Hjalmarsson, 2013; Lala et al., 2017;
Khouzaimi et al., 2018, inter alia). Incremental
processing can also improve the computational ef-
ficiency of an SDS, for example by accessing time-
consuming external services (e.g. database queries)
before the end of a user’s turn.

What’s more, incremental processing enables
new types of interactions between a dialogue sys-
tem and its users. For example, Kennington and
Schlangen (2016) developed a personal assistant
that could communicate its incremental understand-
ing of the user’s ongoing speech and its prediction
states by graphically displaying a branching tree.
At the start of the interaction, a tree with one branch
per supported intent is displayed. Once the user’s
intent is recognized by the system, the tree is ad-
justed and its associated slots are displayed as sub-
branches to its node. This visual feedback increases
the transparency of both the system’s capabilities
and current understanding; it also guides the user
to provide values for all required slot for the task.

iNLU is not just relevant to spoken dialogue
systems: recent work has enabled incremental pro-
cessing in the NLU pipeline of RASA, a widely-



53

used, open-source framework for building chat and
voice-based virtual assistants (Rafla and Kenning-
ton, 2019; Bocklisch et al., 2017). When equipping
a text-based dialogue system with incremental ca-
pabilities, iNLU processing is not limited by the
rate at which the ASR posts intermediate results:
user text can be processed as it is typed.

Intent classification, a common task assigned to
the NLU module of a task-oriented SDS, poses the
problem of identifying the point of the utterance
where the intent has been classified with a given
degree of certainty. An early identification of the
correct intent, however, is not necessarily a sign
of an effective classifier: when an iNLU module
identifies the correct intent label before a human
can (for example, after processing a not yet infor-
mative partial utterance such as “I’d like to”), then
its “success” may likely be caused by the presence
of artefacts in the training set.

In order to provide an upper baseline for incre-
mental intent classification, we present inCLINC1,
a dataset of crowd-sourced incremental intent an-
notations, where utterances are broken into in-
creasingly longer partial utterances by identifying
peaks and troughs in surprisal (Shannon, 1948;
Hale, 2001) as boundaries. We then compare
the performance of human annotators to that of a
Transformer-based classifier (Vaswani et al., 2017).
We propose entropy reduction (between the differ-
ent intent interpretation hypotheses) as a measure
of uncertainty reduction during human incremental
intent identification. We show that, for a substan-
tial amount of the partial utterances, the final intent
label is not yet identifiable to humans, and that a
reduction in uncertainty (as annotators converge
on an interpretation) is typically associated with
an increase in accuracy for the annotators. We
argue that, when the human annotators do not con-
verge to one or a few possible interpretations and
yet the classifier already identifies the final intent
class early on, it is a sign of overfitting that can be
ascribed to artefacts in the dataset.

1.1 Previous Work

The NLU module of a task-oriented SDS is com-
monly tasked with intent classification, where an
utterance’s most likely intent label is predicted. In-
tent can be operationalised as the main goal that
one wants to achieve with a particular speech act

1https://fordatis.fraunhofer.de/
handle/fordatis/213

Word Predicted Intent Correct?
w1 I SearchCWork No
w2 want SearchCWork No
w3 to SearchCWork No
w4 hear PlayMusic Yes
w5 any PlayMusic Yes
w6 tune PlayMusic Yes
w7 from PlayMusic Yes
w8 the PlayMusic Yes
w9 Twenties PlayMusic Yes

Table 1: Intent of SNIPS utterance incrementally pre-
dicted by a DistilBERT classifier. SearchCreativeWork
is abbreviated as SearchCWork. “Correct?” indicates
whether the predicted label would be considered as ac-
curate in a typical incremental intent classification eval-
uation framework, where the complete utterance’s label
is assigned to each of its partial utterances.

(Cohen, 2019; Allen and Perrault, 1980). Such in-
formation is found on a pragmatic level: it reflects
the overall meaning communicated by a person in a
particular context. Accordingly, incremental intent
classification is typically framed as a predictive
task: based on the information present in a partial
utterance, a classifier must predict what informa-
tion will be present in the complete utterance.

Measuring Incremental Performance Accu-
racy and word savings are the most commonly
reported metrics in studies on incremental intent
classification in the literature. An incremental pre-
diction is typically evaluated as accurate when the
predicted label for a partial utterance matches the
ground truth label of its complete utterance. Word
savings are then used to show the point in an on-
going utterance at which a classifier first makes an
accurate prediction. If a complete utterance has 12
words and a classifier successfully predicts its label
after 10 words (w10), then two words are saved.
Additionally, Schlangen and Skantze (2011) and
Baumann et al. (2011) present metrics specifically
for incremental processors. As incremental intent
classification involves the prediction of a single
label (i.e. one “information unit”), edit overhead
(EO ∈ [0, 1]) is most relevant2. It describes the
ratio of unnecessary changes in label predictions to
the total number of changes.

In the literature, different types of models
have been applied to the task of intent classifi-

2Other metrics are less relevant when only one IU is pre-
dicted. For example, correctness is equivalent to accuracy on
the set of complete and partial utterances in this case.

https://fordatis.fraunhofer.de/handle/fordatis/213
https://fordatis.fraunhofer.de/handle/fordatis/213
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cation for incremental NLU (e.g. DeVault et al.,
2009; Manuvinakurike et al., 2018; Constantin
et al., 2019; Coman et al., 2019; Madureira and
Schlangen, 2020, inter alia). A typical approach
is to segment complete utterances into increas-
ingly longer partial utterances. Each partial ut-
terance is then assigned the ground truth label of
the complete utterance. This method, however, is
overly simplistic, because a partial utterance does
not necessarily contain enough information to be
mapped to the given intent class of its complete
utterance. Table 1 presents an utterance from the
popular SNIPS dataset (Coucke et al., 2018). The
classifier predicts PlayMusic for partial utterance
w4 = “I want to hear”. However, this partial con-
text is arguably not restrictive enough to be predic-
tive of the class PlayMusic, especially for a SDS
which may play back different kinds of informa-
tion beyond music. It is not until the mention of
“tune” in w6 that the utterance arguably has enough
semantic information to reasonably belong to the
class PlayMusic. Until then, utterances beginning
with “I want to hear” could easily be assigned to
other intent classes. However, the phrase “I want
to hear” is exclusively found in utterances belong-
ing to the PlayMusic class in SNIPS. Rather than
an important semantic distinction between intents,
this characteristic reflects an artefact of the dataset,
arising from an arbitrary choice of intent labels.

Existing approaches in the literature would view
w4 as correctly classified, as it matches the com-
plete utterance’s ground truth label. This approach
inflates the assessment of classifier’s accuracy and
other performance metrics; the external validity of
its performance on utterances outside of the dataset
should be questioned. The example in Table 1 em-
phasises how a) adopting the complete utterance’s
label is inappropriate for many partial utterances
and b) the performance of models in studies that
do so risk being inflated by over-fitting.

1.2 Incremental Processing in Humans

Communication between human speakers and lis-
teners is incremental on many levels. A speaker de-
livers information incrementally by speaking words
one after the other. Exchanges of information be-
tween speakers and listeners unroll rapidly: human
listeners interpret these incoming linguistic sig-
nals incrementally (Tanenhaus et al., 1995), rapidly
forming both partial hypotheses based on what they
hear, as they hear it (Marslen-Wilson, 1973), as

well as expectations about the next signal.
The view of human language processing as be-

ing expectation-based has gained considerable sup-
port over the last 30 years in psycho-linguistic re-
search. Research has shown that comprehenders
form expectations at different levels of granularity
(Zarcone et al., 2016): about the next upcoming
word (Ehrlich and Rayner, 1981; McDonald and
Shillcock, 2003), about its semantic category (Fed-
ermeier and Kutas, 1999), about the next event to
follow in an ongoing sequence (Chwilla and Kolk,
2005), about verb selectional restrictions (Altmann
and Kamide, 1999), and more. Crucially, hypothe-
ses about the correct syntactic parse of the ongoing
sentence are not only revised each time a new word
is encountered; new predictions are also proac-
tively made about the upcoming syntactic structure
once this new information is integrated (Hale, 2001;
Levy and Jaeger, 2007). Highly-predictable input is
easier to process, as it matches the comprehender’s
expectations, but is also less informative. Con-
versely, input conveying more information given
the context requires higher cognitive effort to pro-
cess (Hale, 2001; Jaeger and Tily, 2011). More
effort is required to process input when it results
in a revision of these hypotheses than that which
conforms with prior expectations (e.g. Sturt et al.,
1999). The relationship between information con-
tent and processing difficulty has been described on
a computational level (Marr, 1982) using Surprisal
and Entropy Reduction.

Surprisal Surprisal defines the predictability of
a linguistic unit (e.g. a word) in terms of its con-
ditional probability given the context in which it
appears (Shannon, 1948; Hale, 2001). Specifically,
the Surprisal S of word wt in a sentence given
preceding words (w1, ..., wt−1) is equal to:

S(wt) = − logP (wt|(w1, ..., wt−1,Ctxt)) (1)

where Ctxt represents extra-sentential information
(e.g. visual cues, Knoeferle et al., 2008). Sur-
prisal has been shown to be an effective complexity
metric for the prediction of human sentence com-
prehension difficulty (Boston et al., 2008; Demberg
and Keller, 2008; Frank, 2013; Levy and Jaeger,
2007; Levy, 2008). As a word’s predictability is
inversely proportional to its information content,
we adopt Surprisal as a measure of information
content at the word level - information which can
contribute to the intent interpretation of an utter-
ance.
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Entropy Reduction Entropy is defined as the av-
erage amount of uncertainty at a given state asso-
ciated with a random variable’s possible outcomes
(Shannon, 1948). If I is the set of all possible in-
terpretations of a sentence, then the entropy of all
possible interpretations can be expressed as:

H(I) = −
∑
i∈I

P (I) log2 P (I) (2)

Entropy is high when an ongoing sentence has
many probable interpretations and is maximal
when all possible interpretations have the same
probability (the sentence is ambiguous). As words
come in, they are "either helpful or unhelpful in nar-
rowing down the interpretation" (Yun et al., 2015).
Each new word wt carries a certain amount of in-
formation, which can be used to a) revise existing
hypotheses about the correct interpretation of an
ongoing sentence and b) predict the interpretation
of the remainder of the sentence (Hale, 2001; Levy
and Jaeger, 2007).

Entropy reduction is then a measure of how
much a given word wt decreases the amount of
uncertainty about the ongoing sentence being pro-
cessed (Hale, 2003, 2006). It can be expressed as
the difference in the entropy at state t− 1 and the
entropy at state t, i.e. before and after wt:

∆H(wt) = H(t− 1)−H(t) (3)

A greater reduction in uncertainty at a given step
results in higher processing difficulty (Hale, 2006;
Yun et al., 2015). Entropy reduction been shown
to predict processing difficulty independently from
Surprisal (Frank, 2013; Linzen and Jaeger, 2016).
More specifically, two types of uncertainty can be
identified, namely a) uncertainty about the next
prediction step and b) uncertainty about the full
sentence. Linzen and Jaeger (2016) investigated
how both types impacted readers’ parsing perfor-
mance and showed that increased reading times
were correlated with the reduction of uncertainty
about the overall structure of an ongoing sentence
but not with an increase in uncertainty about the
next prediction step.

We adopt entropy reduction as a measure of how
much a given word decreases the amount of un-
certainty about the possible intent interpretation of
the complete utterance. While Surprisal defines
a word’s information content from its conditional
probability (estimated from co-occurrences), En-
tropy Reduction measures the changes in the hu-

man hypotheses at the (higher) intent level, at dif-
ferent stages in the utterance, and is estimated from
the (partial) intent interpretations.

1.3 Uncertainty in Neural Networks

Uncertainty is not only relevant to human language
processing; the estimation of uncertainty in deep
neural networks is also an important field of re-
search. For completeness, we will briefly introduce
uncertainty and its estimation in this context. We
refer the interested reader to a recent survey by
Gawlikowski et al. (2021) for more information.

At its core, machine learning is interested in us-
ing data to extract models to then make predictions
about unseen data (Hüllermeier and Waegeman,
2019). Such predictions are accompanied by pre-
dictive uncertainty, which can be distinguished as
aleatoric and epistemic uncertainty (Kiureghian
and Ditlevsen, 2009; Hüllermeier and Waegeman,
2019). For example, consider a neural network
intent classifier that approximates an intent class
c ∈ C as a region in its sentence embedding space.
Aleatoric uncertainty arises when such regions be-
longing to different intents in C overlap, whereas
epistemic uncertainty is high for utterances that oc-
cur in regions in the input space sparsely populated
by training instances. Points with high epistemic
uncertainty could constitute an outlier or an out-of-
scope utterance.

Perhaps the simplest way to estimate the pre-
dictive uncertainty of a deep neural network is to
interpret its softmax output as a probability distri-
bution. However, the softmax output distributions
of deep neural networks are often poorly calibrated
(Guo et al., 2017). Monte Carlo Dropout (MCD) is
an alternative method for use in networks trained
with dropout (Gal and Ghahramani, 2016). It inter-
prets dropout as a Bayesian optimization approach
that samples from the approximate posterior distri-
bution of the model’s parameters given the training
data. Essentially, applying different dropout masks
to drop different neurons from a single network can
be viewed as creating an ensemble of different net-
works, which are treated as Monte Carlo samples
from the space of all possible models for the task.
By enabling dropout during inference, a prediction
is generated by each network in this ensemble. The
distribution of these predictions can be analysed to
determine the predictive mean and the associated
predictive uncertainty (e.g. the variance of this dis-
tribution) of an unseen sample at test time. Finally,
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deep ensembles constitute another sampling-based
approach, where an ensemble of neural networks
with the same architecture are trained after being
initialised with different values (Lakshminarayanan
et al., 2016). As with MCD, the softmax outputs
across all models is aggregated to quantify the un-
certainty of the prediction.

2 Proposed Approach

We propose the theory of Entropy Reduction as a
lens through which to view the problem of incre-
mental intent classification. The theory suggests
that more cognitive effort is needed to process an
encountered word that greatly reduces the prob-
able interpretations of the complete sentence, as
compared to a word which does not. Like human
listeners, iNLU modules form (multiple) early pre-
dictions (in this case, intent predictions) for partial
utterances during incremental processing, which
can be revised or revoked as more words arrive.

Of course, the computational cost of a typical
iNLU module does not vary as a function of an
input’s Surprisal or the Entropy Reduction that it
triggers. However, identifying which parts of an
utterance trigger a considerable reduction in the set
of plausible intent interpretations may be helpful
when evaluating the performance of such a mod-
ule. When the set of interpretations is too open
(i.e. a partial utterance could conceivably belong
to almost any intent), identifying one correct an-
swer (and potentially acting upon it) does not make
sense. As this set narrows, comparing the human
hypotheses with the classifier’s hypotheses may
help understand the classifier’s decisions.

Intent labels for complete utterances do not show
how intent interpretations by humans change as an
utterance progresses. To the best of our knowledge,
however, there is no (publicly-available) dataset
with incremental annotations of utterances with in-
tent labels. Our first contribution is a dataset of par-
tial and full utterances with human annotations of
plausible intent labels at different portions of each
utterance, which can provide an upper baseline
for incremental intent classification. As a second
contribution, we use the collected annotations for
an analysis of the performance of a Transformer-
based classifier on an equivalent task of incremen-
tal intent classification (Vaswani et al., 2017). We
hypothesise that humans will outperform the classi-
fier, achieving a higher overall accuracy and higher
word savings due to correct early predictions. Re-

sponses from the humans are then used to examine
over-fitting versus under-performance of the classi-
fier.

Lastly, to showcase the application of our dataset,
we present an analysis of the relationship between
entropy reduction and increases in accuracy during
incremental intent classification. Based on previ-
ous research, such as that by Linzen and Jaeger
(2016), we hypothesise that a reduction in en-
tropy between two subsequent partial utterances
are more frequently associated with increases in
accuracy than between partial utterances with no
changes/increases in entropy.

3 Methods

inCLINC Dataset Clinc150 is a challenging in-
tent classification dataset with utterances from 150
classes spanning across 10 different domains, plus
out-of-scope (OOS) queries (Larson et al., 2020).
Adapting it to an incremental setting, we created in-
CLINC, with utterances spanning a smaller number
of intents (37 intents plus OOS) so that human an-
notators could become familiar with the task more
quickly. OOS utterances were also included pro-
portionally. Some intent names were modified to
increase transparency, while avoiding the addition
of key words that appear in the utterances them-
selves and could bias participants (see Appendix A).
inCLINC was created from Clinc150’s published
test set3. Complete utterances were first split based
on the presence of white space characters. An in-
crementalised set of partial utterances was then
created for each full utterance wn of length n: wn

was segmented into a set of n partial utterances,
such that a partial utterance wt contained t words.
The complete utterance wn was also included as
a control. As this method produced a large set of
stimuli (> 9000), we sought to identify a smaller
set of partial utterances that were likely to introduce
relevant (based on Surprisal) and thus potentially
intent-relevant information, so that they could be
shown to participants as stimuli.

3.1 Annotation Study
Stimulus selection We first computed the Sur-
prisal of each token wt in inCLINC by estimating
their conditional probability using a pre-trained
DistilGPT-2 model. We restricted the set of com-
plete utterances by removing outliers (extremely

3The complete utterances from the original training and
validation subsets (100 and 20 per intent, respectively) were
reserved for training our intent classifier.
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Figure 1: Segmenting an utterance into stimuli (six par-
tial utterances plus one complete utterance) based on
peaks in Surprisal.

high-surprisal words > 2.5 SD from the standard-
ized mean), utterances with less than 4 words, ut-
terances starting with a keyword (belonging to a
list of lemmatized intents names) and utterances
that did not contain at least one peak in Surprisal
(see below). We randomly selected four utterances
per intent from this set.

We identified peaks in Surprisal to help select
a subset of partial utterances (see example in Fig-
ure 1). Peaks were detected as (consecutive) words
with a positive Surprisal z-score. The onset of a
peak was marked as the transition point between a
negative to positive z-score, whereas its offset was
marked during the switch from positive to negative.
The first word in an utterance always had high Sur-
prisal: as such, it was only included in a peak if
the second word also has a positive z-score. We
selected partial utterance stimuli by breaking the
utterances before and after each peak’s onset.

In the end, a total of 630 partial and complete
utterances were presented to participants, repre-
senting 152 distinct complete utterances across 37
intent classes, plus a OOS class.

Data Collection Stimuli were randomly divided
across 17 batches of 37-38 stimuli each. Stimuli
from the incrementalised set of the same complete
utterance were put in separate batches. Each batch
contained eight to nine complete utterances as con-
trols. For each batch, a questionnaire was created
using SoSciSurvey (Leiner, 2014), presenting one
stimulus per page, along with a table listing the
possible intents (see screenshot in Appendix B,
Figure 3). The order of presentation of the stimuli
and of the intent categories was randomized across
participants and between stimuli.

Participants were instructed to predict the most
likely intent of the complete query, based on the

incomplete text provided. An attention check was
included to confirm participants read the instruc-
tions. To familiarize them with the task, two ex-
ample items were also presented. The intent of
the first example was clear and was used as a con-
trol question for data cleaning. The second (“are
you able to”) was used to illustrate how multiple
possible intents could match its complete query.

Participants Participants were recruited through
Amazon Mechanical Turk4 and redirected to the
annotation questionnaires. They were paid for their
participation and were informed that they were free
to stop the task and delete their data at any point.
They were asked to confirm their English fluency:
those who did not were excluded from participation.
Participants could complete multiple batches. We
collected nine annotations per batch.

Data Cleaning We removed stimuli belonging to
ambiguous complete utterances. A complete utter-
ance was deemed ambiguous if the classifier’s pre-
diction did not match the ground truth label and/or
< 50% of participants selected the same intent for
a given complete utterance. We also excluded all
answers from participants who either failed the at-
tention checks and/or selected an incorrect intent
for ≥ 3 unambiguous control stimuli.

3.2 Intent Classifier

A DistilBERT5 Transformer model with a linear
layer classification head was fine-tuned to classify
the intent class of the pooled output (CLS token)
(Sanh et al., 2019). DistilBERT was selected to
mimic a feasible set-up for an online, incremental
processing setting. All weights were trained for 2
epochs (for more details, see Appendix C).

3.3 Annotated Dataset
After data cleaning, the inCLINC dataset included
121 distinct utterances in their complete form (121)
and in partial form (417), for a total of 538 anno-
tated utterances. After data cleaning, each utter-
ance (partial or complete) had six to nine annota-
tions. Each utterance was then assigned a predicted
human label as the response with the highest num-
ber of votes. In case of a tie, we assigned the label
of the complete query or, if this was not among the
list of intent labels with the most votes, then the
predicted intent label was randomly selected from

4https://www.mturk.com/
5Checkpoint from Hugging Face library https://

huggingface.co/transformers/

https://www.mturk.com/
https://huggingface.co/transformers/
https://huggingface.co/transformers/
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Figure 2: Mean accuracy at different levels of agree-
ment. Stimuli were divided into 10 equal-sized bins
based on α ∈ [0, 1] (shadow shows standard deviation).

Accuracy EO WC Savings
Annotators 66.43% 0.39 2.43
DistilBERT 56.35% 0.45 1.94

Table 2: Performance on partial utterance stimuli.

the top-voted list. inCLINC with its annotations
(majority-vote labels, as well as single labels) has
been made publicly available6. 365 unique words
appear in the inCLINC dataset. For descriptive
statistics of the stimuli, see Table 5 in Appendix A.

4 Results

Annotation reliability To verify response relia-
bility, we measured participant agreement on the
set of complete utterances using Krippendorff’s
α (Krippendorff, 2011). On these control stimuli,
participant responses reached α = 0.80, reflecting
substantial to perfect agreement (Artstein and Poe-
sio, 2008). Figure 2 shows a positive trend between
α and accuracy for both participants’ and Distil-
BERT’s predictions, supporting task validity: the
more participants agree on the label for a partial ut-
terance, the more often they identify the complete
utterance’s intent label.

Accuracy For the complete utterances in
Clinc150’s test set7, DistilBERT achieved an
accuracy of 94.56%. However, for inCLINC,
Table 2 shows that the annotators outperformed
DistilBERT by over 10% for partial utterances.
What’s more, the annotators “only” reached an
accuracy of 66%: for many partial utterances, the
complete utterance’s intent is not discernible.

6https://fordatis.fraunhofer.de/
handle/fordatis/213

7Utterances from the original test subset that belong to a
class included in inCLINC.

↑ Accuracy ↓ Accuracy
ER < 0 85 143
ER ≥ 0 10 179

Table 3: Frequency table showing entropy reduction
(ER) of stimuli and associated increases/decreases in
accuracy, as compared to the previous partial utterance.

Word Chunk (WC) Savings Complete utter-
ances were chunked based on Surprisal peaks and
troughs, and thus sequential partial utterances dif-
fered by a variable number of words. As such,
rather than the absolute number of words saved,
we examine word chunk savings (WC savings), i.e.
how many stimuli earlier than the complete utter-
ance was the final intent first predicted. As shown
in Table 2, human annotators achieved a higher
mean WC savings than DistilBERT. Despite their
superior performance, human annotators met an
upper bound: they had zero WC savings for about
6% of utterances (13% for DistilBERT), whereas
only 1 WC was saved for about 28% of utterances
(28% for DistilBERT).

Edit Overhead (EO) Table 2 reports a lower
Edit Overhead (EO) for annotators than Distil-
BERT. Participants not only predicted the final la-
bel earlier, but were also more consistent with their
predictions throughout an utterance.

Entropy Reduction (ER) Entropy reduction
(ER) was considered as an independent variable
with categories ER < 0 and ER ≥ 0. We tested
whether a difference in outcomes across these ER
categories exists, where the possible outcomes
were a) an increase in accuracy between process-
ing the sequential partial utterances (i.e. predicted
label was incorrect for the previous partial utter-
ance before but was correct for the following par-
tial utterance) b) a decrease/no change in accuracy.
McNemar’s test was performed using the binomial
probability distribution (McNemar, 1947). The fre-
quencies in Table 3 differed significantly across ER
categories (p < 0.001, one-sided). More specifi-
cally, partial utterances characterised by Entropy
Reduction (ER < 0) were more frequently accom-
panied by an increase in participant accuracy than
by an increase in entropy/no change (ER ≥ 0).

5 Discussion

Humans as an Upper Baseline Bender and
Koller (2020) debate how much meaning a trained

https://fordatis.fraunhofer.de/handle/fordatis/213
https://fordatis.fraunhofer.de/handle/fordatis/213
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neural language model understands and argue that,
when a system outperforms inter-annotator agree-
ment, the task likely contains artefacts that do not
represent meaning. As such, over-fitting in the
context of incremental intent prediction can be as-
sessed by examining the cases where DistilBERT
predicts the complete label for an earlier partial
utterance than the annotators. Conversely, areas
where a model could be improved can be studied
by looking at utterances where the annotators pre-
dicted the complete utterance’s intent earlier. We
looked at partial utterances whose complete label
was predicted by either the annotators or the clas-
sifier, but not both. These disagreements, found in
16% of partial utterances, were used to examine
over-fitting and under-performance.

Evidence for Overfitting For eight partial utter-
ances, DistilBERT predicted the complete utter-
ance’s label, but the majority of participants did
not. These partial utterances included: “tell my”, “i
have to”, and “on the” (complete list in Table 7,
Appendix D). None of these utterances can be
clearly assigned to a specific intent: this prediction
is a “lucky guess” based on artefacts distinguish-
ing classes. Popular NLU intent benchmarks with
notably fewer classes, such as ATIS and SNIPS
(Hemphill et al., 1990; Coucke et al., 2018), may
contain more such artefacts, which would speak
against the generalisability of the results obtained
on them. Furthermore, existing studies that label
partial utterances with the complete utterance’s la-
bel do not distinguish between such “lucky guesses”
and points where the intent is identifiable: reported
performance could be inflated by overfitting.

Evidence for Under-Performance 61 utter-
ances were correctly predicted by the participants
but not by DistilBERT. Of these, 24 had at least
moderate agreement (α ≥ 0.50) between partici-
pants (values reported in Appendix D). These ut-
terances do not represent the point where intent
is identifiable by a vast majority of participants.
Rather, they represent subtle differences in formu-
lation of utterances that humans, but not the clas-
sifier, might associate with a certain intent class,
which results in a considerable amount of (but not
all) participants predicting the final intent.

A few interesting observations can be made.
First, “i need milk” was correctly assigned to Up-
date/add to shopping list by participants, while Dis-
tilBERT predicted Place an order. People are prob-
ably more likely to buy perishable items such as

milk at a store in-person: a failure to “understand”
this real-world knowledge might have caused the
classifier to miss this prediction. Next, the familiar-
ity of participants with the well-known expression
“how’s the weather” is visible in the agreement of
α = 1.0 for the partial utterance “how’s the” and
class Get Weather. The completion “how’s the” to
“how’s the weather” suggests that “how’s the” is
a high-cloze phrase (Taylor, 1953) and “weather”
is a highly-predictable continuation. Note that the
missing word “weather” is also found in the label
for its intent, and that “how’s the weather” matches
an utterance one would expect to hear in the context
of a task-oriented SDS with inCLINC’s supported
intents. This example can be considered the human-
equivalent of the artefact in Table 1. However, hu-
mans make such a prediction by generalising over
their own statistical experience accumulated over a
lifetime of language exposure, while a model only
has access to the patterns it has learned to repre-
sent based on those found in the (domain-specific,
limited) data on which it was trained.

Entropy Reduction During incremental intent
classification, not all steps contribute equally to the
final interpretation. We identified Surprisal peaks
and troughs as relevant points to break the utter-
ances into informative incremental chunks, as in-
formed by the token’s conditional probability. We
then proposed ER (computed from the human inter-
pretations) as a metric to demonstrate the incremen-
tal narrowing of the set of plausible final intents
at these breaking points.Utterances accompanied
by a reduction in entropy are more frequently as-
sociated with an increase in accuracy compared to
those with no changes/increases in entropy. ER
serves as a tangible metric of how much certain
(chunks of) words, driven by information content,
restrict the set of plausible final intents and is thus
accompanied by increased prediction accuracy.

Limitations Changes in ER across partial utter-
ances could be affected by a) different representa-
tions of the intent classes across participants and/or
b) their differing language abilities. This limita-
tions arises as our (relatively small number of) par-
ticipants were recruited online and their English
fluency was self-reported8. With six to nine an-
notations per item, each response has significantly
influence the set of annotations for a given item.
Collecting more annotations would be beneficial to

8Fluency was indirectly verified by excluding participants
who gave incorrect responses for multiple control utterances.
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reduce fluctuations in the distribution of responses
triggered by individual participants and to allow
for a more in-depth study of the role of Entropy
Reduction in incremental intent classification (con-
trolling for e.g. the Surprisal and the predictability
of the next word, the position in which reductions
of entropy are expected, etc.). Additionally, when
the complete utterance’s label was among those
with the most votes, then this label was selected
as the prediction: this is a biased selection of a
favourable answer. 3.5% of stimuli were resolved
using this heuristic and annotators’ accuracy in Ta-
ble 2 is arguably inflated by this amount. Finally,
only one classifier was used in the presented work.
Comparing different models’ performance to our
human upper baseline would be interesting.

6 Conclusion

Assigning an utterance’s ground-truth label to its
partial utterances is a common oversimplification
of incremental intent classification. Existing stud-
ies report global performance metrics across partial
utterances and fail to distinguish between those not
containing enough information to be representative
of the final intent and those who do. It is then un-
clear to what degree a classifier’s performance is
attributable to overfitting to the evaluated dataset
versus to a generalisable representation of intent
classes. We proposed an alternate lens to view this
task: evaluating a model of incremental intent clas-
sification should not just be a matter of getting the
intent right. Rather, it should be about predicting a
set of plausible labels for an ongoing utterance and
communicating with what certainty the final intent
has been classified at this point.

As an alternative to simply adopting the com-
plete utterance’s label, we presented a new dataset
with annotated incrementalised utterances. We
proposed a novel method for determining plausi-
ble intent annotations at relevant points – from an
information-theoretic point of view – in an ongoing
utterance. With humans as an upper baseline, the
performance of incremental intent classifiers may
be evaluated against our labeled annotations. The
remainder of our work then focused on the evalua-
tion of a Transformer-based intent classifier in an
incremental setting. To analyse our dataset, we pro-
posed ER as a metric to detect the incremental nar-
rowing of intent interpretations by human annota-
tors. Our analysis showed that ER more frequently
accompanied increased prediction accuracy for the

annotators compared to decreases/no changes in ac-
curacy. ER has the potential to identify the earliest
point of understanding, before which accuracy and
word savings are not informative measures to eval-
uate the performance of an incremental classifier,
as before this point the upper performance bound
is unknown.

While our work did not focus on the training of
incremental intent classifiers, inCLINC opens up
several new possibilities. For example, its anno-
tations could be used to assess and improve the
confidence calibration (in the strong sense, see
Vaicenavicius et al., 2019) of multi-class classi-
fiers to ensure that their softmax output more re-
liably estimates the uncertainty about the (final)
intent at a given point in an ongoing utterance. Pro-
viding strongly-calibrated confidence scores along-
side predictions would help increase model inter-
pretability, facilitate its integration into other prob-
abilistic models (Guo et al., 2017), and help coordi-
nated processing across modules in an incremental
SDS (Schlangen and Skantze, 2011). Alternatively,
the annotations could be used as labels in a multi-
intent classification setting for partial utterances9.
This approach would circumvent the problem of
assigning a complete utterance’s label to a partial
utterance with not yet enough semantic informa-
tion relevant to the target class: all plausible labels
could be trained for partial utterances. Finally, ER
in a SDS could be monitored across ongoing ut-
terances to learn points at which the entropy of
possible interpretations is low enough for the given
task. A dataset with annotations such as inCLINC
could provide useful labels for this paradigm. All
in all, models which are able to overcome the chal-
lenges of incremental intent classification could
have the potential to learn more robust and gen-
eralisable class representations, which will could
conceivably improve their performance in a real-
life applications.

Acknowledgements

This research was carried out while the first author
was affiliated with the Fraunhofer IIS, as a member
of the Semantic Audio Processing department. It
was funded by the German Federal Ministry for
Economic Affairs and Energy (BMWi) through the
SPEAKER project (FKZ 01MK19011).

9E.g. “I need to cancel my” could represent many in-
CLINC intents, such as Cancel a reservation, Update/add to
reminders, and Update/add to to-list.



61

References
James F. Allen and C. Raymond Perrault. 1980. Ana-

lyzing intention in utterances. Artificial Intelligence,
15(3):143–178.

Gerry T.M. Altmann and Yuki Kamide. 1999. In-
cremental interpretation at verbs: Restricting the
domain of subsequent reference. Cognition,
73(3):247–264.

Ron Artstein and Massimo Poesio. 2008. Inter-Coder
Agreement for Computational Linguistics. Compu-
tational Linguistics, 34(4):555–596.

Timo Baumann, Okko Buß, and David Schlangen.
2011. Evaluation and optimisation of incremental
processors. Dialogue and Discourse, 2(1):113–141.

Timo Baumann and David Schlangen. 2011. Predict-
ing the micro-timing of user input for an incremen-
tal spoken dialogue system that completes a user’s
ongoing turn. In Proceedings of the 12th Annual
Meeting of the Special Interest Group on Discourse
and Dialogue (SIGDIAL), pages 120–129.

Emily M Bender and Alexander Koller. 2020. Climb-
ing towards NLU: On Meaning, Form, and Under-
standing in the Age of Data. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, 2, pages 5185–5198.

Tom Bocklisch, Joey Faulkner, Nick Pawlowski, and
Alan Nichol. 2017. Rasa: Open Source Language
Understanding and Dialogue Management. arXiv
preprint arXiv:1712.05181.

Marisa Ferrara Boston, John Hale, and Reinhold Kliegl.
2008. Parsing costs as predictors of reading diffi-
culty: An evaluation using the Potsdam Sentence
Corpus. Journal of Eye Movement Research, 2(1):1–
12.

Paul T Brady. 1968. A statistical analysis of on-off
patterns in 16 conversations. Bell System Technical
Journal, 47(1):73–91.

Dorothee J. Chwilla and Herman H.J. Kolk. 2005. Ac-
cessing world knowledge: Evidence from N400 and
reaction time priming. Cognitive Brain Research,
25(3):589–606.

Herbert H Clark. 1996. Using Language. Cambridge
University Press.

Philip R. Cohen. 2019. Foundations of collaborative
task-oriented dialogue: What’s in a slot? In Pro-
ceedings of the - 20th Annual Meeting of the Special
Interest Group Discourse Dialogue - Proceedings of
the Conference (SIGDIAL), September, pages 198–
209.

Andrei C. Coman, Koichiro Yoshino, Yukitoshi
Murase, Satoshi Nakamura, and Giuseppe Riccardi.
2019. An incremental turn-taking model for task-
oriented dialog systems. In Proceedings of the 20th

Annual Conference of the International Speech Com-
munication Association (INTERSPEECH), pages
4155–4159.

Stefan Constantin, Jan Niehues, and Alex Waibel. 2019.
Incremental processing of noisy user utterances in
the spoken language understanding task. In Proceed-
ings of the 5th Workshop on Noisy User-generated
Text (W-NUT 2019), pages 265–274.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore
Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Calt-
agirone, Thibaut Lavril, Maël Primet, and Joseph
Dureau. 2018. Snips Voice Platform: an embedded
Spoken Language Understanding system for private-
by-design voice interfaces.

Vera Demberg and Frank Keller. 2008. Data from eye-
tracking corpora as evidence for theories of syntactic
processing complexity. Cognition, 109(2):193–210.

David DeVault, Kenji Sagae, and David Traum. 2009.
Can I Finish? Learning when to respond to incre-
mental interpretation results in interactive dialogue.
In Proceedings of the 10th Annual Meeting of the
Special Interest Group on Discourse and Dialogue
(SIGDIAL), pages 11–20.

Susan Ehrlich and Keith Rayner. 1981. Contextual Ef-
fects on Word Perception and Eye Movements dur-
ing Reading. Journal of Verbal Learning and Verbal
Behavior, 20(6):641–655.

Kara D. Federmeier and Marta Kutas. 1999. A Rose
by Any Other Name: Long-Term Memory Structure
and Sentence Processing. Journal of Memory and
Language, 41(4):469–495.

Stefan L. Frank. 2013. Uncertainty Reduction as a
Measure of Cognitive Load in Sentence Comprehen-
sion. Topics in Cognitive Science, 5(3):475–494.

Yarin Gal and Zoubin Ghahramani. 2016. Dropout as
a Bayesian approximation: Representing model un-
certainty in deep learning. 33rd International Con-
ference on Machine Learning, ICML 2016, 3:1651–
1660.

Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi,
Mohsin Ali, Jongseok Lee, Matthias Humt, Jianx-
iang Feng, Anna Kruspe, Rudolph Triebel, Peter
Jung, Ribana Roscher, et al. 2021. A survey of un-
certainty in deep neural networks. arXiv preprint
arXiv:2107.03342.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Wein-
berger. 2017. On calibration of modern neural net-
works. In Proceedings of the 34th International
Conference on Machine Learning (ICML), pages
2130–2143.

John Hale. 2001. A probabilistic Earley parser as a
psycholinguistic model. In Proceedings of the Sec-
ond meeting of the North American Chapter of the
Association for Computational Linguistics (NAACL),
pages 1–8.

https://doi.org/10.1016/0004-3702(80)90042-9
https://doi.org/10.1016/0004-3702(80)90042-9
https://doi.org/10.1016/S0010-0277(99)00059-1
https://doi.org/10.1016/S0010-0277(99)00059-1
https://doi.org/10.1016/S0010-0277(99)00059-1
https://doi.org/10.1162/coli.07-034-R2
https://doi.org/10.1162/coli.07-034-R2
http://arxiv.org/abs/1712.05181
http://arxiv.org/abs/1712.05181
https://doi.org/10.16910/jemr.2.1.1
https://doi.org/10.16910/jemr.2.1.1
https://doi.org/10.16910/jemr.2.1.1
https://doi.org/10.1016/j.cogbrainres.2005.08.011
https://doi.org/10.1016/j.cogbrainres.2005.08.011
https://doi.org/10.1016/j.cogbrainres.2005.08.011
https://doi.org/10.18653/v1/w19-5924
https://doi.org/10.18653/v1/w19-5924
https://doi.org/10.21437/Interspeech.2019-1826
https://doi.org/10.21437/Interspeech.2019-1826
http://arxiv.org/abs/1805.10190
http://arxiv.org/abs/1805.10190
http://arxiv.org/abs/1805.10190
https://doi.org/10.1016/j.cognition.2008.07.008
https://doi.org/10.1016/j.cognition.2008.07.008
https://doi.org/10.1016/j.cognition.2008.07.008
https://doi.org/10.1006/jmla.1999.2660
https://doi.org/10.1006/jmla.1999.2660
https://doi.org/10.1006/jmla.1999.2660
https://doi.org/10.1111/tops.12025
https://doi.org/10.1111/tops.12025
https://doi.org/10.1111/tops.12025
http://arxiv.org/abs/1506.02142
http://arxiv.org/abs/1506.02142
http://arxiv.org/abs/1506.02142


62

John Hale. 2003. The information conveyed by words
in sentences. Journal of Psycholinguistic Research,
32(2):101–123.

John Hale. 2006. Uncertainty about the rest of the sen-
tence. Cognitive Science, 30(4):643–672.

Charles T. Hemphill, John J. Godfrey, and George R.
Doddington. 1990. The ATIS spoken language sys-
tems pilot corpus. In Speech and Natural Language:
Proceedings of a Workshop Held at Hidden Valley,
Pennsylvania, June 24-27, 1990, pages 96–101.

Eyke Hüllermeier and Willem Waegeman. 2019.
Aleatoric and Epistemic Uncertainty in Machine
Learning: An Introduction to Concepts and Meth-
ods. arXiv preprint arXiv:1910.09457.

T Florian Jaeger and Harry Tily. 2011. On language
‘utility’: Processing complexity and communicative
efficiency. Wiley Interdisciplinary Reviews: Cogni-
tive Science, 2(3):323–335.

J. Jaffe and S. Feldstein. 1970. Rhythms of dialogue.
Academic Press, New York, NY.

Casey Kennington and David Schlangen. 2016. Sup-
porting spoken assistant systems with a graphical
user interface that signals incremental understanding
and prediction state. In Proceedings of the 17th An-
nual Meeting of the Special Interest Group on Dis-
course and Dialogue, pages 242–251.

Hatim Khouzaimi, Romain Laroche, and Fabrice
Lefèvre. 2018. A methodology for turn-taking ca-
pabilities enhancement in Spoken Dialogue Systems
using Reinforcement Learning. Computer Speech
and Language, 47:93–111.

Armen Der Kiureghian and Ove Ditlevsen. 2009.
Aleatory or epistemic? Does it matter? Structural
Safety, 31(2):105–112.

Pia Knoeferle, Boukje Habets, Matthew W. Crocker,
and Thomas F. Münte. 2008. Visual scenes trig-
ger immediate syntactic reanalysis: Evidence from
ERPs during situated spoken comprehension. Cere-
bral Cortex, 18(4):789–795.

Klaus Krippendorff. 2011. Computing Krippendorff’s
Alpha-Reliability. Departmental Papers (ASC).

Balaji Lakshminarayanan, Alexander Pritzel, and
Charles Blundell. 2016. Simple and scalable pre-
dictive uncertainty estimation using deep ensembles.
arXiv preprint arXiv:1612.01474.

Divesh Lala, Pierrick Milhorat, Koji Inoue, Masanari
Ishida, Katsuya Takanashi, and Tatsuya Kawahara.
2017. Attentive listening system with backchannel-
ing, response generation and flexible turn-taking. In
Proceedings of the 18th Annual Meeting of the Spe-
cial Interest Group on Discourse and Dialogue (SIG-
DIAL), pages 127–136.

Stefan Larson, Anish Mahendran, Joseph J. Peper,
Christopher Clarke, Andrew Lee, Parker Hill,
Jonathan K. Kummerfeld, Kevin Leach, Michael A.
Laurenzano, Lingjia Tang, and Jason Mars. 2020.
An evaluation dataset for intent classification and
out-of-scope prediction. In Proceedings of the 2019
Conference on Empirical Methods in Natural Lan-
guage Processing and 9th International Joint Con-
ference on Natural Language Processing (EMNLP-
IJCNLP 2019), pages 1311–1316.

Dominik J Leiner. 2014. SoSci survey (version 2.4. 00-
i).

Roger Levy. 2008. Expectation-based syntactic com-
prehension. Cognition, 106(3):1126–1177.

Roger Levy and T Florian Jaeger. 2007. Speakers op-
timize information density through syntactic reduc-
tion. In Advances in neural information process-
ing systems (NIPS), volume 19, page 849–856. MIT
Press.

Tal Linzen and T. Florian Jaeger. 2016. Uncertainty
and Expectation in Sentence Processing: Evidence
From Subcategorization Distributions. Cognitive
Science, 40(6):1382–1411.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In Proceedings of the
7th International Conference on Learning Represen-
tations (ICLR).

Brielen Madureira and David Schlangen. 2020. In-
cremental processing in the age of non-incremental
encoders: An empirical assessment of bidirectional
models for incremental NLU. In Proceedings of
the 2020 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 357–374,
Online. Association for Computational Linguistics.

Ramesh Manuvinakurike, Trung Bui, Walter Chang,
and Kallirroi Georgila. 2018. Conversational image
editing: Incremental intent identification in a new di-
alogue task. In Proceedings of the 19th Annual SIG-
dial Meeting on Discourse and Dialogue, pages 284–
295, Melbourne, Australia. Association for Compu-
tational Linguistics.

David Marr. 1982. Vision: A Computational Investiga-
tion Into the Human Representation and Processing
of Visual Information. W. H. Freeman, San Fran-
cisco, CA, USA.

William Marslen-Wilson. 1973. Linguistic structure
and speech shadowing at very short latencies. Na-
ture, 244(5417):522–523.

Scott A. McDonald and Richard C. Shillcock. 2003.
Eye movements reveal the on-line computation of
lexical probabilities during reading. Psychological
Science, 14(6):648–652.

Quinn McNemar. 1947. Note on the sampling error
of the difference between correlated proportions or
percentages. Psychometrika, 12(2):153–157.

https://doi.org/10.1023/A:1022492123056
https://doi.org/10.1023/A:1022492123056
http://doi.wiley.com/10.1207/s15516709cog0000{_}64
http://doi.wiley.com/10.1207/s15516709cog0000{_}64
https://doi.org/10.3115/116580.116613
https://doi.org/10.3115/116580.116613
http://arxiv.org/abs/1910.09457
http://arxiv.org/abs/1910.09457
http://arxiv.org/abs/1910.09457
https://doi.org/10.1016/j.strusafe.2008.06.020
http://repository.upenn.edu/asc{_}papers
http://repository.upenn.edu/asc{_}papers
https://doi.org/10.1016/j.cognition.2007.05.006
https://doi.org/10.1016/j.cognition.2007.05.006
https://doi.org/10.1111/cogs.12274
https://doi.org/10.1111/cogs.12274
https://doi.org/10.1111/cogs.12274
https://doi.org/10.18653/v1/2020.emnlp-main.26
https://doi.org/10.18653/v1/2020.emnlp-main.26
https://doi.org/10.18653/v1/2020.emnlp-main.26
https://doi.org/10.18653/v1/2020.emnlp-main.26
https://doi.org/10.18653/v1/W18-5033
https://doi.org/10.18653/v1/W18-5033
https://doi.org/10.18653/v1/W18-5033
https://www.nature.com/articles/244522a0
https://www.nature.com/articles/244522a0


63

Andrew Rafla and Casey Kennington. 2019. In-
crementalizing RASA’s Open-Source Natural Lan-
guage Understanding Pipeline. arXiv preprint
arXiv:1907.05403.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. DistilBERT, a distilled version
of BERT: smaller, faster, cheaper and lighter. In
Proceedings of EMC2: 5th Edition Co-located with
NeurIPS 2019.

David Schlangen and Gabriel Skantze. 2011. A Gen-
eral, Abstract Model of Incremental Dialogue Pro-
cessing. Dialogue & Discourse, 2(1):83–111.

C. E. Shannon. 1948. A Mathematical Theory of
Communication. Bell System Technical Journal,
27(3):379–423.

Gabriel Skantze and Anna Hjalmarsson. 2013. To-
wards incremental speech generation in conversa-
tional systems. Computer Speech and Language,
27(1):243–262.

Patrick Sturt, Martin J. Pickering, and Matthew W.
Crocker. 1999. Structural Change and Reanalysis
Difficulty in Language Comprehension. Journal of
Memory and Language, 40(1):136–150.

Michael K. Tanenhaus, Michael J. Spivey-Knowlton,
Kathleen M. Eberhard, and Julie C. Sedivy. 1995.
Integration of visual and linguistic information
in spoken language comprehension. Science,
268(5217):1632–1634.

Wilson L. Taylor. 1953. “Cloze Procedure”: A New
Tool for Measuring Readability. Journalism Quar-
terly, 30(4):415–433.

Juozas Vaicenavicius, David Widmann, Carl Anders-
son, Fredrik Lindsten, Jacob Roll, and Thomas B.
Schön. 2019. Evaluating model calibration in clas-
sification. In Proceedings of the 22nd International
Conference on Artificial Intelligence and Statistics
(AISTATS), pages 3459—-3467.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5999–6009.

Jiwon Yun, Zhong Chen, Tim Hunter, John Whitman,
and John Hale. 2015. Uncertainty in processing rel-
ative clauses across East Asian languages. Journal
of East Asian Linguistics, 24(2):113–148.

Alessandra Zarcone, Marten Van Schijndel, Jorrig Vo-
gels, and Vera Demberg. 2016. Salience and atten-
tion in surprisal-based accounts of language process-
ing. Frontiers in Psychology, 7:844.

A Description of inCLINC

The original training/validation/test subsets pub-
lished in Larson et al. (2020) were used to create
inCLINC. Expanded intent names were created for
some of the labels in inCLINC to clarify their mean-
ing. The addition of key words that appear in the
utterances themselves was avoided. As well, intent
labels were grouped into six categories (plus OOS)
for presentation to participants. Table 4 shows the
mapping of the original labels to their expanded la-
bels and their assigned category. Descriptive statis-
tics for stimuli in inCLINC are presented in Table 5.

B Presentation of Task

Figure 3 shows how a partial utterance was dis-
played to participants during Experiment 2. The
intent categories were randomly shuffled between
the presentation of each stimulus.10 The order in
which intents within a given category were dis-
played was not shuffled. This design choice was
made to reduce the cognitive load of participants:
as participants were not familiar with the dataset,
shuffling the order of items within the category
could be frustrating and discourage participants
from making thoughtful predictions about the in-
tent for short utterances, especially when intent is
not clear (e.g. for the utterance “I want”).11 This
choice has the added advantage that similar intents
are always grouped, encouraging participants to
make fine-grained decisions between similar in-
tents.12

C Training DistilBERT

The intent classifier used HuggingFace’s imple-
mented DistilBertForSequenceClassification archi-
tecture. The final linear layer of the model con-
sisted of 38 output neurons: one for each 37 in-
scope classes, plus an additional neuron for the
out-of-scope class. The weights in the classifier’s
task-specific classification head were randomly ini-
tialized; the weights in the encoder layers were
loaded from the pre-trained model. The weights
in the dropout layer had a probability p = 0.2 of

10The intent categories are the headers of the blue boxes:
Shopping, Events & Tasks, Music, Out-of-Scope, Restaurant,
Cooking, Tools & Utilities.

11Participants were made familiar with the displayed intents
in three practice rounds before the presentation of experimen-
tal stimuli.

12For example, Update/add to calendar is always presented
under Ask about calendar.
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inCLINC Category Clinc150 Domain inCLINC Label Clinc150 Label
Cooking Kitchen and Dining Ask about calories calories
Cooking Kitchen and Dining Ask about cook time cook time
Cooking Kitchen and Dining How long food lasts food last
Cooking Kitchen and Dining Ingredients for recipes ingredient list
Cooking Kitchen and Dining Ingredient substitution ingredient substitution
Cooking Kitchen and Dining Ask for meal suggestion meal suggestion
Cooking Kitchen and Dining Nutrition information nutrition info
Cooking Kitchen and Dining Get recipe recipe
Events & Tasks Home Ask about calendar calendar
Events & Tasks Home Update/add to calendar calendar update
Events & Tasks Home Ask about reminders reminder
Events & Tasks Home Update/add to reminders reminder update
Events & Tasks Home Ask about to-do list todo list
Events & Tasks Home Update/add to to-do list todo list update
Events & Tasks Home Update/add to playlist update playlist
Music Tools and Utilities Calculator calculator
Music Home Next song next song
Music Home Play music play music
Music Home Identify song what song
Restaurant Kitchen and Dining Accept a reservation accept reservations
Restaurant Kitchen and Dining Cancel a reservation cancel reservation
Restaurant Kitchen and Dining Confirm a reservation confirm reservation
Restaurant Kitchen and Dining How busy is restaurant how busy
Restaurant Kitchen and Dining Make a reservation restaurant reservation
Restaurant Kitchen and Dining Ask for restaurant review restaurant reviews
Restaurant Kitchen and Dining Ask for restaurant suggestion restaurant suggestion
Shopping Home Place an order order
Shopping Home Ask about order status order status
Shopping Home Ask about shopping list shopping list
Shopping Home Update/add to shopping list shopping list update
Utilities Tools and Utilities Ask about date date
Utilities Tools and Utilities Find phone find phone
Utilities Tools and Utilities Make call make call
Utilities Tools and Utilities Share location share location
Utilities Home Smart home function smart home
Utilities Tools and Utilities Text text
Utilities Tools and Utilities Weather weather
Out-Of-Scope Out-Of-Scope Out-Of-Scope OOS

Table 4: Mapping of original labels from Clinc150 to categories and labels in inCLINC.
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Figure 3: Stimulus Presentation in Experiment 2. The complete utterance is “i need buy a birthday gift for sue
taken off my calendar”, belonging to the intent class Update/add to calendar.
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Stimuli Mean SD Min Max
Length (# words) Full Utterances 8.83 3.02 5.00 20.00

Partial Utterances 5.35 3.11 1.00 19.00
# of Partials Utterances Full Utterances 3.45 1.74 1.00 12.00

Partial Utterances – – – –
# of Annotations Full Utterances 7.47 0.82 6.00 9.00

Partial Utterances 7.41 0.83 6.00 9.00
∆ Entropy Full Utterances -0.23 0.46 -1.49 0.45

Partial Utterances -0.31 0.59 -1.95 1.15
Krippendorff’s α Full Utterances 0.89 0.16 0.46 1.00

Partial Utterances 0.57 0.35 0.00 1.00
z-Surprisal Full Utterances 0.12 1.02 -1.66 2.49

Partial Utterances 0.06 1.01 -1.65 2.49

Table 5: Descriptive statistics for inClinc stimuli. Length refers to the number of whitespace-separated words in
a stimulus. z-Surprisal refers to the Surprisal value for the last word in the stimulus, standardized based on all
Surprisal values computed from utterances in the original Clinc150 dataset.

being dropped. All weights were fine-tuned using
the complete utterances in the training subset.

Model fit during training was evaluated with re-
spect to the NLL loss for the validation subset. The
classifier was trained for 5 epochs, using an initial
learning rate of 2e−5 that was linearly decreased
by a factor of 0.2. An AdamW optimizer was used,
which performs gradient bias correction and weight
decay to improve regularization (Loshchilov and
Hutter, 2019). Optimization was performed with
respect to the NLL on the validation subset.

Validation NLL was the lowest after epoch 2;
this is the model that was retained for testing. After
training, the classifier had a 94.56% accuracy on
the complete utterances on the test set.13

D Disagreement between Participants
and DistilBERT

The partial utterances whose complete label was
either successfully predicted by either the coders or
the classifier, but not both, were inspected. These
disagreements were found in 69 presented stimuli
out of 538 (12.82%). For 61 of these stimuli, the
coders successfully predicted the correct complete
label while the classifier did not; the agreement
of 24 of these utterances surpassed the threshold
of moderate agreement α = 0.50. These 24 utter-
ances are presented in Table 6. For the remaining
eight of 69 disagreements, the classifier was the
one with the successful prediction. These stimuli

13Here, the test set refers to all complete utterances from the
original Clinc150 test split, before sampling the select stimuli
to be presented to participants.

are presented in Table 7. Note that none of the
stimuli reported in Table 6 involved ties.
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# Partial Utterance Predicted, DistilBERT Label, Complete Utterance α

1 i need milk Place an order Update/add to shopping list 0.51
2 put the dishes on my Smart home function Update/add to to-do list 0.51
3 please give me the name of a few good options Ask for meal suggestion Ask for restaurant suggestion 0.51
4 i’ll be confirming Share location Confirm a reservation 0.52
5 please put chips Ingredient Substitution Update/add to shopping list 0.52
6 what is the solution OOS Calculator 0.58
7 what events do i have going on on Ask about to-do list Ask about calendar 0.65
8 can you help me hunt for my missing Ask about reminders Find phone 0.65
9 please give me the name of a few good options Identify song Ask for restaurant suggestion 0.65
10 do they serve good tacos Ask for meal suggestion Ask for restaurant review 0.65
11 what events OOS Ask about calendar 0.70
12 after how much time is it still safe Ask about date How long food lasts 0.70
13 get reservations Accept a reservation Make a reservation 0.70
14 i need a table Cancel a reservation Make a reservation 0.74
15 please identify Share location Identify song 0.74
16 will this recipe still be good if i use Get recipe Ingredient Substitution 0.74
17 please identify the Share location Identify song 0.74
18 can you identify Share location Identify song 0.74
19 i don’t need mowing the lawn on my Cancel a reservation Update/add to to-do list 0.74
20 get reservations at Accept a reservation Make a reservation 1.00
21 get reservations at olive garden Accept a reservation Make a reservation 1.00
22 can i store bread Ingredient Substitution How long food lasts 1.00
23 how’s the OOS Weather 1.00
24 can you identify this Share location Identify song 1.00

Table 6: Stimuli where only the majority of human annotators successfully predicted the final intent, but Dis-
tilBERT made an incorrect prediction. α refers to Krippendorff’s α for the responses of the annotators for the
presented stimuli. Only stimuli with α ≥ 0.50 are presented. OOS represents the “out-of-scope” class label.

# Partial Utterance Predicted Label, Humans Label, Complete Utterance α

1 tell my Text Share location 0.29
2 i have to OOS Cancel a reservation 0.31
3 set the OOS Smart home function 0.38
4 what things are on my OOS Ask about to-do list 0.38
5 tell me what tomorrow’s Weather Ask about date 0.46
6 on the OOS Smart home function 0.51
7 i have a reservation for strip house for jennifer that i’d Cancel a reservation Confirm a reservation 0.70
8 put the dishes on my list Update/add to shopping list Update/add to to-do list 0.70

Table 7: Partial utterances where DistilBERT successfully predicted the complete utterance’s label (column 4),
but not the majority of human annotators. α refers to the agreement of human annotators for each stimuli. OOS
represents the “out-of-scope” class label.


