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Abstract

Knowledge Grounded Conversation Models
(KGCM) are usually based on a selec-
tion/retrieval module and a generation mod-
ule, trained separately or simultaneously, with
or without having access to a ‘gold’ knowl-
edge option. With the introduction of large
pre-trained generative models, the selection
and generation part have become more and
more entangled, shifting the focus towards en-
hancing knowledge incorporation (from multi-
ple sources) instead of trying to pick the best
knowledge option. These approaches however
depend on knowledge labels and/or a sepa-
rate dense retriever for their best performance.
In this work we study the unsupervised selec-
tion abilities of pre-trained generative models
(e.g. BART) and show that by adding a score-
and-aggregate module between encoder and
decoder, they are capable of learning to pick
the proper knowledge through minimising the
language modelling loss (i.e. without having
access to knowledge labels). Trained as such,
our model - K-Mine - shows competitive selec-
tion and generation performance against mod-
els that benefit from knowledge labels and/or
separate dense retriever.

1 Introduction

The ability to properly ground conversations in
structured and unstructured data, has become an
increasingly important feature in designing conver-
sational agents. By generating more informative
and specific responses, such models can establish
human-machine interactions that are more engag-
ing and less prone to producing bland and com-
mon responses. The task of modelling knowledge-
grounded conversations is traditionally decom-
posed into two sub-tasks: 1) knowledge selection
(KS), i.e. picking the proper knowledge piece(s)
from a provided pool based on dialogue history,
and 2) response generation (RG), i.e. producing a
response to the user’s utterance conditioned on both

dialogue history and selected knowledge piece(s).
Therefore and because of this sequential depen-
dency, the generation performance is directly af-
fected by model’s selection/retrieval ability and the
way this knowledge is being incorporated in the
generation process.

Early examples of knowledge grounded conver-
sation models mainly tried to diffuse the external
knowledge as an extra hidden state into the de-
coder part of a recurrent seq-to-seq architecture
(Liu et al., 2018; Ghazvininejad et al., 2018). With
the release of large knowledge grounded conver-
sational datasets like Wizard of Wikipedia (Dinan
et al., 2019), Topical-chat (Gopalakrishnan et al.,
2019) and Holl-E (Moghe et al., 2018), the field wit-
nessed numerous studies aimed to best coordinate
the KS and RG sub-tasks to improve the overall per-
formance of models. As an early standard baseline
Dinan et al. (2019) proposed variations of Trans-
former MemNet, a generative model trained to do
KS and RG using a memory network for selecting
the most relevant knowledge piece.

Attempts to improve on these benchmarks can
mostly be divided into two categories, based on
their point of focus. Selection oriented methods
focus on enhancing the KS task, usually by in-
troducing additional learning signals like the prior-
posterior discrepancy (Lian et al., 2019; Chen et al.,
2020) or long-term structural traits of conversations
like flow and initiative changes (Kim et al., 2020;
Meng et al., 2020; Zhan et al., 2021; Meng et al.,
2021; Zheng et al., 2020). Generation oriented
methods on the other hand, try to mitigate the se-
lection bottleneck by employing more powerful
methods to incorporate knowledge in the genera-
tion process, thus reformulating the KS problem as
an adaptive fine-grained selection to be dealt with
in decoding (Zheng and Zhou, 2019). This was es-
pecially encouraged with the introduction of large
pretrained generative models like GPT2 (Radford
et al., 2019), BART (Lewis et al., 2019) and T5



255

Figure 1: General overview of our model based on a pretrained encoder-decoder like BART

(Raffel et al., 2020) which allow leveraging their
ability in conditional text generation (Zhao et al.,
2020; De Bruyn et al., 2020). More recently RAG
(Lewis et al., 2021) and FiD (Izacard and Grave,
2021) models have been proposed (primarily in the
QA context) to ease the computational costs and
limitations of these big models, especially if the
supporting passage(s) needs to be retrieved from
a huge unstructured corpus. Since these models
integrate the KS and RG tasks, they do not need
labeled knowledge for training, although a knowl-
edge pool of manageable size is provided often via
a parametric or non-parametric retrieval module.

In this study we propose K-Mine (Knowledge
Mixing in encoder); a model that bridges between
the two aforementioned paradigms by doing un-
supervised knowledge selection with and within
pretrained generative models (e.g. BART). Using a
simple score-and-aggregate module between the
encoder and decoder of such a model, K-Mine
learns to (soft-) select the most relevant passage
without needing knowledge labels or a separate
retriever, while maintaining the generative skills
of the original pretrained model. Our experiments
show very competitive performances on two knowl-
edge grounded conversation datasets and state of
the art results in integrated unsupervised knowl-
edge selection.

2 Related Work

Like most NLP tasks, knowledge grounded con-
versation has been significantly influenced by the
introduction of large pretrained language models,
which have helped generative models beat retrieval
models in both automatic and human evaluations
(Roller et al., 2020). Thanks to their language mod-
eling skills, these models have shown the ability to
use the provided context (e.g. history, knowledge,
persona, etc.) on a per-demand basis, thus allevi-
ating the knowledge selection bottleneck. Adapt-
ing them to the specifics of the problem, usually

requires modifications in such a way that would
still allow for leveraging model’s pretrained skills.
Zhao et al. (2020) employed reinforcement learn-
ing to jointly optimize KS and RG with unla-
beled dialogues in a BERT-GPT2 based architec-
ture. De Bruyn et al. (2020) opted for BART
by modifying the encoder to do the supervised
KS task and showed that providing the decoder
with more knowledge pieces (top-k instead of 1),
leads to a lower RG perplexity. Izacard and Grave
(2021) proposed Fusion in Decoder (FiD) which
passes a selection of individually encoded question-
knowledge pairs as a single concatenated sequence
to decoder, hence reducing the computational cost
of self-attention over all knowledge options at once.
RAG (Lewis et al., 2021) is another (more gen-
eral) framework to incorporate knowledge in text
generation which allows the (pretrained) decoder
to choose content from top-k retrieved knowledge
pieces via token-wise or sequence-wise marginal-
ization. In principle FiD and RAG replace the
KS step with a pool retrieval task that provides
the pretrained model with multiple (top-k) relevant
passages to attend to (FiD) or marginalize over
(RAG) during generation. In particular RAG ben-
efits from a DPR retriever which is updated (only
the query encoder part) during training through
the back-propagation of generation error. Recently
Shuster et al. (2021) adopted FiD and RAG (origi-
nally introduced mainly for QA tasks) for knowl-
edge grounded conversation and tried to improve
the performance with a variety of general and task-
inspired modifications, e.g. using poly encoders
(Humeau et al., 2020) or extending the marginal-
ized decoding idea to dialog turns.

Our work has similarities with both FiD and
RAG in the sense of learning knowledge grounded
generation with pretrained models and without the
need to have labeled knowledge. It is however dif-
ferent in some key aspects. The retrieval/selection
part in K-Mine is truly and completely integrated



256

Figure 2: Inside the knowledge fusion module: Inputs are the encoded knowledge-history pairs (same history
with different (in this case 5) knowledge options) from which the [CLS] embedding and the average last utterance
embedding are concatenated and fed to a linear layer to calculate relevance scores. The scores are converted to a
distribution via a normalizing function like Softmax. Finally the normalized scores are used to produce a weighted
sum of the inputs which will be passed to the decoder as the encoder output.

inside the pretrained model, so unlike RAG, it does
not require a separate parametric retriever, and un-
like FiD, it is not totally disentangled from the
retriever. Moreover, unlike both FiD and RAG, K-
Mine aggregates over encoded knowledge options
before passing them to the decoder. We will discuss
the advantages and disadvantages of these choices
at the end of the paper.

3 Methodology

3.1 Problem Definition and Formalization
In general the question of knowledge grounded
conversation modelling is defined over dialog and
knowledge datasets Dd = {(Ci, ri)}Ni=1 and Dk =
{(kj)}Mj=1 where ∀i ∈ {1, ..., N}, Ci and ri repre-
sent context and response for a specific dialog turn,
and ∀j ∈ {1, ...,M}, kj is a knowledge piece (e.g.
a sentence or paragraph). Dd and Dk usually are
connected through a retrieval function:

fret : Dd → Dm
k ; m ∈ {0, ...,M} ,m << M

fret can be part of the trained model or a non-
parametric module which does a preliminary filter-
ing by narrowing down the knowledge options from
M to m, based on some similarity metric. In most
knowledge grounded conversation datasets,Dd and
Dk are provided as parallel, which allows for a
simpler formalization over D = {(Ci,Ki, ri)}Ni=1,

where Ki ∈ Dm
k ; m ∈ {0, ...,M} is the nar-

rowed down subset of the original Dk, and often
includes a ‘gold truth’, i.e. the knowledge piece
which has been picked by the (human) participant
during data curating. We consider the model to
be ‘Fully-supervised’ if this gold truth is used in
training. Otherwise, it will be referred to as ‘RG-
supervised’.

3.2 Approach and model

Figure 1 shows a general overview of our model
which is built by adding a ‘knowledge fusion’
module between the encoder and decoder of a
pretrained generative model like BART. The en-
coder receives the input sequence as the concate-
nation of the [CLS] token, a knowledge option
and the dialog history which includes the last u
utterances, each pre-pended by special identifier to-
kens <user> or <agent> based on the speaker.
One learning sample contains m such sequences
(padded to the same length) with different knowl-
edge options and same history, which allows the
encoder to create m contextualized encodings for
each knowledge-history pair. These encodings
then are passed to the knowledge manager mod-
ule which fuses them and creates a single sequence
of hidden states to be fed to the decoder as the final
encoder output. In order to make the manipula-
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Dataset Train Valid Test #Kn
All w/ Kn All w/ Kn All w/ Kn

Wizard of Wikipedia 82965 77332 8814 8270 4336/4370 4073/4119 63
HOLL-E 36584 34632 4654 4399 4602 4339 58

Table 1: Overview of datasets used in the study. Numbers are for turns with access to knowledge and w/ Kn refers
to the number of such turns for which a knowledge option has been chosen to generate the response. WoW test set
is divided into seen/unseen subsets and #Kn is the (average) number of knowledge options provided for each turn.

tion and modification of hidden states easier in the
knowledge fusion module, we pad-truncate knowl-
edge options to the same length, decided by the
dataset statistics.

Figure 2 shows a detailed overview of how the
fusion is done. The module receives the encoded
knowledge-history pairs (created by the pretrained
encoder), from which the [CLS] token embedding
and the average embedding of the last utterance are
concatenated and fed to a linear layer to calculate
relevance scores for each pair. The scores then are
converted into a distribution by a normalizing func-
tion (e.g. Softmax). Finally the normalized scores
are used to produce a weighted sum of the inputs
which will be passed to the pretrained decoder as
the encoder hidden states. Empirically the fused
output can be written as:

hfusj =
m∑
i=1

αiH
enc
ij

αi = f([CLSi;mean(LUi)])

where m is the number of knowledge options for
each sample, Henc

i is the encoded hidden states
for the ith knowledge-history pair, LU is the last
utterance and f is the Softmax(Linear) operator.
The training is done by minimizing the usual NLL
loss over the generated response in decoder. The
knowledge fusion module can be also supervised
by introducing a BCE loss with respect to the gold
truth (when available). So in general:

L = (1− λ)LRG + λLKS (1)

although the RG-supervised case (λ = 0) is of
more interest to us.

4 Experiments

4.1 Data

We study our model on 2 publicly available
datasets for knowledge grounded conversation
(KGC):

Wizard of Wikipedia (WoW)(Dinan et al., 2019)
is a widely used dataset for open-domain KGC
created by crowd-sourcing dialogues between
an apprentice and a wizard who has access to a
retrieved pool of Wikipedia passages which he/she
can use in conversing with the apprentice. WoW
consists of 22311 conversations (split into train,
valid and test) over 1365 general topics. The
validation and test set are further split into seen and
unseen versions where the latter contains dialogues
with new topics not discussed in the training
data, for out-of-distribution topic evaluations.
The knowledge pool size varies and on average
each wizard turn is provided with ~63 Wikipedia
passages, although not all wizard turns make use
of these options in generating the response1.

HOLL-E (Moghe et al., 2018) is another
KGC dataset that contains 7228, 930 and 913
dialogues for training, validation and test. Each
conversation is about a specific movie and both
parties have access to a document which contains
the plot and a fact table besides a selection of
viewer comments and reviews. The original
dataset provides a list of spans in the document as
knowledge options and indicates the one (if any)
that has been used to generate the response. We
use the processed version provided by Kim et al.
(2020) which changed it to the WoW format by
redefining the spans as complete sentences.

Table 1 summarizes important information for
these datasets. To have a more detailed evalua-
tion, we do the experiments under two data set-
tings: w/Kn; i.e. only including turns which use
knowledge and All; i.e. including all turns.

4.2 Evaluation metrics
Following the related literature, we employ com-
monly used automatic metrics; R@1 for knowl-

1We use the pre-processed dataset provided by Zheng and
Zhou (2019) in https://github.com/ChuanMeng/
DukeNet/.

https://github.com/ChuanMeng/DukeNet/
https://github.com/ChuanMeng/DukeNet/
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edge selection, and unigram F1, ROUGE and PPL
(perplexity) for response generation. When com-
paring with variations (Table 4) we also use KF1 or
Knowledge-F1 introduced by Shuster et al. (2021)
which measures the unigram word overlap between
the model’s generation and the ground-truth knowl-
edge. Whereas F1 can be seen as measuring conver-
sational ability, KF1 attempts to capture whether a
model is speaking knowledgeably by using relevant
knowledge as judged by humans. This provides an
easy way to distinguish between general language
modeling skills and knowledge incorporation.

4.3 Architecture and baselines

In theory K-Mine can be implemented using any
pretrained encoder-decoder model including the
two most commonly used ones, BART(Lewis et al.,
2019) and T5 (Raffel et al., 2020). Exploring both
options, BART turned out to yield better results so
we opted for this model. We compared K-Mine
with the following models:
TMemNet (Dinan et al., 2019): Combines a trans-
former (not pretrained) with an external mem-
ory network to select the knowledge. TMem-
Net+BERT, uses BERT as encoder.
DukeNet (Zheng and Zhou, 2019): Explicitly mod-
els knowledge tracking and knowledge shifting as
dual tasks to address the prior-posterior gap. It uses
a BERT encoder.
MIKe (Meng et al., 2021): Further improves KS
by explicitly distinguishing between user-initiative
and system-initiative knowledge selection. It uses
a BERT encoder.
BFKGC (De Bruyn et al., 2020): Uses a BART-
based model to do both KS and RG in a fully su-
pervised manner (shared encoder).
FiD-RAG (Shuster et al., 2021): Augments FiD by
using a separate DPR-based retriever trained with
RAG which results in state of the art performance
on WoW.

In addition, we also include a few specialized
baselines/variations to better assess the perfor-
mance. These include:
K-Mine-mean: Instead of the weighted fusion, the
decoder receives the average of knowledge-context
encodings.
K-Mine-max: Instead of the weighted fusion, the
decoder receives the argmax; i.e. the knowledge-
context encoding with the highest relevance score.
K-Mine-max-full: Fully supervised K-Mine-max;
i.e. with access to knowledge labels.

K-Mine-full: Fully supervised K-Mine; i.e. with
access to knowledge labels (λ = .5 in Equation 1).
KS-RoBERTa: A RoBERTa model trained (only)
on the knowledge selection task as a ranking prob-
lem with KS labels.

4.4 Implementation details
We use HuggingFace’s Transformers library (Wolf
et al., 2020) to implement our models. Training
was done with an effective batch size of 64 and
learning rates of 2e-5 and 5e-4 for the pretrained
and raw parts respectively, with linear decay ap-
plied to both. For WoW dataset, we considered
the last 3 utterances as the history, whereas for
HOLL-E we just kept the last one since utterances
mostly stand alone in this dataset. Passages were
truncated or padded to the fixed length of 32 to-
kens before being concatenated with the history
tokens, so that the weighted summation would not
perturb the knowledge-history division in the input
sequence.

5 Results and discussion

Tables 2 and 3 show the performance of K-Mine in
knowledge selection and response generation for
the WoW (Seen and Unseen) and HOLL-E test sets
against baselines. As one can see, K-Mine shows
very competitive results, especially in knowledge
selection accuracy (R@1) although it does not ben-
efit from knowledge labels in training, or a sep-
arate retrieval module. Adding KS supervision
(K-Mine-full) enhances the knowledge selection
performance by~3% although it negatively affects
the RG performance. Regarding the data, the KS
performance boosts by more than 2% when only
the ‘w/Kn’ turns (turns that use knowledge to gen-
erate response) are used for training and testing,
which shows that in the absence of explicit (KS)
labels, the model prefers to select something than
nothing2.

Table 4 shows the performance of standard K-
Mine models against some variations. Evidently
the performance drops significantly when instead
of the weighted mix, only the highest scored
knowledge-history pair is passed to decoder (K-
Mine-max vs. K-Mine), which shows that the full

2This might also depend on the way the ‘empty’ or ‘no-
knowledge’ option is being represented. However in our
experiments, using various choices including the original
‘no_passages_used’ string, PAD tokens and the pool average,
showed no difference. We also tried using certainty thresholds
and gating mechanisms to link the ’no-knowledge’ case with
the relevance distribution but these too proved ineffective.
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Test Seen Test Unseen
Model R@1 PPL F1 ROUGE-L R@1 PPL F1 ROUGE-L

TMemNet (E2E)† 21.6 63.5 16.9 16.8 12.1 97.3 14.4 15.4
TMemNet+BERT (E2E)† 23.9 53.2 17.7 17.0 16.3 137.8 13.6 15.6
DukeNet† 26.4 - - 18.5 19.6 - - 17.0
MIKe † 28.4 - - 18.8 21.5 - - 17.4
BFKGC† (BART-large) 26.0 12.2 20.1 - 19.9 14.9 19.3 -
FID-RAG‡ (BART-large) 29.3* 10.5 23.2 24.2 26.9* 10.7 23.2 24.4

K-Mine (BART-base) 27.9 16.3 20.9 19.6 27.0 20.3 20.1 19.2
K-Mine -w/Kn (BART-base) 29.2 16.1 21.4 19.9 28.4 20.3 20.3 19.4
K-Mine (BART-large) 28.3 13.2 21.8 20.1 28.4 16.4 21.1 19.7
K-Mine -w/Kn (BART-large) 30.4 13.1 22.2 20.1 30.8 16.5 21.5 20.0

Table 2: Results on WoW test sets for K-Mine and baselines. R@1 is the KS accuracy and the other metrics assess
the response generation performance. Models with † next to their names benefit from KS labels in training and
‡ identifies pretrained models which use a separate retriever. Results with * are for retrieval from 21M 100-word
passages in Wikipedia so they are not directly comparable. K-Mine-w/Kn has been trained and tested on the w/Kn
subsets; i.e. turns which have used knowledge (see Table 1 for statistics)

Model R@1 ROUGE-1 ROUGE-L

TMemNet+BERT† 28.4 31.6 25.9
DukeNet† 30.0 36.5 31.5
MIKe† 31.9 37.8 32.8
K-Mine (BART-base) 28.7 36.1 32.6
K-Mine -w/Kn (BART-base) 30.7 37.3 33.8
K-Mine (BART-large) 31.7 38.5 35.1
K-Mine -w/Kn (BART-large) 32.8 39.3 36.0

Table 3: Results on HOLL-E test set (single reference) for K-Mine and baselines. R@1 is the KS accuracy and
the other metrics assess the response generation performance. Models with † next to their names, benefit from
KS labels in training. K-Mine-w/Kn has been trained and tested on the w/Kn subsets; i.e. turns which have used
knowledge (see Table 1 for statistics)

Test Seen Test Unseen
Model Data R@1 PPL F1 R-L KF1 R@1 PPL F1 R-L KF1
K-Mine All 27.9 16.3 20.9 19.6 18.2 27.0 20.3 20.1 19.2 17.5
K-Mine w/Kn 29.2 16.1 21.4 19.9 19.1 28.4 20.3 20.3 19.4 18.6
K-Mine-mean All - 19.7 18.7 18.2 14.4 - 26.6 17.0 17.2 12.3
K-Mine-mean w/Kn - 19.5 18.9 18.2 15.4 - 27.0 17.2 17.3 13.1
K-Mine-max All 3.2 18.5 18.5 18.2 14.1 2.6 24.2 16.9 17.2 12.1
K-Mine-max w/Kn 1.2 18.5 18.8 18.3 15.0 0.9 24.7 17.3 17.6 12.9
K-Mine-max-full† All 29.7 17.2 20.8 19.4 19.8 27.2 20.8 19.9 18.9 18.7
K-Mine-max-full† w/Kn 31.2 17.0 21.4 19.8 22.2 29.0 20.7 20.5 19.4 21.1
K-Mine-full† All 29.7 17.8 20.6 19.2 18.2 28.3 21.0 20.0 19.0 17.2
K-Mine-full† w/Kn 30.9 17.6 21.1 19.5 19.9 29.5 20.9 20.1 19.1 19.7
KS-RoBERTa† All 25.9 - - - - 25.5 - - - -
KS-RoBERTa† w/Kn 28.3 - - - - 27.5 - - - -

Table 4: Results on WoW test sets for K-Mine and some extreme variations/baselines. R@1 is the KS accuracy
and the other metrics assess the response generation performance (R-L = ROUGE-L). Models with † next to their
names, benefit from KS labels in training. All models use the base version of the pretrained transformer.
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aggregated gradient is essential for the unsuper-
vised KS learning. Adding KS supervision to K-
Mine-max (K-Mine-max-full), boosts the perfor-
mance in both KS and RG tasks, surpassing the
standard K-Mine model. Here the KF1 metric is
of special importance as it shows that although the
fully supervised version (K-Mine-max-full) does
slightly worse than K-Mine in terms of conversa-
tional ability and language modeling (F1, R-L and
PPL), it generates significantly more knowledge-
able responses, which can be attributed to passing a
less noisy representation to decoder (as confirmed
by the results from the K-Mine-full model). Fi-
nally, comparing the two fully supervised models
(K-Mine-max-full and K-Mine-full) shows that in
the presence of knowledge labels, fusion actually
hurts the model’s performance.
Another interesting result is the higher discrepancy
between the seen/unseen KS performance (R@1) in
the presence of supervision (1.4-2.5 vs. 0.9) which
indicates a lower ability to generalize when the task
has been learned via explicit signals. Finally the in-
ferior performance of the pure selection model (KS-
RoBERTa) compared to K-Mine, K-Mine-max-full
and K-Mine-full, reflects the broadly studied prior-
posterior gap in KGCMs; i.e. the model can benefit
from (or even exclusively rely on) responses for
selecting the relevant knowledge3.

To have a better understanding of the way knowl-
edge selection happens under the hood, we intro-
duce a localization metric to measure the level by
which the knowledge distribution vector p deviates
from the uniform distribution u towards a one-hot
distribution o. Defined as:

Loc =
1− cos(6 (p,u))
1− cos(6 (o,u))

Loc varies between 0 (p = u; zero certainty) and
1 (p = o; absolute certainty) and provides a good
way to track the average knowledge distribution.
Figure 3 shows how this metric changes during
training for the standard K-Mine model along with
K-Mine-max and K-Mine-max-full. We can see
that for K-Mine-max the localization stays close to
zero (~1e-4) whereas when knowledge labels are
provided, it surges rapidly in less than 100 itera-
tions. K-Mine shows a delayed (starting around
500 iterations) but more extreme surge. This can

3Comparing RoBERTa and BART in this manner is not
trivial but it is also not unsound considering that the number
of parameters are close (139M vs. 125M) and the selection
task in K-Mine is ‘mainly’ done via the BART encoder.

Figure 3: Evolution of the Localization metric during
training for K-Mine and 2 variations. K-Mine-max is
the (almost) flat line in the bottom.

be attributed to the weighted fusion which forces
the model to localize the distribution as soon as
possible -and thus at the cost of a less accurate
distribution- in order to pass a less noisy represen-
tation to the decoder. The model seems to partly
re-evaluate and improve this process subsequently
as can be seen in the slightly descending behaviour
of Loc in later steps, eventually converging to the
ascending supervised values.

6 Conclusion and future work

In this work we introduced K-Mine (Knowledge
Mixing in encoder), which provides a simple way
to train knowledge grounded conversation mod-
els based on pretrained generative models without
knowledge labels or a separate retriever. K-Mine
uses a weighted aggregation method to fuse dif-
ferent encoded knowledge-context pairs into one
sequence of the same length before passing it to
the decoder, which has its advantages and disad-
vantages in comparison to models like RAG and
FiD. It significantly reduces the computational cost
in the decoder (at least by a factor of m= number
of encoded knowledge options) but this naturally
comes with the cost of a noisier and less rich input
for the decoder which affects the response gener-
ation performance. This was partly confirmed by
the relatively low KF1 values of K-Mine compared
with the fully supervised version in Table 4 but a
qualitative assessment of K-Mine’s response gener-
ation can shed more light on this.

Another interesting topic is the relationship be-
tween the KS and RG performance in K-Mine. In
our experiments we saw that in later iterations, the
KS performance often keeps improving while the
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RG performance (according to automatic metrics)
starts to suffer. A more comprehensive study can
determine whether it is possible to reconcile the
two, or K-Mine actually serves better as an aux-
iliary retriever or re-ranker module. Either way,
the potentials and limitations of this approach (i.e.
selection via generation) in similar tasks and prob-
lems is worth exploring.
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