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Abstract

Zhang et al. (2020) proposed to formulate few-
shot intent classification as natural language
inference (NLI) between query utterances and
examples in the training set. The method is
known as discriminative nearest neighbor clas-
sification or DNNC. Inspired by this work, we
propose to simplify the NLI-style classifica-
tion pipeline to be the entailment prediction
on the utterance-semantic-label-pair (USLP).
The semantic information in the labels can
thus been infused into the classification pro-
cess. Compared with DNNC, our proposed
method is more efficient in both training and
serving since it is based upon the entailment
between query utterance and labels instead of
all the training examples. The DNNC method
requires more than one example per intent
while the USLP approach does not have such
constraint. In the 1-shot experiments on the
CLINC150 (Larson et al., 2019) dataset, the
USLP method outperforms traditional classifi-
cation approach by >20 points (in-domain ac-
curacy). We also find that longer and semanti-
cally meaningful labels tend to benefit model
performance, however, the benefit shrinks as
more training data is available.

1 Introduction

Many methods have been considered for few-shot
intent classification. A simple but often effective
approach is to simply generate more data through
data augmentation. Wei and Zou, 2019 and Ku-
mar et al., 2019 explored data augmentation at
token- and feature-level to boost model perfor-
mance. Meta-learning has also been studied exten-
sively for few-shot learning. For instance, Induc-
tion Network (Geng et al., 2019) tried to learn gen-
eral class representations via episode-based meta
training and predict utterance labels based on the
relation score between the query utterance and
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classes. Furthermore, large-scale pre-trained lan-
guage models are often employed to mitigate the
lack of annotated data for the target task. Schick
and Schütze, 2021 leveraged pre-trained RoBERTa
(Liu et al., 2019) and XLM-R (Conneau et al.,
2020) to learn to generate task descriptions on
small labeled datasets. They then use the trained
models to produce descriptions and soft labels on
large, task-specific unlabeled datasets and use them
to train classifier. Although this approach has been
proven to be effective, it requires extra unlabeled
data and additional human supervision on descrip-
tion generation task. DNNC (Zhang et al., 2020) re-
formulates few-shot text classification as NLI-style
pairwise comparison between training example and
query utterance. However, DNNC requires at least
two examples per intent for training and has to
make M×N (M: number of intents; N: number of
training examples per intent) pairwise comparisons
for each classification. Along the line of NLI-based
classification, Yin et al. (2019) explored to lever-
age short semantic labels. However, this work is
limited to zero-short setting and doesn’t provide
extensive analysis on how semantic information in
labels affects model performance.

However, the DNNC work ignores one valuable
and readily available supervision in the training
data, the semantics in the labels. Our work is
largely motivated by the hypothesis that seman-
tic labels may carry valuable information about the
intents and could benefit few-shot learning. There
are prior works exploring how to leverage seman-
tic labels in NLP tasks. For examples, Hou et al.
(2020b) has proposed to improve the Prototypical
Network (Snell et al., 2017) by directly embedding
semantic labels; Hou et al. (2020a) has tried to use
semantic information in labels for few-shot slot
tagging. To our knowledge, however, there is no
known work that has explored to leverage semantic
labels for NLI-style intent classification. Neither
has any work been done to study how model per-
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formance changes with regard to the interplay of
data augmentation, different labeling, and number
of training examples.

Based upon DNNC, our proposed method,
utterance-semantic-label-pair (USLP), also lever-
ages NLI-style classification. Instead of computing
the entailment relationship between query sentence
and the example sentences in the support set, we
use the model to gauge the entailment relationship
between query text and semantic labels. The se-
mantic information in the labels can be perfectly
infused into the classification process in this way.
The pairwise entailment prediction is also reduced
to M times per classification compared with the
DNNC’s M×N. Figure 1 provides a few exam-
ples to illustrate the difference between USLP and
DNNC.

In the following 1-shot experiments on the
CLINC150 (Larson et al., 2019) dataset, we show
that the USLP method outperforms the standard
classification approach over 20 points with respect
to in-domain accuracy. It is noteworthy that the pre-
decessor of USLP, DNNC requires more than one
example per intent for training. Although DNNC
could do self-entailment training in 1-shot setting,
our preliminary results show that the in-domain
accuracy of multiple runs is extremely low (best
result is below 20 from multiple runs). We also
show that data augmentation, longer and more de-
scriptive labeling, and NLI pre-training could boost
model performance in few shot setting. However,
as more training data is available, the efficacy of
these performance boosters tends to shrink or even
becomes negative. Our contributions can be sum-
marized in two fold: 1, we proposed a new intent
classification pipeline, USLP, and showed its effec-
tiveness especially in 1-shot setting; 2, we studied
how data augmentations, different labeling meth-
ods, and NLI pre-training might impact model per-
formance in different few shot scenarios.

2 Method

2.1 Natural Language Inference

Natural Language Inference, or NLI, is a funda-
mental NLP task that aims to identify the relation-
ship between a premise and a hypothesis. The
relationship can be binary, (entailment and non-
entailment) or ternary (entailment, contradiction,
and neutral). Pre-trained transformer models such
as BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019) have achieved promising results on

NLI tasks. Here the NLI task is treated as a textual
sequence classification problem, where the premise
and hypothesis sentences are concatenated as
[CLS], premise, [SEP ], hypothesis, [SEP ] (depend-
ing on the tokenizer, the concatenated text might
be slightly different) and fed into the model. The
last hidden state of the [CLS] token is commonly
used for classification.

2.2 Utterance-Semantic-Label-Pair
The utterance-semantic-label-pair (USLP) ap-
proach builds on top of NLI framework as afore-
mentioned. In USLP, utterances in training data are
treated as premise while semantic labels are con-
sidered as hypothesis. We use binary entailment
relationship for USLP, namely entailment and non-
entailment. During training, an utterance-label pair
is treated as a positive or entailment example if the
label is the assigned intent for the utterance. Sim-
ilarly, if the label is not the right intent label for
the utterance, the pair is considered as a negative
or non-entailment example. Although the USLP
method does not necessarily require intent labels to
have semantic meaning, detailed and semantically
meaningful labels can benefit in-domain classifi-
cation, which will be demonstrated in the follow-
ing experiments. The DNNC (Zhang et al., 2020)
method is also based upon NLI-style classification,
the major difference is, it predicts the entailment
relationship between the query utterance and ex-
amples in the training set. We provide Figure 1 to
compare the two methods with more details.

For inference, we first generate all the possible
query utterance and label pair and compute the
entailment probability scores. The pair with the
highest score has the predicted label for the utter-
ance. To accommodate out-of-scope (OOS) predic-
tion, we can either treat it same as an additional
intent class like the other intent labels, or set up a
threshold T , if the maximum entailment probabil-
ity score is over T , we assign the corresponding
label as the prediction, otherwise we assign OOS
as the prediction for the query utterance.

3 Experiments

3.1 Datasets
3.1.1 General NLI corpus for pre-training
To unleash the full potential of transformer model
on NLI task, we follow the data processing and
training pipeline provided by Zhang et al. (2020)
to combine three NLI corpus (SNLI (Bowman
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Figure 1: An illustration of training data in USLP and DNNC

et al., 2015), MNLI (Williams et al., 2018), and
WNLI (Levesque, 2011)) from the GLUE bench-
mark (Wang et al., 2018) and use them for NLI
pre-training.

3.1.2 CLINC150

CLINC150, introduced by Larson et al. (2019), is a
multi-domain dataset for intent classification task.
It has three dataset variants for in-domain and out-
of-scope (OOS). We use the small dataset, which
contains 150 intents, 50 examples/intent and 100
OOS examples for training. The original labeling
has hyphen between each token in the label, we
replace hyphen with empty space to format the la-
bel as short phrase. To simulate 1-, 5-, and 10-shot
experiment, we randomly draw examples from the
small dataset. We run each experiment five times
with different seeds to capture the variations in ran-
dom samplings. We remove dev set to simulate real
few-shot scenario and use the original testing set
for final results.

3.1.3 Schema-Guided Dialogue Dataset

SGD (Rastogi et al., 2019), or "Schema-Guided
Dialogue Dataset", is a dataset about task-oriented
dialogue. Its intent labels have detailed description,
which is ideal for evaluating if detailed semantic la-
beling can help improve model performance. Since
the original SGD dataset is not designed for few-
shot intent classification, we went through a few
data processing steps to customize the dataset for
our use case. More details about the data process-
ing steps can be found in Appendix B. We ended
up with a subset of SGD dataset with 25 intents
and 110 OOS utterances.

3.2 Data augmentation

We use the nlpaug library (Ma, 2019) for token-
level data augmentation. In-domain utterances are
augmented 4 times using random insertion, cBERT-
based substitution, random swapping, and synonym
replacement API. More details about the configura-
tions can be found in Appendix A.

3.3 Training

We use the transformer library (4.5.1) (Wolf et al.,
2020) by Huggingface for modeling. In NLI
pre-training, we use the pre-trained roberta-base1

model and follow the pre-training pipeline pro-
vided by Zhang et al. (2020). For downstream
few-shot training, we use AdamW optimizer and
linear scheduler, learning rate as 5e-5, epochs as
100, and train batch size as 128. We learnt this
hyper-parameter set to be effective from our pre-
vious experiments with our in-house dataset. To
simulate a real few shot setting, where dev set is
often unavailable for hyper-parameter tuning and to
demonstrate that the proposed method can be eas-
ily generalized into different datasets, we disregard
all the dev sets in the following experiments and
simply use the same hyper-parameter set without
any further hyper-parameter tuning.

Balanced sampling Since the NLI reformulation
of text classification results in much more negative
examples than positive ones, we sample equal num-
ber of positive and negative examples for every
batch to keep the model been exposed the balanced
training examples. Furthermore, to prevent overfit-
ting, each epoch iterates through all the positive ex-
amples while the negative examples are randomly

1https://huggingface.co/roberta-base

https://huggingface.co/roberta-base
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sampled to form batchs with positive examples.
This data sampling strategy leads to better per-
formance based upon previous empirical results
on other in-house datasets. The previous DNNC
(Zhang et al., 2020) work doesn’t enforce balanced
sampling, the positive and negative examples are
mixed together and sampled randomly. We apply
this sampling strategy to all the following experi-
ments.

4 Results

4.1 Benchmark Results on CLINC150

USLP outperforms other methods by a large
margin in 1-shot setting. Results from Table 1
show that USLP-T-A outperforms traditional classi-
fication approach by 20, 10, and 15 points in terms
of in-domain accuracy, OOS recall, and OOS preci-
sion. The DNNC approch requires more than 1 ex-
ample per class to start with, so it is out of the com-
parison. Compared with the 100-shot BERT-large
results reported in Larson et al. (2019), the USLP-
T-A achieves about 75% of the in-domain per-
formance and has significantly higher OOS-recall
score. Noticeably, within different USLP methods,
the USLP-T has much better performance for in-
domain accuracy (~20 points) and OOS-precision
(>30 points) than USLP-O, but the USLP-O outper-
forms USLP-T by around 30 points for OOS-recall.
One potential reason is the extremely unbalanced
data; there are only one example per in-domain
class, and in total we have 150 in-domain exam-
ples, but 100 examples for OOS. The USLP-O
treats OOS as an extra class, but the OOS class has
overwhelmingly more examples than other classes
do, which could make the model favor OOS predic-
tion. USLP-T approach, however, uses threshold to
control in-domain and OOS prediction. Our experi-
ments use 0.01 as the threshold, which tend to favor
in-domain predictions and alleviates the extreme
unbalance issue. Data augmentation can help im-
prove in-domain classification and OOS-precision,
but its impacts on OOS-recall and OOS-precision
are opposite for USLP-T-A and USLP-O-A.

As we add more in-domain data into the experi-
ments, in 5-shot and 10-shot experiments, we see
the traditional classifier and DNNC in general per-
form better than USLP in terms of in-domain clas-
sification, but USLP has better and more balanced
OOS-recall and OOS-precision scores. For exam-
ple, in 10-shot experiments, CLS-T has the best
in-domain accuracy, but it is unable to make OOS

detection; DNNC has slightly better in-domain
and OOS-precision result than USLP, but its OOS-
recall is below that of USLP-T by around 30 points.
Data augmentation seems to be more effective with
USLP; it tends to hurt CLS and DNNC perfor-
mance. Applying data augmentation on DNNC
10-shot training takes too much time (10+ hours
on a single V-100 GPU), so we omit DNNC-A 10-
shot experiment. Although the data augmentation
continues to boost USLP in-domain performance
for 5-shot and 10-shot experiments, it hurts OOS-
recall. We believe that this is because the data
augmentation will cause the model to be trained for
more iterations due to fixed number of epochs and
we sample 1/4 of batch size from OOS examples
for every batch during training. As a result, the
model is likely to overfit to the 100 OOS training
examples.

4.2 The Role of Labeling Technique, Data
Augmentation, and NLI pre-training

We use the SGD dataset to further study how rele-
vant factors like labeling technique, data augmenta-
tion, and NLI pre-training on general corpus might
impact USLP-T performance in different few-shot
settings. Results are shown in Table 2.

Descriptive labeling can help improve USLP
in-domain accuracy and OOS-precision. The
SGD dataset provides intent labels as well as de-
tailed descriptions for each label. To figure out the
role of different labeling techniques in USLP-based
intent classification, we set up three experiments
with different labeling, 1) short labels, which are
simply the original intent label. They are composed
of either single words or short phrases and have
limited semantic meaning; 2) long labels, which is
the label description. Each description is usually
a longer sentence than short labels and therefore
can carry more semantic information; 3) symbolic
labels. We convert labels into symbols like "0"
and "1", which carry no semantic information. The
results in Table 2 show that, long labels can effec-
tively improve model performance. Especially at
extreme low-resource scenario (1-shot), the long
labels boost both in-domain accuracy and OOS-
precision by 8+ points. Interestingly, long labels
hurt model performance on OOS-recall. We hy-
pothesize that long labels can boost model confi-
dence on positive predictions resulting in producing
higher prediction score favoring in-domain predic-
tion.
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1-shot 5-shot 10-shot
Method In-Acc3 OOS-R4 OOS-P5 In-Acc OOS-R OOS-P In-Acc OOS-R OOS-P
CLS-T1 51.56(1.31) 0.00(0.00) NA 87.72(0.64) 0 NA 92.52(0.41) 0 NA
CLS-T-A1 51.44(1.61) 0.00(0.00) NA 86.70(0.94) 0 NA 91.07(0.18) 0 NA
CLS-O2 43.41(3.17) 59.38(1.32) 48.20(4.82) 86.79(0.84) 42.98(2.36) 90.69(1.49) 91.95(0.50) 42.92(1.99) 95.05(1.01)
CLS-O-A2 45.31(2.28) 55.4(1.23) 51.03(5.00) 86.27(1.01) 43.18(1.81) 92.84(1.75) 91.18(0.40) 36.24(1.21) 96.87(1.40)
DNNC NA NA NA 88.49(1.00) 61.46(6.10) 87.06(3.95) 91.21(0.61) 42.6(3.87) 92.69(1.39)
DNNC-A NA NA NA 85.40(1.36) 20.30(10.33) 88.46(4.68) NA NA NA
USLP-T 69.7(1.01) 62.62(3.07) 66.92(3.64) 83.96(1.45) 65.90(3.58) 84.32(3.26) 88.68(0.83) 70.96(2.78) 86.27(1.31)
USLP-T-A 71.83(1.13) 70.14(3.44) 65.18(5.08) 85.86(0.58) 65.47(2.81) 80.95(5.55) 90.29(0.44) 55.42(3.50) 89.23(2.30)
USLP-O 49.82(2.26) 92.56(1.35) 35.09(1.47) 79.28(1.11) 67.06(2.34) 72.61(2.45) 86.68(0.90) 56.70(3.81) 86.48(2.50)
USLP-O-A 66.84(1.05) 74.3(2.73) 55.67(3.40) 85.27(0.60) 54.18(3.83) 85.69(1.31) 90.22(0.59) 42.34(3.76) 94.51(1.40)
BL-100shota 96.9 40.3 NA
BL-100shotb 96.2 52.3 NA

Table 1: CLINC150 few-shot benchmark results. 1 "CLS": traditional classifier using [CLS] token embedding
for classification; "T": threshold, for all the experiments we use 0.01 as the threshold; "A": data augmentation; 2

"O": treating OOS as an additional class; BL-100shota and BL-100shotb are based on bert-large model, reported
by Larson et al. (2019). All other methods are based on roberta-base model. 3 "In-Acc", 4 "OOS-R", and 5 "OOS-
P" stands for in-domain accuracy, OOS-recall, and OOS-precision respectively, numbers in the brackets represent
standard deviation from multiple runs. DNNC requires >1 examples/intent for training and its 10-shot experiment
with data augmentation takes >10 hours on a single V-100 GPU, so the corresponding experiments are skipped and
results are shown as NA.

1-shot 5-shot 10-shot
Method In-Acc OOS-R OOS-P In-Acc OOS-R OOS-P In-Acc OOS-R OOS-P
Short1 67.76(2.48) 84.58(3.70) 58.04(2.54) 85.54(1.18) 74.53(6.63) 89.84(2.33) 86.66(0.97) 75.20(2.94) 89.69(2.28)
Short-Aug1 69.68(3.51) 69.78(4.65) 60.35(4.34) 85.54(1.87) 67.96(5.17) 84.93(3.06) 85.46(1.00) 60.84(5.24) 84.85(2.27)
Long2 76.24(2.47) 77.2(3.96) 70.16(5.20) 88.37(0.54) 70.71(1.68) 93.68(2.53) 88.59(0.61) 74.80(4.11) 88.40(2.91)
Long-Aug2 74.22(1.14) 76.09(3.42) 70.30(3.07) 85.78(1.68) 74.00(5.03) 83.34(2.43) 87.14(0.83) 63.82(6.94) 86.44(2.05)
Symb3 4.58(1.02) 0 NA 7.94(1.71) 0 NA 58.90(8.18) 0 NA
Non-NLI4 64.64(3.74) 79.51(6.85) 62.96(1.21) 82.88(0.98) 62.00(3.55) 92.52(1.32) 88.26(0.51) 67.16(3.88) 92.76(1.91)

Table 2: USLP-T few-shot results on SGD dataset. 1 "short": original intent labels, which are either short phrases
or single words; "Aug": data augmentation; 2 "long": detailed intent descriptions are used to replace short label
to form utterance-label-pair; 3 "Symb": symbolic labels encoded as symbols like "0", "1", etc. They are converted
from semantic labels; 4 "Non-NLI": the model is not fine-tuned on general NLI corpus.

Data augmentation is not always helpful.
Quite different from the CLINC150 results, data
augmentation fails to improve performance. In fact,
data augmentation play a negative role in most ex-
periments here. We tend to think that the effect of
data augmentation is task-dependent, it might work
well on some datasets but fail on other datasets.
When developing few-shot applications with USLP,
developers should be careful about applying data
augmentation if no dev set is available.

NLI pre-training can boost performance in
low-shot setting, but might have adverse effect
when more training data is available. Our orig-
inal hypothesis is that by exposing transformer
model to NLI pre-training, the model can be more
adapted into NLI related tasks and achieves bet-
ter performance compared with the model without
NLI pre-training. In 1-shot and 5-shot setting, we
do observe that NLI pre-trained model can improve
in-domain accuracy and OOS recall. But in 10-shot
experiments, the NLI pre-trained model has weaker
performance in terms of in-domain accuracy and

OOS-precision.

5 Conclusion

We have created a new few-shot intent classification
method, USLP, based upon NLI-style prediction.
The USLP approach significantly outperforms tra-
ditional classification method by a large margin
on 1-shot CLINC150 dataset and achieves about
75% of the 100-shot traditional classifier on in-
domain classification with better OOS performance.
This outstanding result indicates that the USLP ap-
proach can be an effective solution for developers
who want to quickly build an intent classifier with
extremely limited amount of training data. We
have also found that detailed description can fur-
ther boost USLP performance, but detailed labeling
also requires labelers to have deeper understand-
ing of each intent class and thus prolongs labeling
process.
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A Data Augmentation Methods

API name action model
WordEmbsAug insert GoogleNews-

vectors-
negative300

ContextualWord-
EmbsAug

substitute bert-base-
uncased

RandomWordAug swap NA
SynonymAug NA ppdb-2.0-s-all

Table 3: Detailed configurations for nlpaug APIs.

B SGD Data Processing

We first extract utterances, intents, and detailed
intent descriptions from the training set. The orig-
inal labels formatted as tokens been concatenated
together with the first letter capitalized, we intro-
duce an empty space between each token. In the
original dataset, the label set of the testing set does
not fully overlap with the training set, so we keep
the utterances with overlapped intents (25 intents)
for in-domain and use the utterances with non-
overlapped intents for OOS training (11 intents).
Since our goal of using the SGD dataset is to ex-
plore how different labeling techniques might im-
pact final results, we want to use the same training
set to exclude the confounding factor of random
training data sampling, so we sample 1-, 5-, 10-
shot in-domain and 110 OOS (10 utterances/non-
overlapped intent) utterances from the processed
training set for all the SGD experiments. The orig-
inal testing set has 11,105 utterances, which is
expensive to run through for evaluation. So we
sample 50 utterances per overlapped intents for
in-domain testing set and 50 utterances per non-
overlapped intents (9 non-overlapped intents) for
OOS testing set, resulting in a testing set with 1,250
in-domain and 450 OOS utterances.


