CS-BERT: a pretrained model for customer service dialogues

Peiyao Wang, Joyce Fang and Julia Reinspach
Amazon, Seattle, USA
peiyaow, joycfang, reinspac@amazon.com

Abstract

Large-scale pretrained transformer models
have demonstrated state-of-the-art (SOTA) per-
formance in a variety of NLP tasks. Nowa-
days, numerous pretrained models are avail-
able in different model flavors and different
languages, and can be easily adapted to one’s
downstream task. However, only a limited num-
ber of models are available for dialogue tasks,
and in particular, goal-oriented dialogue tasks.
In addition, the available pretrained models are
trained on general domain language, creating
a mismatch between the pretraining language
and the downstream domain launguage. In this
contribution, we present CS-BERT, a BERT
model pretrained on millions of dialogues in
the customer service domain. We evaluate CS-
BERT on several downstream customer service
dialogue tasks, and demonstrate that our in-
domain pretraining is advantageous compared
to other pretrained models in both zero-shot ex-
periments as well as in finetuning experiments,
especially in a low-resource data setting.

1 Introduction

The introduction of large-scale pretrained trans-
formers such has BERT and GPT-2 (1; 2) has led
to SOTA results in a variety of NLP tasks, such as
question answering (QA) (3; 4; 5), named-entity
recognition (NER) (6), or text summarization (7).
The pretraining of these models is performed on
large unlabeled text datasets with self-supervised
objective functions: auto-regressive language mod-
eling (2; 5; 8), masked language modeling (1; 9),
replaced token detection (10), or next sentence pre-
diction (1; 11), to name a few. Afterwards, the
pretrained model can be adapted to a specific task
by finetuning on a much smaller, labeled, and task-
specific dataset, thus eliminating the need for huge
labeled datasets while still maintaining the power
of large-scale transformer models.

Most of the published pretrained transformer en-
coders have been pretrained on large text corpora
covering general topics and domains, such as the
Wikipedia corpus or the books corpus. Hence, they

do not represent the structure that is inherent to
a dialogue, i.e., two or more speakers conversing
on a topic, exchanging information, or working
towards solving a problem. Recently, a few pre-
trained transformer encoders for dialogue tasks
have been released, i.e., conversational-BERT (12)
for chit-chat dialogues, and TOD-BERT (13) for
goal-oriented dialogues. However, dialogue mod-
els for customer service are very domain-specific
(e.g. check order status, request a refund), and as
a result, even the few existing dialogue-specific
pretrained models exhibit a language domain mis-
match between the pretraining and the downstream
task. This language mismatch leads to inefficien-
cies in the knowledge transfer from pretraining to
finetuning, resulting in worse downstream task per-
formance, and requiring larger amounts of labeled
finetuning data.

In this work, we focus on developing retrieval-
based task-oriented dialogue systems, which have
been successfully deployed in real-world customer
service applications (14; 15). In these systems, the
dialogue model ranks a pre-defined pool of agent
responses, given a customer’s input and the conver-
sation history. One of the biggest challenges of de-
veloping such models is the limited amount of train-
ing data (15): high-quality annotated dialogue data
is needed, which is expensive to obtain. As one of
the most effective solutions, in-domain pretraining
has been shown to lead to performance gains under
the low-resource setting (16; 17). More specifi-
cally, for customer service dialogue modeling, (15)
showed that pretraining on a large, unannotated
and noisy dataset with subsequent finetuning on a
small, high-quality labeled dataset yields improved
performance as compared to only training with the
small labeled dataset from scratch. However, the
authors only evaluated their pretraining-finetuning
approach using a rather small pretraining dataset
of ca. 380K dialogues, and using a small-scale
transformer architecture. In addition, they did not
consider advanced pretraining objectives such as
masked language modeling (MLM) used in BERT,

130

Proceedings of the Third Workshop on Natural Language Processing for Conversational Al, pages 130-142
November 10, 2021. ©2021 Association for Computational Linguistics



but their pretraining was done using the same train-
ing objective as the downstream task.

In this paper, we present CS-BERT, a BERT model
pretrained on customer service dialogues, which
efficiently reduces the need for expensive high-
quality labeled dialogue task training data. In par-
ticular, we present the following novelties:

1. We develop CS-BERT, the first customer ser-
vice domain-specific dialogue BERT model.

2. We present two novel BERT pretraining strate-
gies specific for dialogue tasks, i.e., “masked
speaker prediction” and “segment embeddings
by speaker roles”, which outperform models
pretrained on the original BERT objectives
(i.e., MLM and next sentence prediction).

3. We evaluate CS-BERT on several down-
stream tasks, and show that CS-BERT yields
superior performance compared to BERT,
conversational-BERT and TOD-BERT, in
both a zero-shot setting as well as after finetun-
ing, especially in a low-resource data setting.

The paper is structured as follows: Section 2 pro-
vides a literature overview of BERT and other avail-
able pretrained encoders. Section 3 describes the
pretraining strategies that we used to develop CS-
BERT. In Section 4 we describe the datasets and
model training details for pretraining, as well as
for finetuning on three specific downstream tasks.
Section 5 follows with experimental results and dis-
cussions. We conclude the paper with a summary
in Section 6.

2 Related literature

In this section, we review related literature. We first
introduce BERT, then we discuss BERT variations
that were developed to improve the original model.
Lastly, we present the available pretrained models
for dialogue tasks.

2.1 Pretrained transformer encoders: BERT

The original BERT model (1) has two self-
supervised pretraining objectives: MLM and next
sentence prediction (NSP). For the MLM objective,
a small percentage (~15%) of the input subword
tokens (18) are randomly masked, and the training
objective is to predict the original token. For the
NSP objective, 50% of the last sentences in an in-
put document are replaced with a random sentence,
and the training objective is to predict whether the

last sentence belongs to the document or not. The
last sentence is highlighted by a special separator
in the input text, and by segment embeddings (seg-
ment A for the first part of the document, segment
B for the last sentence).

2.2 Pretrained encoder flavors

After the initial publication of BERT, several pre-
trained transformer encoder flavors have been re-
leased. For example, RoOBERTa (9) demonstrates
improved performance by using a 10x larger pre-
training dataset, and by optimizing training hyper-
parameters more carefully. ELECTRA (10) im-
proves performance and pretraining time by a more
efficient pretraining objective: instead of MLM,
they introduce the “replaced token detection” task,
thus making use of all the tokens in the input se-
quence. ALBERT (19) reduces model memory
footprint by reducing the vocabulary embedding
size and by parameter sharing. In addition, instead
of using BERT’s NSP task, ALBERT introduces a
new and more difficult pretraining objective, i.e.,
“inter-sentence coherence loss”, which helps model
performance. Several works addressed BERTs is-
sue of both long pretraining and inference time by
reducing its quadratic computational complexity in
the self-attention module, e.g., SqueezeBERT, Re-
former, Performer and Longformer (11; 20; 21; 22).
Other publications focus on reducing BERT’s large
memory footprint by model distillation, e.g., Distil-
BERT or DistilRoBERTa (23), which can benefit
applications with limited computational resources.

2.3 Pretrained encoders for dialogue models

Most pretrained transformer encoders are pre-
trained on text corpora such as Wikipedia, News
or Books. Thus, none of these represents the struc-
ture that is inherent to a dialogue, i.e., two or more
speakers conversing on a topic, exchanging infor-
mation, or working towards solving a problem. In
the following, we briefly review the publicly avail-
able pretrained models that have been adapted for
dialogue tasks.

Conversational-BERT (12) is a BERT model that
was trained on several chit-chat type dialogue cor-
pora, e.g., Twitter, Reddit, and Facebook News.
The authors start from a cased BERT-base check-
point, and then use BERT’s standard objectives
(MLM and NSP) for further pretraining on the di-
alogue data. Thus, while conversational-BERT
is trained on dialogue-type datasets, it is neither

131



trained on task-oriented dialogues, nor specific to
any domain.

TOD-BERT (13) is a BERT model explicitly pre-
trained on goal-oriented datasets only. As in
conversational-BERT, the authors start from an ex-
isting BERT-base checkpoint, and then pretrain
TOD-BERT in a bi-encoder architecture, using a
response contrastive loss in addition to the MLM
objective. In addition, the authors also introduce
two additional special tokens to indicate whether
a user or system generated the text, i.e., “[USR]”
and “[SYS]”. While TOD-BERT was trained on
task-oriented dialogues, it is also not specific to any
domain.

In addition to the above mentioned dialogue trans-
former encoders, there also exist few pretrained
generative models for open-domain conversations.
Blenderbot (24) is an encoder-decoder architecture
pretrained on Reddit data, while DialoGPT (25) is
a decoder-only transformer model pretrained on
Reddit data. However, in order to provide a fair
comparison, we do not consider DialoGPT (25) or
Blenderbot (24) for this work, since these are not
transformer encoders.

3 CS-BERT pretraining strategies

In this section, we review the different pretraining
strategies that we use to train CS-BERT. In par-
ticular, we use three pretraining strategies: (1) we
use the same pretraining objectives as BERT, i.e.,
MLM and NSP/NTP (denoted as CS-BERT), (2)
we add an additional objective, i.e., masked speaker
prediction (MSP), to BERT’s original pretraining
objectives (denoted as CS-BERT-MSP), and (3) we
use the same pretraining objectives as BERT, but
use a different segment embedding strategy (de-
noted as CS-BERT-SSR).

3.1 Masked language modeling (MLM)

As in the original BERT paper, we pick 15% of
tokens at random. We then replace 80% of these
tokens with “[MASK]”, 10% with another random
token, and we keep 10% of the tokens unchanged.
Then we compute the cross-entropy loss to predict
the original token.

3.2 Next turn prediction (NTP)

Similar to the NSP task used in BERT, where the
goal is to predict the next consecutive sentence fol-
lowing the context, the NTP task aims to predict the

next consecutive agent turn following the dialogue
context. We keep the actual agent turn following
a dialogue history as a positive context-response
pair, and we randomly sample one agent response
from the pool of all available agent responses as a
negative context-response pair.

3.3 Masked speaker prediction (MSP)

To enhance the model’s ability to capture different
roles from the dialogue, we incorporate the objec-
tive of MSP, which can be considered a special
case of MM applied to the three special dialogue
tokens that indicate the speaker roles, i.e., “INI-
TIALQUESTION”, “AGENTSTART” and “CUS-
TOMERSTART” (see Table 1 for an illustration of
the input format). During the training data genera-
tion, we randomly select 50% of these three tokens.
We then replace 80% of them with “[MASK]”,
we replace 10% with another special dialogue to-
ken, and we keep 10% unchanged. The model
then predicts whether the selected token is from
the customer (i.e., if the original token is either
“INITIALQUESTION” or “CUSTOMERSTART”)
or from the agent (i.e., if the original token is
“AGENTSTART”). Binary cross-entropy loss is
used for each masked token.

3.4 Segment embedding by speaker roles
(SSR)

BERT uses binary segment embeddings to help
the model distinguish between parts of the input
sequence. Using BERT’s default approach, the
segment embeddings for the dialogue context are
0Os, while the segment embeddings for the agent
response (i.e., last turn in the dialogue) are 1s. For
SSR, we develop a different segment embedding
strategy motivated by the fact that in a dialogue
there are alternating roles of customer and agent.
In particular, we set the segment embeddings of all
agent turns to 1s, and the segment embeddings of
all customer turns to Os. Compared to the standard
segment embedding strategy, SSR focuses less on
the NTP task, and more on the global contextual
understanding of the dialogue.

4 Experiment setup

For all experiments in this paper, we use dialogues
collected from the customer service of a large e-
commerce company. We only use “chat” dialogues,
i.e., written interactions between customer service
agents and customers (as opposed to email con-

132



versations or transcribed spoken interactions, e.g.,
via phone support). We will distinguish between
two dialogue datasets types:“non-annotated” dia-
logues and “annotated” dialogues. ‘“Non-annotated”
dialogues are free text conversations between a
customer and an agent, and are inherently noisy.
“Annotated” dialogues are conversations between
customers and specialized agents, who provide an-
notations and only use a limited pool of approved
agent responses (15). These annotated dialogues
are of higher quality and are less noisy, and thus
make it easier for a model to learn from. However,
they are also more expensive to obtain.

4.1 CS-BERT pretraining

4.1.1 Pretraining dataset

As pretraining dataset, we use roughly 40,000,000
non-annotated customer-agent dialogues in English
language. These dialogues come from all available
customer service intents. The dialogues were fil-
tered to have a minimum length of 1,000 words,
and a maximum length of 80,000 words.

After splitting the dialogues in train and dev sets,
we create turn-level training data: for each agent
turn and its corresponding dialogue history (con-
text), we use the actual agent turn as a positive
example for the NTP task, and use randomly sam-
pled agent responses as negative examples. For the
dev dataset, we do not use all turns in the dialogues,
but randomly sample a smaller subset of turns. This
makes hyperparameter tuning and model evaluation
more computationally efficient. Table 1 provides
an example of a positive context-response pair that
was created for pretraining CS-BERT. The pretrain-
ing dataset statistics are described in Table A.1 in
the Appendix.

4.1.2 CS-BERT model training

To leverage the useful knowledge from the pre-
trained BERT, we do not train CS-BERT from
scratch, but start from the pretrained BERT-base
checkpoint. As in (1), we train with a total batch
size of 256 sequences for 1,000,000 steps. How-
ever, we use a maximum sequence length of 256
throughout the whole process. We use the same
Adam optimizer as in (1) with learning rate of
le—4, g1 = 0.9,82, = 0.999, Ly weight decay
of 0.01, learning rate warmup over the first 10,000
steps, and linear decay of the learning rate. All our
CS-BERT models were trained on 8 GPUs, and the
total training time is around 14 days.

4.2 Response ranking

The first downstream task we evaluate is dialogue
response ranking, the objective of which is to pre-
dict the most likely agent response from a pre-
defined pool of agent responses, given the dialogue
history (context) and (optionally) other dialogue
metadata or features. The response ranking model
is finetuned as a binary classification model, i.e.,
given a dialogue history and features, the model
needs to predict whether the response is a valid
next turn or not. During inference, the scores of
all responses in the response pool are calculated,
and then ranked to determine the most likely agent
response.

4.2.1 Datasets for response ranking

While the non-annotated pretraining dataset de-
scribed in Section 4.1.1 made use of all available
customer service intents, in practice, we develop
separate downstream models for specific intents.
For this work, we use datasets from three differ-
ent intents, i.e., “item-in-transit” (in-transit), “item-
delivered-not-received” (DNR), and “start-return”
(SR). For all intents, we use two types of dialogue
data, as described below.

Annotated finetuning response ranking data
We obtain high-quality labeled datasets for fine-
tuning from conversations and annotations created
by a pool of specialized, highly trained customer
service agents (15). For all three intents, we col-
lect these annotated dialogues for a ca. 3 month
period (that is non-overlapping with the CS-BERT
pre-training data time period), and then split the
dataset into train and dev sets. We then further
collect several weeks of annotated data to create
a non-overlapping test dataset, which will be used
for model evaluation. As for the pretaining data,
we only use dialogues in English language.

After collecting the dialogues for the train/dev/test
distributions, we create turn-level training data for
the response ranking task. For each agent turn and
its corresponding dialogue history (context), we
use the actual agent turn a positive example. As a
negative example, we randomly sample from the
pool of available agent responses (i.e., the pool of
responses that the model has available during in-
ference). For the sake of computational efficiency,
during hyperparameter tuning, we do not use all
turns in the dialogue for the dev sets, but sample
a subset of turns. For the test set that we use for

133



context

agent response

INITTALQUESTION Tracking says that my package
may be lost. It was supposed to arrive on UCI_TOKEN.
AGENTSTART Can you confirm the shipping address
of the order? CUSTOMERSTART UCI_TOKEN

As I see, both the UCI_TOKEN and UCI_TOKEN are sold
by our partner sellers and are shipped by Fedex so as much
as I would love to send replacements for you, I don’t have

the option for that since we don’t have the direct inventory

of the items.

Table 1: An example of a positive context-response pair we use for pretraining. In particular, in the context,
“INITTALQUESTION" is always added at the beginning of the dialogue to mark the customer’s first utterance.
“AGENTSTART" is always added before an agent’s utterance; “CUSTOMERSTART" is always added before a
customer’s utterance (unless it’s the customer’s first utterance). Sensitive customer informations in the dialogue text
are replaced by “UCI_TOKEN” to protect customer privacy.

model evaluation, we keep all turns in a dialogue.

For the response ranking finetuning data, we also
collect metadata. Metadata are specific to each
intent, and can be helpful for the model to predict
the correct response. Table A.2 illustrates a positive
context-response pair of the finetuning response
ranking dataset, including metadata. The dataset
statistics for the three intents can be found in Table
A.3 in the Appendix.

Non-annotated finetuning response ranking
data In addition to the annotated finetuning
datasets, we also use general customer-agent di-
alogues for finetuning (i.e., dialogues from general
customer service agents). We do that because we
found that adding this data to the annotated fine-
tuning data improves the response ranking model’s
generalization and performance. Please note that
this is the same dialogue data type as used for CS-
BERT pretraining. However, we filter by intent
to match the intent of the annotated data'. The
processing for this dataset is the same as the pro-
cessing for the CS-BERT pretraining dataset (see
Table A.4 in the Appendix for the dataset statistics).
Since the non-annotated datasets are used for regu-
larization purposes only, we do not report metrics
on these.

4.2.2 Response ranking finetuning details

We finetune all response ranking downstream tasks
on a 1:1 mixture of annotated:non-annotated data.
We adopt the same cross-encoder architecture as
in pretraining and use the NSP head for response
ranking. We use the Adam optimizer with learning
rate of 2e—>5, a linear learning rate warmup for the
first 1,000 steps, and then linear decay. All the
other parameters are the same as in pretraining. We
finetune with a batch size of 176 for 5 epochs, and

"Noisy intent labels for this dataset were obtained by an
intent classifier on the initial customer utterance.

we pick the model that yields the highest Recall@1
on the dev dataset to perform the evaluation on the
test set.

4.3 Dialogue failure detection

Another downstream task we evaluate is the dia-
logue failure detection task. The goal of failure
detection is to detect when the goal-oriented chat-
bot is not able to solve a customer’s issue, given
the limited number of agent responses in the pre-
defined response pool. When a failure happens,
the chatbot exits the conversation and transfers the
customer to a general customer service agent. The
failure detection model and the response ranking
model work in combination to create a real-world
dialogue system for customer service.

We also approach failure detection as a binary clas-
sification task, i.e., given a dialogue history and
metadata, we aim to predict whether the dialogue
is a failure or not. During real-world inference, we
call the failure detection model at each turn in the
conversation, and transfer the customer to a human
agent in the case of failure.

4.3.1 Dialogue failure detection data

We obtain the failure detection labels from the an-
notated response ranking finetuning data. Each turn
in the conversation is labeled as non-failure if the
conversation continues, and as failure if the con-
versation should be transferred to a human agent.
To avoid target leakage, we only use the dialogue
context to model failure detection, and exclude the
selected response. See Table A.5 in the Appendix
for an illustration of the model input. The full
dataset statistics can be found in Table A.6 in the
Appendix.

4.3.2 Failure detection finetuning details

We adopt the same cross-encoder architecture and
its optimization setup as for the response ranking

134



model described in Section 4.2.2. The failure de-
tection model is finetuned for up to 5 epochs, with
a batch size of 80. We evaluate all the models on
the test sets at the epoch that yields the smallest
loss on the dev set.

44 NER

We investigate the CS-BERT models for a NER
downstream task. In particular, we build a NER
model to identify personally identifiable informa-
tion (PII) in customer and agent turns, which helps
to protect the privacy information of our customers.
We approach this as a token classification task.
Given a turn from a customer or an agent, we fine-
tune the NER model to predict the PII tokens within
each turn. This is a multi-label classification task
where we define a total of 14 PII entities.

4.4.1 NER data

The NER datasets are randomly sampled utterances
from customer-agent chat dialogues that were la-
beled with PII entities by human annotators. We
use 50, 000 agent or customer turns, where 12.2%
of these contains at least one PII entity. Although
we define 14 PII entities in the annotation task,
the data is highly skewed toward common enti-
ties, such as name, phone number, email, physical
address, and some of the entities are not even ob-
served in the 50,000 turns. We split 70% of the
data for training and validation, and the remaining
30% are used as test set for evaluation. Table A.7
in the Appendix shows the entity distribution of
the NER dataset. We preprocess the data to inside,
outside, beginning (IOB) format (26) before fine-
tuning. Table 2 shows an example model input and
corresponding output IOB labels.

4.4.2 NER finetuning details

The NER model uses each pretrained model with
an additional linear layer and softmax activation
for final token classification. We use the Adam
optimizer for finetuning where the learning rate is
4e-5, = (0.9,0.999), € = 1e—8, and the training
batch size = 64. For each pretrained model we train
the NER task for 5 epochs, and the model of the
epoch with the highest F1 score on the validation
set is selected for evaluation on the test set.

5 Results and discussion

5.1 Response ranking results

Throughout this paper the metrics we use for re-
sponse ranking evaluation are mean reciprocal

rank (MRR), recall@1 and recall@5. We evalu-
ate model performance on the test set of the high-
quality annotated response ranking dataset here.
For completeness, we also report test results on
the non-annotated response ranking datasets in the
Appendix.

5.1.1 Response ranking zero-shot results

We first evaluate the pretrained models’ perfor-
mance on the high-quality annotated test sets for
the three intents. We consider this a zero-shot in-
ference task across all pretrained models, since
none of them were pretrained using finetuning type
training data.

To perform the zero-shot evaluation on the CS-
BERT models, we use the NSP prediction head
inherited from pretraining. For BERT, we use
the NSP head inherited from the pretrained BERT
model. For TOD-BERT we use the bi-encoder
architecture, since this is how it was pretrained.
We modify their original response contrastive loss
head into a softmax cross entropy head to com-
pute the scores for response ranking evaluation.
For conversational-BERT, we use an NSP head as
in the CS-BERT/BERT models, but with weights
randomly initialized, because the authors did not
release the model weights of the NSP head.

The results from the six pretrained models are sum-
marized in Table 3. The CS-BERT pretrained mod-
els are consistently better than the non-CS-BERT
models for all three intents. In particular, for in-
transit and DNR, the MRR and recall@1 from CS-
BERT-MSP evaluated on the test data are much
better than those from the other two CS-BERT mod-
els. This demonstrates the usefulness of adding the
MSP task into pretraining for dialogue downstream
tasks.

5.1.2 Response ranking finetuning results

High-quality annotated finetuning data is time-
consuming and expensive to obtain. Hence, we
experiment with the low-resource data setup to eval-
uate the data efficiency of different pretrained mod-
els on the downstream response ranking task. In
particular, we finetune the response ranking models
with 5%, 10%, 20%, 50% and 100% of the avail-
able annotated finetuning data. The full results can
be found in Table A.8 in the Appendix.

For illustration, in Figure 1, we plot MRR and re-
call@1 evaluated on the annotated finetuning test

135



context

10B label

CUSTOMERSTART My name is Jane Doe.

I have an item delivered to Seattle WA.

0O O O O B-NAME I-NAME O
0O 0 0 0 O O B-ADDRESS I-ADDRESS O

Table 2: An example of the model input and label output for the finetuning NER task. The input to the model is one

turn and the output are the entities in IOB format.

retrained encoder | MRR | Recall@1 | Recall@s | MRR | Recall@1 | Recall@s | MRR | Recall@l | Recall@5
in-transit DNR SR
BERT 10.00% 060% | 17.20% | 550% 0.00% 120% | 643% 131% 5.63%
Tod-BERT 13.30% 230% | 1840% | 11.10% 160% | 17.70% | 9.19% 255% | 10.56%
conversational-BERT | 11.70% 4.90% 9.90% | 8.00% 130% | 10.00% | 10.14% 368% | 11.27%
CS-BERT 26.00% 600% | 5580% | 3340% | 1420% | 5460% | 50.15% | 3097% | 75.62%
CS-BERT-SSR 29.70% 650% | 5880% | 3130% | 1150% | 51.10% | 5041% | 31.46% | 75.58%
CS-BERT-MSP 3BA0% | 1200% | 58.10% | 35.00% | 19.70% |  52.90% | 49.63% | 3095% |  74.04%

Table 3: Zero-shot inference results from pretrained models on the annotated response ranking finetuning test sets.

Entity level Word level
Precision Recall F1 score Precision Recall F1 score
BERT 87.73% 93.02% 90.30% 89.63% 92.06% 90.83%
Tod-BERT 90.52% 89.36% 89.94% 91.94% 87.89% 89.87%
conversational-BERT 91.13% 89.79% 90.46% 93.13% 87.97% 90.48%
CS-BERT 87.84% 93.64% 90.65% 88.39% 91.90% 90.11%
CS-BERT-MSP 89.10% 93.11% 91.06 % 89.88% 91.82% 90.84 %

Table 4: NER result

set as a function of data percentages used to fine-
tune the response ranking models. For clarity, we
only pick one CS-BERT model for these figures,
since the curves for all three CS-BERT models are
very similar. The plots clearly show that the CS-
BERT model consistently outperforms the other
three models in the low-resource data setting across
three intents. This indicates a more efficient knowl-
edge transfer from CS-BERT pretraining. As the
amount of finetuning data gets larger, the metrics
from different models start to converge. For SR,
the conversational-BERT also achieves certain im-
provements over BERT and TOD-BERT, which
illustrates that pretraining on general dialogues it-
self can help dialogue related downstream tasks.
Even though TOD-BERT was pretrained using
goal-oriented dialogues, it does not demonstrate
a powerful knowledge transfer, probably due to
the pretraining-finetuning model architecture mis-
match.

5.2 Failure detection finetuning results

We run the same data efficiency experiments de-
scribed in Section 5.1.2 for the failure detection
task. As metrics we use area under precision-recall
curve (AUC) scores. The full results can be found
in Table A.9 in the Appendix.

For illustration, in Figure 2, we plot AUC evalu-
ated on the failure detection test set as a function

of data percentages used to finetune the failure de-
tection models. For conciseness, we only plot one
curve from CS-BERT for all three CS-BERT mod-
els. The CS-BERT model clearly outperforms the
other three models, especially in the low-resource
data setting. In particular, when using only 50%
of annotated data or less, the CS-BERT demon-
strates higher AUC than the non-CS-BERT models
trained on 100% of the available annotated data,
demonstrating the usefulness of in-domain pretrain-
ing. Moreover, TOD-BERT and conversational-
BERT outperform BERT in the low-resource set-
ting, which further agrees with our assumption that
pretraining on general dialogues yields better per-
formance on dialogue related downstream tasks.

5.3 NER finetuning results

We evaluate two CS-BERT models versus BERT,
Tod-BERT and conversational-BERT for the NER
task. We measure the model performance on both
entity level and token level. For entity level evalua-
tion, we count a true positive when the model cor-
rectly predicts the entire entity (i.e. the beginning
and end of an entity). For word level evaluation, we
count a true positive if a word is correctly labeled
as its entity type, where we separate a sentence into
words using spaces. Note that CS-BERT-SSR is
not included in this experiment. Our NER data is
single utterance-level, and thus is not expected to

136



MRR

@ © © © ©
g 5 5 R 2

in-transit

0% 50%
data percentage

100%

MRR

0% 50%
data percentage

MRR

0% 50%
data percentage

-8~ BERT

Tod-BERT
=8~ conversational-BERT
-8~ CS-BERT

in-transit

Recall@1
® ® ® ©
2 R 2 2
Recall@1
a N N @
a 3 3 8 &
£ 2 & 2 ¥

0% 50%
data percentage

100% 0% 50%

\N m

%
Recall@1

N N N N

3 N 3 3

data percentage

-8~ BERT

Tod-BERT
=8~ conversational-BERT
-8~ CS-BERT

100% 0% 50%
data percentage

Figure 1: Recall@1 and MRR as a function of finetuning dataset percentage, evaluated on the response ranking task.

in-transit

AuC
o © © © ©
3 3 2 N 9
2 B 2 * 2
AuC
IS IS « «a
3 & 3 a

0% 50%
data percentage

100% 0% 50%
data percentage

-8~ BERT

Tod-BERT
=8~ conversational-BERT
-8~ CS-BERT

100% 0% 50%
data percentage

Figure 2: AUC as a function of finetuning dataset percentage, evaluated on the failure detection task.

benefit from the SSR embedding strategy.

Table 4 shows that CS-BERT-MSP performs
slightly better than other models on entity and word
level F1 score. However, we do not see signifi-
cant difference in between the different pretrained
models. We believe the reasons for this could be:
(1) The NER annotated data are turn-level while
the CS-BERT models are trained at the conver-
sation level. (2) All pretrained models are suffi-
cient enough to initialize the NER model, resulting
in similar performance after finetuning. (3) Our
human annotated data is noisy. We estimate that
human level entity and word level F1 score are
around 91.9% and 92.1%, respectively, based on
5,000 double labeled samples. Thus, we can see
all models are reasonably close to human level per-
formance. As a future work, we will improve our
data quality by aggregating multiple annotations,
and we plan to extend from turn level annotations
to conversation level annotations.

6 Summary

In this work, we present three CS-BERT mod-
els pretrained on real-world customer service dia-
logues. We show that in zero-shot response ranking
tasks, the CS-BERT models are superior to publicly

available pretrained models, and benefit from our
dialogue-specific objective function MSP.

We evaluate CS-BERT on three different down-
stream tasks, and demonstrate that CS-BERT con-
sistently outperforms other non-CS-BERT mod-
els on the response ranking and failure detection
task, especially in a low-resource data setting. We
observe that CS-BERT is superior compared to
BERT, as well as compared to two models pre-
trained on dialogue data, i.e., conversational-BERT
and TOD-BERT, thus demonstrating the advantage
of in-domain pretraining. However we also observe
that the performance gains diminish with the size
of the finetuning datasets, with some models reach-
ing parity with CS-BERT when using all available
finetuning data.

Due to customer data privacy concerns, we will
not publicly release our CS-BERT models nor the
datasets used in this work. However, we hope to
inspire other researchers to experiment with pre-
training their own, domain-specific BERT models.
Our experiments demonstrate that these domain-
specific pretrained models can improve perfor-
mance on in-domain downstream tasks and can
reduce the need for large amounts of expensive
labeled datasets.

137



References

[1] Devlin, J., Chang, M.-W., Lee, K., et al. Bert: Pre-
training of deep bidirectional transformers for language
understanding. In NAACL-HLT. 2019.

[2] Radford, A., Wu, J., Child, R., et al. Language
models are unsupervised multitask learners. 2019.

[3] Reimers, N., Gurevych, I. Sentence-bert: Sen-
tence embeddings using siamese bert-networks. In
EMNLP/IJCNLP. 2019.

[4] Garg, S., Vu, T., Moschitti, A. Tanda: Transfer
and adapt pre-trained transformer models for answer
sentence selection. ArXiv, abs/1911.04118, 2020.

[5] Yang, Z., Dai, Z., Yang, Y., et al. Xlnet: Gener-
alized autoregressive pretraining for language under-
standing. In NeurIPS. 2019.

[6] Li,J., Sun, A., Han, J, et al. A survey on deep learn-
ing for named entity recognition. /[EEE Transactions
on Knowledge and Data Engineering, 2020.

[7] Liu, Y., Lapata, M. Text summarization with pre-
trained encoders. In EMNLP/IJCNLP. 2019.

[8] Radford, A., Narasimhan, K. Improving language
understanding by generative pre-training. 2018.

[9] Liu, Y., Ott, M., Goyal, N., et al. Roberta: A ro-
bustly optimized bert pretraining approach. ArXiv,
abs/1907.11692, 2019.

[10] Clark, K., Luong, M.-T., Le, Q. V., et al. Electra:
Pre-training text encoders as discriminators rather than
generators. ArXiv, abs/2003.10555, 2020.

[11] Iandola, F. N., Shaw, A. E., Krishna, R.,
et al. Squeezebert: What can computer vision
teach nlp about efficient neural networks? ArXiv,
abs/2006.11316, 2020.

[12] https://huggingface.co/DeepPavlov/bert-base-
cased- conversational.

[13] Wu, C.-S., Hoi, S., Socher, R., et al. Tod-bert:
Pre-trained natural language understanding for task-
oriented dialogue. In EMNLP. 2020.

[14] Lu, Y., Srivastava, M., Kramer, J., et al. Goal-
oriented end-to-end conversational models with profile
features in a real-world setting. In NAACL-HLT. 2019.

[15] Srivastava, M., Lu, Y., Peschon, R., et al. Pretrain-
finetune based training of task-oriented dialogue sys-
tems in a real-world setting. In NAACL. 2021.

[16] Howard, J., Ruder, S. Universal language model
fine-tuning for text classification. arXiv preprint
arXiv:1801.06146, 2018.

[17] Gururangan, S., Marasovi¢, A., Swayamdipta, S.,
et al. Don’t stop pretraining: adapt language models to
domains and tasks. arXiv preprint arXiv:2004.10964,
2020.

[18] Wu, Y., Schuster, M., Chen, Z., et al. Google’s
neural machine translation system: Bridging the gap

between human and machine translation.
abs/1609.08144, 2016.

[19] Lan, Z., Chen, M., Goodman, S., et al. Albert:
A lite bert for self-supervised learning of language
representations. ArXiv, abs/1909.11942, 2020.

[20] Kitaev, N., Kaiser, L., Levskaya, A. Reformer:
The efficient transformer. ArXiv, abs/2001.04451,
2020.

[21] Choromanski, K., Likhosherstov, V., Dohan, D.,
et al. Rethinking attention with performers. ArXiv,
abs/2009.14794, 2020.

[22] Beltagy, 1., Peters, M. E., Cohan, A. Long-
former: The long-document transformer. ArXiv,
abs/2004.05150, 2020.

[23] Sanh, V., Debut, L., Chaumond, J., et al. Distilbert,
a distilled version of bert: smaller, faster, cheaper and
lighter. ArXiv, abs/1910.01108, 2019.

[24] Roller, S., Dinan, E., Goyal, N, et al. Recipes for
building an open-domain chatbot. In EACL. 2021.

[25] Zhang, Y., Sun, S., Galley, M., et al. Dialogpt:
Large-scale generative pre-training for conversational
response generation. In ACL. 2020.

ArXiv,

[26] Kudo, T., Matsumoto, Y. Chunking with support
vector machines. In Second Meeting of the North Amer-
ican Chapter of the Association for Computational
Linguistics. 2001.

138



A Appendix

dataset dialogues # turns
train 40,505,050 | 317,093,459
dev 151,960 250,423

Table A.1: Pretraining dataset.

context response
INITIALQUESTION AGENTSTART Can you describe in a few words how I
can help you with your recent order? CUSTOMERSTART want to return
CUSTOMERSTART but hasn’t been delivered yet PROFILESTART
paymentmethod_credit_card shippingstatus_delayed carrier_usps

Table A.2: An example of a positive context-response pair created of the annotated response ranking finetuning
dataset. Unlike the non-annotated pretraining data, we also use metadata for finetuning. We add "PROFILESTART"
into the context as a separator between the dialogue history and the metadata. Each key-value pair in the metadata is
concatenated by "_"

Ok, give me a minute to look into this.

dataset intent dialogues | # turns
train in-transit 58,515 174,434
dev in-transit 4,815 5,000
test in-transit 6,210 35,794
train DNR 29,755 | 123,956
dev DNR 4,674 5,000
test DNR 3,104 19,828
train SR 29,697 | 295,788
dev SR 4,636 5,000
test SR 7,473 95,879

Table A.3: High-quality annotated response ranking finetuning datasets for the intents “item-in-transit” (in-transit),
“item-delivered-not-received” (DNR), and “start-return” (SR).

139



Table A.4: Non-annotated response ranking finetuning dataset that was used to supplement the annotated dataset,

dataset intent # dialogues # turns
train in-transit 2,928,223 | 16,661,901
dev in-transit 9,986 10,000
test in-transit 9983 10,000
train DNR 285,520 1,496,534
dev DNR 9,876 10,000
test DNR 9,833 10,000
train SR 328,841 2,024,866
dev SR 9,872 10,000
test SR 9,871 10,000

for the intents “item-in-transit” (in-transit), “item-delivered-not-received” (DNR), and “start-return” (SR).

context

Failure label

shippingstatus_delivered carrier_fedex

INITIALQUESTION I'm still waiting for a pick up AGENTSTART Can you describe in a
few words how I can help you with your recent order? CUSTOMERSTART I'm still
waiting for pick up of the return item PROFILESTART membership_active

Table A.5: An example of the model input we use for finetuning the failure detection task. The model’s response
pool was not able to handle this customer’s problem and thus this conversation turn was labeled as failure. We do

not use the predicted response as model input to prevent target leakage.

Table A.6: Annotated failure detection finetuning dataset for the intents “item-in-transit” (in-transit), “item-delivered-

dataset intent # dialogues | # turns
train in-transit 58,515 282,348
dev in-transit 4,815 5,000
test in-transit 6,210 35,794
train DNR 29,755 164,919
dev DNR 4,674 5,000
test DNR 3,104 19,828
train SR 29,697 391,052
dev SR 4,636 5,000
test SR 7,473 95,879

not-received” (DNR), and “start-return” (SR).

Label # of entities | Percentage
Name 6304 89.2%
Physical address 168 2.4%
Phone fax 161 2.3%
URL 152 2.2%
Email 128 1.8%
Credit card number 92 1.3%
Unknown PII 47 0.7%
Membership ID 8 0.1%
CVC code 3 0.0%
Bank account 2 0.0%
Date of birth 2 0.0%

Table A.7: NER dataset entity distribution.

140




Sunjues osuodsar pojejouur ) UO PAIEN[BAD ‘S[OA] a5eIuadIad Joseiep JUaIIp Je sfopowr paurenaid X1s ay) uo yse) Surjuel asuodsar oy) SutuN)oUY WOIJ SINSAI [N :§'V 9[qRL

%L0O'66 %LT98 %LOT6 | %8066 € %S9'86 %E99L %9Y'98 | %OL'86 € %YL 66 BLULS %E6'C6 | %96'86 € dSIN-LIH4-SO
%1166 %6¢£98 %S1'C6 | %TI'66 € %LI9'86 %¥89L bIY98 | %OL'86 [4 %0L'66 %6098 %6TC6 | %E6'86 € ASS-LIHd-SO
%01°66 %1E98 BIIC6 | %Y1'66 € %8986 %60°LL %9€98 | %SL'86 [4 %0L 66 %bYELS %E0'€6 | %86'86 € Ld49-SO
%6886 %SS98 BIITO | %BLI'66 € %T1'86 %91°9L %OY'98 | BIL'86 € %8566 %0098 %BLIT6 | %8L'86 (4 LI d-[eUONESIOAUOD
%SY'86 %TL'ES %BLEO6 | %E6'86 € %EE 86 %S19L %99°S8 | %0986 [4 %0566 %9998 BEV'TO | %HEY'BO € 1999-doL
%T9'86 %97’ v8 %¥806 | %C0'66 € %YE 86 %BLI9L bE6'SS | %9986 € %LS 66 %09°L8 %L6'T6 | %E8'86 € Lad4
%001
%1886 %OL¥8 %LOT6 | %LO'66 € %9986 %98°9L %S98 | HIL'86 € %L9'66 %9098 %ETTO | %E8'86 € dSIN-LIH4-SO
%0886 BbTLYS %8016 | %E0'66 € %EL'86 %S89L %8098 | %YL'86 € %8966 %bYY'LS %Y6'C6 | %L8'86 € ASS-LI49-SO
%Y8'86 %bY6'v8 %ETL6 | %Y0'66 € %S9'86 %S6'9L %6T98 | %TL'86 € %966 %8598 %TST6 | %06'86 € L1d99d-SO
%LY'86 %TOY8 %806 | %8066 € %LEB6 %68'SL %TV'S8 | %E9'86 € %LS 66 %bLY'98 %SETO6 | %BY8'86 € LAY [PUONBSIIAUOD
%CL'L6 %008 %66°L8 | %EI'86 € %bSE86 %OL'SL %9ES8 | %1986 € %SV 66 bYTLS %S9°C6 | %T8'86 € Ldd49-dOL
%V6°'L6 %90°C8 %91°68 | %T6'86 € %bST86 %9€9L BIL'SS | %9986 € %6V 66 %1698 %0SC6 | %1886 € Lad4
%08
%LE86 %ELTY %YS68 | %¥6'86 (4 %EL'86 %EY'SL %09°S8 | %TS86 € %966 %0598 %EV'TO | %T8'86 € dSIN-LId4-SO
%bLE'S6 %8L'18 %0T'68 | %HLL'S6 %0T'86 %Y19L %S6'S8 | %1986 € %S9°66 %YE98 %SETO | %L8'86 € ASS-LIdd-SO
%TY'86 %bY9'C8 %O0L'68 | %1686 € %6086 %6L'SL %ES'S8 | %6586 € %9966 %bEE 98 %6ET6 | %6886 € Ld949-SO
%99°'L6 %118 %1S88 | %E8'86 € %98°L6 %YYL bS6'V8 | %bSY'86 € %9¢°66 %0S’S8 %OL'T6 | %E8'86 € JTIA-TeUONESIOAUOD
%8196 %9ESL %9S¥8 | %8Y'86 € %bTTLO %10YL BbLEYS | %6T'86 € %1T66 %9S°S8 %C9'16 | %6986 € L1d49-dOoL
%1996 %bS6'LL %9C98 | %09'86 € %6T°L6 %EI VL %69Y8 | %I1S86 € %166 %OL'S8 %Y816 | %EL'86 € 1344
%0T
%98'L6 %¥S 08 %6788 | %9886 € %9¢'86 BITIL %EO'T8 | BYT'86 € %1566 %E1'98 %S1'T6 | %1886 € dSIN-LId4-SO
%Y6'L6 %L 6L BI6°LY | %HEL'BO [4 %LT86 BLS VL bLYVS | %9T'86 € %1566 %6L'S8 %006 | %08'86 3 YSS-LIYHI-SO
%98°L6 %6208 %Y1'88 | %E8'86 € %TY'86 BITEL bY8ES | %986 € %0566 %9198 %61°C6 | %9886 € Ld49-SO
%E8'S6 bSLIL %81'S8 | %LI'86 € bEL'LO %80vL b61Y8 | HEE'8O € %10°66 %06°6L %19°88 | %LY'86 € LI d-TeuonesIaauoo
%T6'€6 %T8'69 %Ye08 | %YL'LO € %bYELO %69°CL BbV'ES | %SO'86 € %8686 %T0E8 %Y1'06 | %1586 € 1d449-dOoL
b1Yv6 BY6'IL %bL818 | %YT'86 € %6596 %9TTL BbSEES | BYT'86 € %S1°66 %bSTEY %0v'06 | %8586 € Ladd
%01
%0E"L6 WEV'LL %IT98 | %9586 4 %0¥'L6 %0 TL %6T18 | %81'86 € %1¥'66 %bEE 98 %81°C6 | %IL'86 [4 dSIN-LIH4-SO
%81°L6 %TY'LL %6298 | %19'86 € %8L'L6 %81'TL %98 | HIT'86 € %LE 66 %1098 %L6'T6 | %IL'86 [4 ASS-LIHI-SO
%81°L6 bS8LL %EV98 | %S9'86 € %S9'L6 %EVIL BY'I8 | %0186 € %1766 %bVY8'S8 %Y¥6'16 | %0886 [4 Ld49-SO
%SEE6 BOV'IL BITL8 | %ET'86 € %9856 %0589 %9S'8L | %LO'86 € %€6'86 %LO'ES %9506 | %L9'86 € Ldgd-[euonesioauod
%S$806 %T8'C9 %8O'SL | %HLTL6 € %LIS6 %¥8'89 bS88L | BI9'L6 € %EE'86 %SY'18 %Y0'68 | %8T'86 € 1d49-doL
%0Y'16 %96'99 %OL'LL | %Y¥0'86 € %6096 %L6'89 %ES'6L | %I98'L6 € %8L'86 %9818 %bLY'68 | %EV'86 € La9g
%S
SOMENY | 1ONBNPY | AN £Hemooy | yodd | SpBPY | 1DI'PY Lemooy | yoods | SHIEPY | TOMEPY | TAN £Hemaoy | yoodd
S e Iopooua paurenaid

*$19S 159

141



pretrained encoder in-transit DNR SR
epoch AUC epoch AUC epoch AUC
5%
BERT 3 | 88.98% 4 | 2597% 2 | 40.13%
Tod-BERT 3 | 89.96% 4 | 26.90% 3 | 46.45%
conversational-BERT 3 | 90.30% 4 | 32.64% 2 | 44.18%
CS-BERT 3 | 91.80% 4 | 34.76% 3 | 52.08%
CS-BERT-SSR 3 | 91.90% 4 | 38.85% 2 | 51.97%
CS-BERT-MSP 3 | 92.08% 4 | 40.47% 3| 52.55%
10%
BERT 2 | 90.72% 3 | 31.99% 3 | 49.74%
Tod-BERT 2 | 90.94% 3 | 33.20% 3 | 4931%
conversational-BERT 2 | 90.92% 3 | 35.58% 3 | 50.69%
CS-BERT 2 | 92.47% 3| 4143% 3 | 55.02%
CS-BERT-SSR 2 | 92.65% 3 | 40.88% 3 | 56.67%
CS-BERT-MSP 2 | 92.54% 3| 42.81% 3 | 53.95%
20%
BERT 2 | 91.79% 2 | 35.60% 2 | 51.62%
Tod-BERT 2 | 91.86% 2 | 37.51% 2 | 53.40%
conversational-BERT 2 | 91.96% 2 | 37.51% 2 | 51.99%
CS-BERT 2 | 93.15% 2 | 45.01% 2 | 56.35%
CS-BERT-SSR 2 | 92.90% 2 | 45.75% 2 | 56.67%
CS-BERT-MSP 2 | 92.92% 2 | 45.65% 2 | 56.13%
50%
BERT 2 | 92.71% 2 | 43.90% 2 | 54.35%
Tod-BERT 2 | 92.75% 2 | 43.90% 2 | 5491%
conversational-BERT 2 | 92.71% 2 | 43.29% 2 | 53.19%
CS-BERT 2 | 93.52% 2 | 47.43% 2 | 59.25%
CS-BERT-SSR 2 | 93.59% 2 | 47.70% 2 | 59.48%
CS-BERT-MSP 2 | 93.53% 2 | 48.60% 2 | 58.94%
100%
BERT 2 | 93.17% 1| 44.13% 2 | 56.60%
Tod-BERT 2 | 93.01% 2 | 47.50% 2 | 57.65%
conversational-BERT 2 | 93.10% 2 | 47.30% 2 | 57.40%
CS-BERT 2 | 93.74% 1 | 49.79% 2 | 59.94%
CS-BERT-SSR 2 | 93.79% 1 | 49.26% 2 | 59.95%
CS-BERT-MSP 2 | 93.77% 1 | 48.76% 2 | 60.32%

Table A.9: Full results from finetuning the failure detection task on the six pretrained models at different dataset
percentage levels, evaluated on the failure detection test set.

142



