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Abstract

For each goal-oriented dialog task of inter-
est, large amounts of data need to be col-
lected for end-to-end learning of a neural dia-
log system. Collecting that data is a costly and
time-consuming process. Instead, we show
that we can use only a small amount of data,
supplemented with data from a related dialog
task. Naively learning from related data fails
to improve performance as the related data can
be inconsistent with the target task. We de-
scribe a meta-learning based method that selec-
tively learns from the related dialog task data.
Our approach leads to significant accuracy im-
provements in an example dialog task.

1 Introduction

One key benefit of goal-oriented dialog systems
that are trained end-to-end is that they only re-
quire examples of dialog for training. Avoiding
the modular structure of pipeline methods removes
the human effort involved in creating intermediate
annotations for data to train the modules. The end-
to-end structure also enables automatic adaptation
of the system, with different components of the
model changing together. This flexibility is partic-
ularly valuable when applying the system to a new
domain.

However, end-to-end systems currently require
significantly more data, increasing the human effort
in data collection. The most common method for
training is Supervised Learning (SL) using a dataset
of dialogs of human agents performing the task of
interest (Bordes et al., 2017; Eric and Manning,
2017; Wen et al., 2017). To produce an effective
model, the dataset needs to be large, high quality,
and in the target domain. That means for each new
dialog task of interest large amounts of new data
has to be collected. The time and money involved
in that collection process limits the potential appli-
cation of these systems.

We propose a way to reduce this cost by selec-
tively learning from data from related dialog tasks:
tasks that have parts/subtasks that are similar to the
new task of interest. Specifically, we describe a
method for learning which related task examples
to learn from. Our approach uses meta-gradients to
automatically meta-learn a scalar weight ∈ (0, 1)
for each of the related task data points, such that
learning from the weighted related task data points
improves the performance of the dialog system on
the new task of interest. These weights are dynami-
cally adjusted over the course of training in order to
learn most effectively. We still learn from data for
the target task, but do not need as much to achieve
the same results.

To demonstrate this idea, we considered two ex-
periments. First, we confirmed that the method can
work in an ideal setting. We constructed a classifi-
cation task where the related task data is actually
from the same task, but with the incorrect label for
75% of examples, and there is an input feature that
indicates whether the label is correct or not. Our
approach is able to learn to ignore the misleading
data, achieving close to the performance of a model
trained only on the correct examples.

Second, we evaluated the approach on a per-
sonalized restaurant reservation task with limited
training data. Here, the related task is also restau-
rant reservation, but without personalization and
with additional types of interactions. We compare
our approach to several standard alternatives, in-
cluding multi-task learning and using the related
data for pre-training only. Our approach is consis-
tently the best, indicating its potential to effectively
learn which parts of the related data to learn from
and which to ignore. Successfully learning from
available related task data can allow us to build
end-to-end goal-oriented dialog systems for new
tasks faster with reduced cost and human effort in
data collection.
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2 Related Work

The large cost of collecting data for every new dia-
log task has been widely acknowledged, motivat-
ing a range of efforts. One approach is to transfer
knowledge from other data to cope with limited
availability of training dialog data for the new task
of interest. For example Zhao et al. (2020) split the
dialog model such that most of the model can be
learned using ungrounded dialogs and plain text.
Only a small part of the dialog model with a small
number of parameters is trained with the dialog
data available for the task of interest. In contrast,
we explore how to learn from related grounded di-
alogs, and also without any specific constraints on
the structure of the end-to-end dialog system archi-
tecture. Wen et al. (2016) pre-train the model with
data automatically generated from different tasks
and Lin et al. (2020) use pre-trained language mod-
els as initialization and then fine-tune the dialog
model with data from the task of interest. These
ideas are complementary to our approach as we
make no assumptions about how the model was
pre-trained.

Recently, there has been work that explored
ways to automatically learn certain aspects of the
transfer process using meta-learning. Xu et al.
(2020) look at the problem of learning a joint dia-
log policy using Reinforcement Learning (RL) in
a multi-domain setting which can then be trans-
ferred to a new domain. They decomposed the
state and action representation into features that
correspond to low level components that are shared
across domains, facilitating cross-domain transfer.
They also proposed a Model Agnostic Meta Learn-
ing (MAML Finn et al., 2017) based extension that
learns to adapt faster to a new domain. Madotto
et al. (2019), Mi et al. (2019), Qian and Yu (2019)
and Dai et al. (2020) also look at multi-domain
settings. They use MAML based meta-learning
methods to learn an initialization that adapts fast
with few dialog samples from a new task.

All of the papers above consider settings where
there is access to a large set of training tasks. The
meta-learning systems learn to transfer knowledge
to a new test task by learning how to do transfer
on different training tasks. While each task only
has a limited amount of dialog data, they need a
lot of tasks during training. In contrast, we look
at a setting where the task from which we want to
transfer knowledge from and the task that we want
to transfer knowledge to are the only tasks that we

have access to at training time. Any learning about
how to transfer knowledge has to happen from just
these two tasks. None of the above methods are
applicable to this setting.

Learning a task, while simultaneously meta-
learning certain aspects of the learning process has
been done successfully in some SL and RL set-
tings recently. Wu et al. (2018); Wichrowska et al.
(2017) use meta-learning to adapt hyperparemeters
such as learning rate and and even learn entire op-
timizers themselves during training for SL tasks
such as image classification. Given a single task,
Zheng et al. (2018) successfully meta-learn intrin-
sic rewards that help the agent perform well on that
task. Xu et al. (2018) use meta-gradients to learn
RL training hyperparameters such as the discount
factor and bootstrapping parameters. The meta-
gradient technique used in our proposed method
is closely related to Rajendran et al. (2020). They
learn intrinsic rewards for an RL agent acting in
given domain, such that learning with those intrin-
sic rewards improves the performance of the agent
in the task of interest in a different domain.

While we use a meta-learning based method for
learning the weights for the related task data points
in this work, there are other techniques in the ma-
chine learning literature, especially in the computer
vision literature, that can potentially be used to
learn the weights. A large section of these recent
techniques are based on learning an adversarially
trained discriminator for estimating the weights of
related image classification task data points (Zhao
et al., 2018; Cao et al., 2018; Sankaranarayanan
et al., 2018; Wang et al., 2019). Jiang and Zhai
(2007) use a combination of several domain adap-
tation heuristics to assign weights and evaluate on
NLP tasks. Moon and Carbonell (2017) cluster the
related task data points and learn attention weights
for the clusters. An interesting future direction
would be to study which weighting methods are
best suited for end-to-end learning of neural goal-
oriented dialog systems using related tasks and
under what conditions.

3 Proposed Method

3.1 Intuition

Consider a scenario where we are building a restau-
rant reservation dialog system and have data col-
lected in the past for a hotel reservation dialog
system. The hotel reservation data could have parts
that might be useful to learn from, e.g., greeting
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and obtaining a user’s name/contact information.
The data could also have parts that are inconsistent
with the needs of the restaurant reservation system,
e.g., hotel reservation might require the dialog sys-
tem to ask for the user’s duration of stay while the
restaurant reservation might require the dialog sys-
tem to ask for the particular day and time of table
reservation. There could also be a lot of irrelevant
information in the data that would be best to ignore
for a learning system with limited capacity, e.g.,
answering questions about fitness facilities and the
pool in a hotel.

Another type of scenario is when the new task
is a modified version of a previous task. In this
case, the previous task is an excellent source of
related data, but will have critical differences. For
example, the new system may need to ask users for
their email address rather than a mailing address.
To use the data effectively, the model needs to learn
what to use and what to ignore.

Data from the related tasks could also provide
rich information about different user behaviors and
natural language in general of both users and agents.
Tapping into and learning from the related tasks’
data that is already available can potentially allow
us to build dialog systems with improved perfor-
mance on the new task of interest with only a lim-
ited amount of data collected, saving us time, effort
and money in data collection.

3.2 Algorithm

Let TP be the new task of interest (primary task)
for which we have collected a limited amount of
training data. Let TR be the related task for which
we have relatively large amounts of data already
available. We are interested in building a dialog
system for the task TP . The data points are pairs
of the form context (c) and dialog system’s next ut-
terance (a), where the context has the history of the
dialog so far, ending with the most recent user ut-
terance. We learn a dialog model M parameterized
by θ that takes as input the context c and predicts
the next dialog system utterance a.

Each iteration of training is comprised of the
following three major steps. 1) The dialog model
is updated using a batch of data points from the
primary task. 2) The dialog model is updated us-
ing a batch of data points from the related task,
where each related task data point’s training loss is
weighted between (0, 1). 3) The related task data
points’ weights are updated. These three steps are

repeated at each training iteration. We describe
each step in detail below.

1) Updating the dialog model using primary
task data points. We sample a batch of data
points {. . . , (cPi , aPi ), . . .} from the primary task
TP . Let L(Mθ(ci), ai) represent the supervised
learning prediction loss between Mθ(ci): the next
utterance predicted by the dialog model and ai: the
ground truth next utterance. Model Mθ is updated
using the supervised learning prediction loss of the
primary task data points LP as shown below:

LP (θ) =
∑
i

L
(
Mθ(c

P
i ), a

P
i

)
(1)

θ ← θ − α∇θLP (θ), (2)

where α is the learning rate and ∇θLP (θ) is the
gradient of the loss LP (θ) with respect to θ.

2) Updating the dialog model using weighted re-
lated task data points. We sample a batch of
data points {. . . , (cRi , aRi ), . . .} from the related
task TR. The supervised learning prediction loss
L(Mθ(ci), ai) for each data point in the batch is
weighed by a scalar weight wi ∈ (0, 1) correspond-
ing to each of the data points. The scalar weight
for each of the related task data point is obtained
as a function of that particular data point. Let P
parameterized by η be the module that outputs the
weights. The weight for a related task data point is
calculated as shown below:

wi(η) = σ(Pη(c
R
i , a

R
i )), (3)

where σ is a sigmoid function used to normalize
the output of P to (0, 1). Model Mθ is updated
using the weighted prediction loss of related task
data points LR as shown below:

LR(θ, η) =
∑
i

wi(η)L
(
Mθ(c

R
i ), a

R
i

)
(4)

θ ← θ − β∇θLR(θ, η), (5)

where β is the learning rate and ∇θLR(θ, η) repre-
sents the gradient of the loss LR(θ, η) with respect
to θ. The weights wi allow for selectively using
data points from the related task data for updating
the dialog model.

3) Updating the related task data points’
weights. In this key step of our proposed method,
we update the related task data points’ weights
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wi(η). The update increases the weights of related
task data points that improve the dialog model’s per-
formance on the primary task when learned from
and decreases the weights of those that degrade the
dialog model’s performance on the primary task.

We first sample a batch of related task data points
and simulate how the model parameters θ would
change if we update the model with a batch of
related task data points with the current assignment
of weights provided by Pη:

LR(θ, η) =
∑
i

wi(η)L
(
Mθ(c

R
i ), a

R
i

)
(6)

θ′ = θ − β∇θLR(θ, η). (7)

We then evaluate how the updated model Mθ′

performs on the primary task to decide how to
change Pη that assigned weights to the related task
data points that resulted in Mθ′ :

LP (θ′) =
∑
i

L
(
Mθ′(c

P
i ), a

P
i

)
, (8)

where LP (θ′) is the supervised learning loss of the
updated model Mθ′ on a new batch of data points
sampled from the primary task. The parameters of
Pη are updated as shown below:

η ←η − γ∇ηLP (θ′) (9)

=η − γ∇ηθ′∇θ′LP (θ′), (10)

where γ is the learning rate and ∇ηLP (θ′) repre-
sents the gradient of the loss LP (θ′) with respect to
η. The gradient,∇ηLP (θ′) is split into products of
two gradients∇ηθ′ and∇θ′LP (θ′) using the chain
rule. ∇ηθ′ can be calculated using meta-gradients
as follows:

∇ηθ′ =∇η(θ − β∇θLR(θ, η)) (11)

=∇η
(
β∇θLR(θ, η)

)
(12)

=∇η

(
β∇θ

(∑
i

wi(η)L(Mθ(c
R
i ), a

R
i )

))
(13)

=β
∑
i

∇ηwi(η)∇θL(Mθ(c
R
i ), a

R
i ). (14)

3.3 Discussion
The proposed method learns a dialog model from
the primary task data points and also selectively

from the related task data points. The proposed
method meta-learns, at different points in training
of the dialog model, which related task data points
to learn from (and also to what degree (0, 1)). The
weight assigned to a particular related task data
point can therefore vary across training.

For simplicity, we described our proposed
method with one update each using primary task
data points, using weighted related task data points,
and of related task data points’ weights in each
training iteration. But in practice, we make multi-
ple updates to the related task data points’ weights
(η parameters) within each iteration. Also, for each
η update we simulate how the model parameters θ
change over multiple gradient updates (instead of
just one as described in equations 6 and 7). This al-
lows for a better estimate of how the updates using
related task data points with the current parameters
η affect the updated dialog model’s performance on
the primary task. Note that our proposed method
is agnostic to the exact architecture of the model
M and weight module P . Also, while we focus
on settings with a single related task, the proposed
method naturally extends to settings with more than
one related task.

4 Experiments and Results

We first illustrate our proposed method on a simple
image classification task with a hand designed re-
lated task that allows us to verify if the proposed
method can learn meaningful weights. We then
evaluate our proposed method on the task of per-
sonalized restaurant reservation.

4.1 MNIST Image Classification

This experiment illustrates in a very simple set-
ting how our proposed method works. We set up
the experiment with a clear indication of which re-
lated task data points should have high weights and
which should have low weights. The primary task
is the classification of hand-written digits from the
MNIST dataset (LeCun et al., 2010). The related
task is created by taking the primary task data and
changing the label to an incorrect one for 75% of
the training data. This means that of the 50,000
related task data points, 25% (12,500 data points)
are useful for the primary task while 75% (37,500
data points) are not. We also add an input feature to
every related task data point that indicates whether
that data point’s label is correct or not.

In this experiment, to focus on the effect of our
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Figure 1: Distributions of learned weights for data points at different points during training on the image classifica-
tion task. The histograms in red (plain) and blue (stripped) correspond to the related task data points with incorrect
and correct labels respectively. Our method successfully uses the indicator feature to assign weights that ignore
incorrect points and learn from correct points.

learned related task data point weights on perfor-
mance, we perform only the last two steps (steps
2 and 3) of the algorithm. In other words, no up-
dates are made to the model using the primary task
data, we only update the model using the weighted
related task data and then update the weights of
the related task data points. However, primary task
data is still used in the calculation of the meta-
gradients for updating the weights of the related
task data points. In order for the dialog model to
perform well on the primary task, the data points
with incorrect labels in the related task data need
to be assigned weights lower than the data points
that have the correct label.

We use logistic regression as our classification
model (Mθ) and a perceptron with a sigmoid non-
linearity at the output for the weight generation
module (Pη). The weight generation module takes
as input the image, its label and a binary feature
that indicates if that label is correct or not for that
image, and produces a scalar weight between 0 and
1 as the output. Refer to Appendix A for more
details of the architecture and training.

4.1.1 Results

Figure 1 shows the distribution of data points over
the range of weights. The histogram in red (plain)
and blue (striped) correspond to the related task
data points with incorrect and correct labels respec-
tively. Refer to Figures 3 and 4 in Appendix A
for visualization of weights at other intermediate
stages of training. Our proposed method with the
meta-gradient based update to the weight genera-
tion module learns to give high weights to the data
points with correct labels and low weights to the
data points with incorrect labels. We observed sim-
ilar weight assignment over multiple runs with dif-
ferent random seeds. In the last epoch of training,

Weighting Method Accuracy (%)

1 for All 21.63 ± 3.81
Random-Fixed 20.81 ± 4.46
Random-Changing 20.40 ± 4.42
Learned (Proposed Method) 87.86 ± 0.17
Oracle 90.32 ± 0.33

Table 1: MNIST Test results when using our con-
structed related task data in various ways, including an
oracle method that only learns from correct related data.
Mean and standard deviation are over 5 runs. Our ap-
proach effectively learns to use the related data, ignor-
ing the examples with incorrect labels.

the average weight given to the related task data
points with correct labels is 0.9747± 0.0004 and
the average weight given to those with incorrect
labels is 0.0074± 0.0002 (mean and standard devi-
ation over 5 runs). Note that the method starts with
random weights and updates the weights during
training. The average weight across all the train-
ing epochs, given to the related task data points
with correct labels is 0.8558 ± 0.0020 and to the
related task data points with incorrect labels is
0.1508± 0.0041.

Table 1 shows the performance of the classifica-
tion model with different types of weighting for the
related task data points. We compare with:

1 for All: Use all related task data equally.

Random-Fixed: Assign a random weight to each
related task data point at the start of the train-
ing.

Random-Changing: Each time a related task data
point is sampled, use a new random weight.
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Oracle: From the start, use a weight of 1 for cor-
rect data points and 0 for incorrect data points.

From the results, we observe that selectively
learning from the related task data points with
learned weights (row 4) performs much better than
the methods that use all the data points uniformly
(row 1) or assign random weights to the data points
(rows 2 and 3). The proposed method’s perfor-
mance is very close to the oracle method that has
access to the perfect weights for the related task
data points from the start (row 5) and throughout
training. We attribute this small gap mainly to the
lingering effects of incorrect weights used for learn-
ing from the related task data points in the early
stages of training in the proposed method. The
visualization of the weights and the resulting per-
formance indicate that the proposed method can in-
deed learn suitable weights using the meta-gradient
update in this setting and lead to a performance
very close to the best performance possible with
perfect weights.

4.2 Personalized Restaurant Reservation

Personalizing dialog system responses based on
the user that the dialog system is interacting with
will be a key step in seamless integration of dialog
systems into our everyday lives. Recognizing this,
Joshi et al. (2017) proposed the first open dataset
for training end-to-end dialog systems where the
dialog system responses are based on the profile
of the user. Their dataset is set in the domain of
restaurant reservation, built as an extension of the
bAbI dialog tasks from Bordes et al. (2017).

The bAbI dialog tasks are a testbed to evaluate
the strengths and shortcomings of end-to-end di-
alog systems in goal-oriented applications. The
dataset is generated by a restaurant reservation sim-
ulation where the final goal is to book a table. The
simulator uses a Knowledge Base (KB) which con-
tains information about restaurants. There are five
tasks: Task 1 (Issuing API calls; by collecting rele-
vant information from the user), Task 2 (Updating
API calls; based on the information that the user
wants to change), Task 3 (Displaying options; from
the restaurants retrieved by the API call, suggest-
ing restaurants in the order of their ratings), Task
4 (Providing extra information; if asked, provid-
ing the directions and/or contact information of the
restaurant selected by the user) and Task 5 (Con-
ducting full dialogs; combining tasks 1,2,3 and 4).
Figure 5 (Left) in Appendix B shows an example

of Task 5 from the bAbI dialog tasks.

In Joshi et al. (2017)’s extension of the bAbI
dialog tasks (referred to as personalized-bAbI from
here on), in addition to the goal of the bAbI dia-
log tasks, the dialog system should also use the
additional user profile information provided, to per-
sonalize the response styles and reasoning over the
Knowledge Base (KB). The user profile consists
of the user’s age (young, middle-aged, elderly),
gender (male, female), dietary preference (vegetar-
ian, non-vegetarian) and favorite food item (Fish
and Chips, Biryani, etc). The style of the dialog
system’s response depends on the age and the gen-
der of the user. In Task 3, from the restaurants
retrieved through the API call, the dialog system
now has to sort and suggest restaurants based not
just on the restaurant’s rating, but also based on
the user’s dietary preference and favorite food item.
For this, the personalized-bAbI dialog task KB
has additional information about restaurant type
(vegetarian or non-vegetarian) and speciality (Fish
and Chips, Biryani, etc). Figure 5 (Right) in Ap-
pendix B shows an example of Task 3 from the
personalized-bAbI dialog tasks.

We use Task 3 from the personalized-bAbI di-
alog tasks as our primary task, and Task 5 of the
bAbI dialog tasks as the related task. 100% (1000
dialogs) of the training dialogs of bAbI dialog Task
5 are available as the related task data. For the pri-
mary task, we simulate limited data availability by
decreasing the number of training and validation
dialogs. We look at three data settings: 5% (50
dialogs), 10% (100 dialogs) and 15% (150 dialogs)
of the primary task training and validation dialogs.
For testing, we use 100% (1000 dialogs) of the test
dialogs from the personalized-bAbI dataset.

Let us look at the similarities and differences
between the related task and the primary task. The
related task has parts in its dialog, such as the greet-
ings and getting information from the user, that
are semantically similar to that of the primary task.
They are not exactly the same due to the differences
in response style (the style differs based on the user
profile in the primary task). Due to the presence
of different response styles, the vocabulary of the
primary task is also much larger and different than
that of the related task. The related task also has
some parts that involve different output choices,
such as the ordering of the restaurants to suggest to
the user. In the primary task the ordering should be
based on the restaurant’s rating, user’s dietary pref-
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Number of primary task dialogs
Method 50 100 150

Primary 54.7 ± 1.3 59.3 ± 0.5 61.1 ± 0.5
Primary + Related Pre-Training 32.8 ± 3.5 42.1 ± 4.7 47.8 ± 0.8
Primary + Related 37.1 ± 4.1 50.9 ± 1.7 58.6 ± 0.7
Primary + Auxiliary Related (Multi-Task) 51.2 ± 2.4 58.2 ± 1.2 60.6 ± 0.7
Primary + Weighted Auxiliary Related:

Proposed Method 57.7 ± 1.6 64.6 ± 0.8 67.1 ± 0.6
Random-Fixed 50.7 ± 2.0 58.7 ± 0.8 61.2 ± 1.0
Random-Changing 52.3 ± 0.9 58.7 ± 1.0 59.8 ± 0.8

Table 2: Test results, % Per-turn retrieval accuracy (mean and standard deviation over 5 runs) in predicting the next
dialog system utterance.

erence and favorite food, while in the related task
it is based on only the restaurant’s rating. There
are also parts of the related task that are not rele-
vant to the primary task. These includes the parts
corresponding to Task 2 (updating API calls) and
Task 4 (providing extra information such as the
restaurant’s direction or contact information) of the
related task.

As noted earlier, our proposed method is agnos-
tic to the dialog model architecture. In our experi-
ments we use the same dialog model architecture
as used in Joshi et al. (2017), end-to-end memory
networks (Sukhbaatar et al., 2015), for both the di-
alog model Mθ and the weight generation module
Pη. In the dialog model, the internal dialog state
generated after attending over the dialog history is
used to select the candidate response from the list
of candidates. For the weight generation module,
the internal dialog state generated after attending
over the dialog history is used to generate the scalar
(0, 1) weight. Refer to Appendix B for more details
of the architecture and training.

4.2.1 Results
Table 2 shows the performance of our proposed
method along with several other methods:

Primary: Trained using only the primary task
data.

Primary + Related Pre-Training: Pre-trained
with related task data and then fine-tuned
with primary task data.

Primary + Related: Trained using related task
and primary task data points together.

Primary + Auxiliary Related (Multi-Task):
The dialog model has two prediction heads,

one for the primary task, and one for the
related task, with a shared end-to-end memory
network body that generates the internal
dialog state used for selecting the candidate
response. This is similar to the conventional
way of performing multi-task learning. This
can also be interpreted as using related task
prediction as an auxiliary task.

Proposed Method: Primary + Weighted Auxil-
iary Related : Identical to the previous ap-
proach, except that the prediction loss of the
related task is weighted by the weights learned
by our proposed method. We also show re-
sults for two variations with random weight-
ing methods.

Table 2 shows that in all the three data settings
the conventional methods of using the related task
data (rows 2,3,4) lead to a reduction in performance
(negative transfer) compared to not using the re-
lated task data points at all (row 1: Primary).

The closest conventional method is row four,
learning from both the primary task data and related
task data simultaneously with a shared network
body and separate prediction heads. The worst
result is the second row, pre-training with the re-
lated task data points. We hypothesise that, due
to the differences (vocabulary, contradictory and
irrelevant sub-tasks) in the primary and related task,
starting from the pre-trained network weights ob-
tained using related task data leads to a worse local
minimum during fine-tuning compared to starting
from a randomly initialized network weights and
training with primary task data alone.

The best result is our proposed method (row
5: Primary + Weighted Auxiliary Related), which
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Figure 2: Personalized Restaurant Reservation. Histograms of the number of related task data points in the different
interval of weights.

weights the auxiliary related task update between
(0, 1) and selectively learns from them. Our
method scores ≈ 6.5% higher than the standard
multi-task learning approach (row 4). We avoid
negative transfer, improving over the first row by 3-
6% depending on the amount of primary data avail-
able. The improvement is larger as more primary
task data is available, indicating that the related
task data (fixed in size) can be utilised better with
more primary task data. While selectively learning
can always help with avoiding negative transfer by
lowering the weights for data points that lead to
negative transfer, the improvement in performance
(compared to not using related task data) possible
by using the related task data points will depend on
the relationship between the primary task and the
related task.

To verify that our learned weights are meaning-
ful, we also consider random weights. The last
three rows compare the performance with differ-
ent types of weighting for the related task data
points. It is clear that random weighting does not
lead to the improvement in performance that we
observe when we learn the weights using our pro-
posed method.

Figure 2 shows histograms of the data points
based on the assigned weights. Unlike the simple
MNIST image classification (Section 4.1), here
we do not know which related task data points
should have high weights and which data points
should not. The optimal weights for the related
task data points at any given stage of training can
be different from the optimal weights for them at a
different stage of training, i.e., the optimal weights
for the related task data points are non-stationary,
as they depend on the current state (parameters
of the dialog model) of the dialog system. For
example, some data points of the related task which
are quite different from the primary task might still

be useful to learn from at the early stages of training
to help with learning better representations for the
vocabulary, and some data points that the dialog
system has already learned from might get lower
weights at later stages of learning so as to avoid
overfitting and thereby helping with the prediction
of other data points. For visualization of weights
at more intermediate stages of training see Figures
6 and 7 in Appendix B.

5 Conclusion

End-to-end learning of neural goal-oriented dialog
systems requires large amounts of data for training.
Collecting data is a costly and time consuming pro-
cess. In this work we showed on an example dialog
task we can utilise a related task’s data to improve
the performance of a new task of interest with only
a limited amount of data. Our proposed method
uses meta-learning to automatically learn which of
the related task data points to selectively learn from.
An important future work is to evaluate/extend the
proposed method to more challenging and complex
dialog datasets/tasks.

Data useful for a dialog task of interest (related
data) could be present in different formats. The
related data could include, for example, natural
language instructions on how to perform the task
of interest, or a description of how the new dialog
task of interest is different from a related dialog
task. An interesting future direction is to investi-
gate methods to successfully utilise such related
data.
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A MNIST Image Classification

A.1 Architecture and Training Details
The MNIST dataset contains 60,000 training im-
ages and 10,000 testing images. Among the train-
ing images, we use 50,000 for training and 10,000
for validation. The primary task is the classifica-
tion of hand-written digits from the MNIST dataset
(LeCun et al., 2010). The related task is created
by taking the primary task data and changing the
label to an incorrect one for 75% of the training
data. This means that of the 50,000 related task
data points, 25% (12,500 data points) are useful for
the primary task while 75% (37,500 data points)
are not. The MNIST hand-written digit images are
resized to 28 x 28 images and the pixel values are
normalized to [0, 1]. The images are flattened to
a 1-D array of 784 features (28 x 28). We use a
logistic regression as our classification model (Mθ)
and a perceptron with sigmoid non-linearity at the
output for the weight generation module (Pη). The
weight generation module takes as input the image,
its label and the indicator that tells if that label is
correct or not for that image, and produces a scalar
weight between (0, 1) as the output. The classifi-
cation model has 7850 ((784(image) x 10(output
label)) + 10(bias)) parameters and the weight gen-
eration module has 797(((784(image) + 10(label) +
2(indicator)) x 1(output weight)) + 1(bias)) param-
eters.

At each iteration of training, we make one update
to the classification model using weighted related
task data and one update to the related task data
points’ weights using meta-gradients. For each
of the meta-gradient update we simulate how the
model parameters θ changes over one gradient up-
date step using weighted related task data points.
The training uses a batch size of 256, with Adam
optimizer (learning rate = 0.001, epsilon = 1e-8).
The training is run for a maximum of 15000 iter-
ations and the validation data is used for model
selection for testing. These experiments were run
on a CPU laptop with 2.5 GHz Intel Core i5 pro-

cessor and 8 GB RAM. It takes approximately 1
hour for each training run.

A.2 Visualization of learned related task data
points’ weights

Figure 3 (left) and Figure 4 (left) shows the weights
assigned for the different related task data points
by our proposed method during different stages of
training. The points in red (cross) and blue (dots)
correspond to the weights of data points that have
incorrect and correct labels respectively. Figure 3
(right) and Figure 4 (right) shows the histograms
of number of data points in the different interval
of weights. The histogram in red (plain) and blue
(striped) correspond to the related task data points
with incorrect and correct labels respectively.

B Personalized Restaurant Reservation

B.1 Example dialogs

Figure 5 (Left) shows a simplified example of Task
5 from the bAbI dialog tasks, which is our related
task. Figure 5 (Right) shows a simplified example
of Task 3 from the personalized-bAbI dialog tasks,
our primary task of interest.

B.2 Architecture and Training Details

In this experiment, we use Task 3 from the
personalized-bAbI dialog tasks as our primary task,
and Task 5 of the bAbI dialog tasks as the related
task. 100% (1000 dialogs) of the training dialogs
of bAbI dialog Task 5 are available as the related
task data. For the primary task, we simulate limited
data availability by decreasing the number of train-
ing and validation dialogs. We look at three data
settings: 5% (50 dialogs), 10% (100 dialogs) and
15% (150 dialogs) of the primary task training and
validation dialogs. For testing, we use 100% (1000
dialogs) of the test dialogs from the personalized-
bAbI dataset.

In this experiment we use the same dialog model
architecture as used in Joshi et al. (2017), end-to-
end memory networks (Sukhbaatar et al., 2015).
The sentences in the dialog are encoded using Bag
of Words encoding. The encoded sentences, which
are part of the dialog history, are stored in the mem-
ory and the query (last user utterance) embedding
is used to attend over the memory (3 times) to get
relevant information from the memory. The gen-
erated internal state is used to select the candidate
response from the list of candidates. The entire net-
work is trained end-to-end using cross-entropy loss
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of the candidate selection. We use an end-to-end
memory network for the module Pη (that produces
the weights for each of the related task data points)
as well. In this case, the internal state generated
after attending over the memory is used to generate
the scalar (0, 1) weight.

At each iteration of training, we make one up-
date to the dialog model using primary task data,
one update to the dialog model using weighted re-
lated task data and 10 updates to the related task
data points’ weights using meta-gradients. For each
of the meta-gradient update we simulate how the
model parameters θ changes over 5 gradient up-
dates of weighted related task data points. We
use the same hyper-parameters used by Joshi et al.
(2017) for both our end-to-end memory networks:
embedding size = 20, batch size = 32, optimizer =
Adam (learning rate = 0.001, epsilon = 1e-8).

The parameters of the dialog model are made up
of a word embedding matrix of size |Vocab| x 20
that encodes the dialog history and the current user
utterance, a matrix of size 20 x 20 that transforms
the selected memory embeddings to generate the
internal dialog state, and a word embedding ma-
trix of size |Vocab| x 20 for encoding the candidate
responses. The parameters of the weight gener-
ation module are made up of a word embedding
matrix of size |Vocab| x 20 that encodes the dia-
log history, the current user utterance, and the next
dialog system utterance, a matrix of size 20 x 20
that transforms the selected memory embeddings
to generate the internal dialog state, and a matrix of
size 20 x 1 and a bias term of size 1 for transform-
ing the internal dialog state to a scalar weight. The
size of the vocabulary |Vocab| for different primary
task data settings of 5%, 10% and 15% are 4129,
4657, and 4981 respectively. The training is run
for 4000 epochs (of the related task data points)
and the primary task validation dataset is used for
model selection for testing. These experiments
were run using GeForce GTX 1080 Ti GPUs. It
takes approximately 15 hours for each training run.

B.3 Visualization of learned related task data
points’ weights

Figure 6 (left) and Figure 7 (left) show the weights
assigned for the different related task data points
by our proposed method during different stages
of training. Figure 6 (right) and Figure 7 (right)
shows the histograms of number of data points in
the different interval of weights.
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Figure 3: (Part 1/2) MNIST image classification. Left: The weights assigned for the different related task data
points by our proposed method during different stages of training. The points in red (cross) and blue (dots) cor-
respond to the weights of the related task data points that have incorrect and correct labels respectively. Right:
Histograms of the number of data points in the different interval of weights. The histograms in red (plain) and blue
(striped) correspond to the related task data points with incorrect and correct labels respectively. Refer to Figure 4
for Part 2/2.
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Figure 4: (Part 2/2) MNIST image classification. Left: The weights assigned for the different related task data
points by our proposed method during different stages of training. The points in red (cross) and blue (dots) cor-
respond to the weights of the related task data points that have incorrect and correct labels respectively. Right:
Histograms of the number of data points in the different interval of weights. The histograms in red (plain) and blue
(striped) correspond to the related task data points with incorrect and correct labels respectively. Refer to Figure 3
for Part 1/2.



176

Figure 5: A user (in green) chats with a dialog system (in blue) to book a table at a restaurant. Left: (Related Task)
An example dialog from bAbI dialog Task 5. Right: (Primary Task) An example dialog from Personalized-bAbI
dialog Task 3.
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Figure 6: (Part 1/2) Personalized Restaurant Reservation. Left: The weights assigned for the different related task
data points by our proposed method during different stages of training. Right: Histograms of the number of data
points in the different interval of weights. Refer to Figure 7 for Part 2/2.
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Figure 7: (Part 2/2) Personalized Restaurant Reservation. Left: The weights assigned for the different related task
data points by our proposed method during different stages of training. Right: Histograms of the number of data
points in the different interval of weights. Refer to Figure 6 for Part 1/2.


