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Abstract

This paper presents a technique for the iden-
tification of participant slots in English lan-
guage contracts. Taking inspiration from un-
supervised slot extraction techniques, the sys-
tem presented here uses a supervised approach
to identify terms used to refer to a genre-
specific slot in novel contracts. We evaluate
the system in multiple feature configurations
to demonstrate that the best performing sys-
tem in both genres of contracts omits the ex-
act mention form from consideration—even
though such mention forms are often the name
of the slot under consideration—and is instead
based solely on the dependency label and par-
ent; in other words, a more reliable quantifica-
tion of a party’s role in a contract is found in
what they do rather than what they are named.

1 Introduction

Contracts create a relationship between two par-
ties, generally centered around some kind of stance
object. For example, a non-disclosure agreement
(NDA) often features a disclosing party, a receiving
party, and some sort of confidential information;
similarly, a services agreement may feature a ser-
vice provider, a service recipient, and some sort of
services to be provided. In both types of contracts,
the agreement will refer to itself as well.

Contracts contain language that is more repeti-
tive than those typically studied in NLP research
(Simonson et al., 2019), but this is not necessar-
ily consistent language. A disclosing party may
be referred to as a “Disclosing Party,” “Discloser,”
“Providing Party,” “Company,” “Owner,” “Client,”
or any of a limitless set of possible referring ex-
pressions, including the actual company name of
the disclosing party. Further, some of these expres-
sions have no particular relation to either party and
may be used ambiguously throughout the corpus–
i.e. “Company” may refer to the disclosing party
in one contract and the receiving party in another.

Thus, while enumeration of such expressions may
seem to present a viable heuristic for slot identifica-
tion in contract language, a more robust technique
is required.

We avoid neural network methods for this task
for a few reasons. Results from Borchmann et al.
(2020) suggest that pre-trained models trained on
more general language struggle on the idiosyn-
crasies of contract language—at least those pre-
trained on non-legal data. Further, a resource-
intensive slot detection system is not scalable in
the desired environment. This is a subprocess of a
larger system (Simonson et al., 2020), and thus the
footprint in terms of memory and hardware expense
need to remain low. We also want to build a sys-
tem that would provide some transparency into its
decisions so users may have an opportunity to cus-
tomize the system to their needs and preferences.
Given that such an understanding of neural net-
work methods remains an on-going research task,
a method derived from older techniques promises
better opportunities for inspection than techniques
that may be more popular.

For this, we look toward more linguistically-
informed methods for identifying participant slots
in language generally. Schank and Abelson
(1977)’s model of script learning from episodic
knowledge is a sensible theoretical fit for learn-
ing participant slots from contracts. Just as scripts
are presumably learned from exposure to repeti-
tive sequences of events, contracts themselves of
particular types are also repetitive series of proposi-
tions; an individual reading many contracts would
readily observe patterns that would generalize into
interchangeable participant slots and relationships
among them. Chambers and Jurafsky (2008, 2009)
present a model for doing exactly that; however,
their script learning method is unsupervised, while
the sort of slots identified in this work have been
prescribed in advance by subject matter experts.
Thus, in this model, we turn the techniques pre-
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sented by Chambers and Jurafsky (2008) on their
head to learn participant slots from supervised data.

Section (2) discusses prior work related to con-
tract language and slot identification, particularly
how this work exists at the boundary between two
threads of thought on slot identification. Section
(3) outlines our annotation efforts, their results,
and other NLP pre-processing necessary to extract
slots. Section (4) describes the mathematical under-
pinnings of our slot identification technique, and
Section (5) enumerates how those mathematical
relations are turned into slot selections. Section
(6) describes the results of these experiments, and
Section (7) goes into more qualitative detail in un-
derstanding the causes of the quantitative results.

2 Prior Work

Prior NLP work on contract language is extensive,
including summarization (Manor and Li, 2019;
Keymanesh et al., 2020) information extraction
and understanding (Anish et al., 2019; Borchmann
et al., 2020; Agarwal et al., 2021), as well as corpus
studies looking at intrinsic properties of contracts
(Curtotti and McCreath, 2011; Simonson et al.,
2019) or providing new annotations over contract
language (Funaki et al., 2020).

We were not able to identify any prior work
specifically on participant slots in contracts. Ash
et al. (2020) devised a system that identifies the
obligations of parties in contracts, leveraging simi-
lar features as in this paper but with some key dif-
ferences. Participants are determined based entirely
on their mention form—either overtly, or through
a dictionary of synonyms. Mention forms that fall
outside of these are ignored, and this technique was
not overtly evaluated. As their primary goal was to
identify obligations and to look at large volumes of
statistics about those obligations within a corpus of
employment contracts, the mention form approx-
imation is sensible to make. On the other hand,
the goal of the system presented in this paper is to
identify mention forms specifically. Since this is
part of a user-facing contract review system, ignor-
ing forms that could not be determined in advance
would fail to meet the needs of that system; as will
be discussed in Section (3.1), such unpredictable
mention forms occur frequently.

The theoretical foundation for slots comes from
Schank and Abelson (1977)’s seminal work on
scripts—generalizations of events from prior ex-
posure to them. The classic example is that of a

“restaurant script”—an understanding of the general
series of events and participants involved in visiting
a restaurant. While such a conception of knowl-
edge is intuitive, the precise nature of how this
knowledge should be realized in NLP systems falls
into roughly two threads of thought: supervised—
where such knowledge is explicitly enumerated—
and unsupervised—where such knowledge is in-
ferred from a corpus of text.

While not exactly the same as scripts, some ap-
proaches attempt to model frames in a supervised
manner—that is, rather than inferring them from
natural language descriptions in corpora, projects
such as FrameNet overtly name and describe struc-
tured frames and their participant slots (Baker et al.,
1998).

However, frames are not scripts or schemas;
rather, frames are the building blocks scripts and
schemas, which can be thought of as networks of
frames with shared participants. Even after years
of annotation, the exhaustive enumeration of all
frames seems unlikely. In attempting to understand
language generally, a system may need to “possess
many schema[s], perhaps hundreds of thousands”
(Mooney and DeJong, 1985), which motivates an
unsupervised approach to extracting such struc-
tures. Chambers and Jurafsky (2008) re-ignited
interest in related tasks, though most community
efforts have centered around performance improve-
ments on or variants of the narrative cloze task
(Jans et al., 2012; Pichotta and Mooney, 2014;
Mostafazadeh et al., 2016). Other work has con-
tinued to focus on the extraction of schemas or
scripts as discrete knowledge structures (Chambers
and Jurafsky, 2009; Balasubramanian et al., 2013;
Simonson and Davis, 2018; Weber et al., 2018).

Latently, in the unsupervised learning of such
schemas, participant slots are learned through the
identification of sequences of events; in supervised
techniques, slots are identified overtly and must
be mapped on to text by some means. However,
the unique properties of contracts allow us to exe-
cute at a hybrid approach. The system described
in this paper has mathematical underpinnings that
are very similar to those in unsupervised work, par-
ticularly Chambers and Jurafsky (2008). However,
the overt annotation of a specific genre of contract
is much more similar to a frame-based supervised
approach, with a subject matter expert deciding in
advance what the frame is and what the slots to be
labelled are. A specific frame defines each genre
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of contract, composed of the relationship between
the parties specified therein. Table (1) enumerates
this explicitly, juxtaposing the terminology used in
our own annotation and that used in FrameNet. In
an NDA, that frame is FrameNet’s Exchange while
a Services agreement is a Commercial_transaction.
These differ because FrameNet requires as a core
part of a Commercial_transaction a Money slot
which is not often the case in an NDA.

Table 1: Comparison between this paper’s analysis of
contract genres’ slots and their respective FrameNet ter-
minology.

Contract Terminology FrameNet
NDA Exchange
receiving party Exchanger_1
disclosing party Exchanger_2
confidential information Themes
Services agreement Commercial_transaction
service provider Seller
service receiver Buyer
services Goods

3 Data

This section describes two components of our
data preparation for slot extraction: the annotation
which produced the system’s training data (Section
3.1) and and the other NLP pre-processing steps
needed to learn and extract participant slots (Sec-
tion 3.2).

3.1 Annotation
Given the consistency of particular types of con-
tracts, the annotators indicated the mention forms
of each of four slots for every document. These
were, for NDAs: the receiving party, disclosing
party, confidential information, and agreement; for
Services: service provider, service receiver, ser-
vices, and agreement. Annotators indicated the
values for each of these, excluding any determiners.
Each defined term had to appear at least twice to
be annotated. Ambiguities were noted as well, if
they occurred more than once, as some contracts
deviate from the defined terms from time-to-time.
The annotations are case sensitive; consistent capi-
talization is important in leveraging the slots.

To train annotators and specify guidelines,
the annotators completed two rounds of doubly-
annotated documents. After that point, further
annotation was completed independently by the
trained annotators, according to the guidelines.
Kappa scores for different slots were between 0.80
and 1.0, where strict equivalence was the standard.

Most disagreements were over the scope of the
defined term—e.g. including a determiner in the
mention form—rather than the term itself or were
due to the omission of an ambiguous mention form.

In total, the annotation team completed 712
NDAs and 214 Services agreements. Figure (1)
shows in squarified treemaps the distribution of
terms, where area is proportional to the token
counts of a given type. Some slots vary more
than others, but none are completely invariant. The
smallest cells in each treemap are single counts of a
particular token type. These are most often proper
nouns, generally the name of the company either
disclosing information or providing services. If
all of these singleton mention forms were grouped
as a single type, they would be the second most
frequent disclosing party type among the NDAs
and the most frequent service provider type among
Services agreements.

3.2 Pre-Processing

For word and sentence tokenization, lemmatization,
and dependency parsing, the system uses SpaCy
(Honnibal and Johnson, 2015).1 While SpaCy was
not explicitly trained on contract language, for our
purposes, the labels are close enough to correct—
or at least are consistent enough to derive suitable
results. Our observations showed most of its errors
being related to either long range dependencies–e.g.
relative clauses and coordination between very long
VPs–or lexical items unique to contract language–
e.g. "warrant" as a verb or "receiving" as part of an
NP. The latter case is directly related to our target
problem–it was mostly circumvented because cases
where “Receiving Party” was capitalized were cor-
rectly tagged as proper nouns.

For coreference resolution, the system employs a
heuristic technique. Since contract language tends
to avoid 3rd person anaphora (Simonson et al.,
2019), the system avoids some of the more chal-
lenging coreference problems and targets primarily
noun phrases headed by common nouns and proper
nouns. First, all 1st and 2nd person pronouns are
joined into chains unique to each pronoun since
their intrinsic deictic properties make them unam-
biguous. Then the technique builds chains out of
all noun phrases that contain the same sequence of
lemmas. This sequence is considered the surface
form of the chain. A noun phrase, in this case, is
the regular sequence of part-of-speech tags used in

1SpaCy 2.2.3 with en_core_web_sm, version 2.2.5.
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Figure 1: Squarified treemap of the contract slot annotations. The first row are NDA annotations: disclosing party,
receiving party, confidential information, agreement. The second row are Services annotations: service provider,
service receiver, services, agreement. Labels are not included on rare items.

Justeson and Katz (1995) but modified to exclude
prepositions. A second pass is made where the
coreference system checks noun phrases that were
not joined with any others into a chain for subse-
quences of tokens that match the surface form of
the chain. In these cases, the markable is joined
into the chain.

4 Slot Scoring

To decide which slot a particular chain might repre-
sent requires a technique for scoring each chain C
with respect to a particular slot type k. This section
describes the components of a function S which
does exactly that.

Rather than considering all co-referring argu-
ment pairs in a chain, as Chambers and Jurafsky
(2009) did to assemble schemas, the system consid-
ers each link in a chain individually against each
possible slot type. Chambers and Jurafsky (2009)
were using an unsupervised technique, and thus did
not have the extra information of a particular iden-
tified slot type; in other words, the slot type was
implied by a strong signal between co-referring
event arguments. Instead, this system associates
the supervised slot class and features derived from
each chain link.

During training, each chain is then represented
by tuples composed of the slot type k, the mention
surface formm, the dependency relation r between
the mention and its parent p, which is also repre-
sented by its surface form—i.e. 〈k,m, r, p〉. In

the case of a mention’s immediate parent being
a preposition—in a manner similar to the Stan-
ford typed dependencies’ “collapsed dependencies”
(de Marneffe et al., 2006)—the relation is derived
from the lemma of the preposition (e.g. “prep_in”);
the parent is then the parent of the preposition.

For example, from a document where “Recipient”
was annotated as Receiving Party and “Sensitive
Documents” was annotated as Confidential Infor-
mation, “The Recipient shall destroy all copies of
the Sensitive Documents” renders three tuples:

• 〈RP, Recipient, subj, destroy〉,

• 〈none, copy, dobj, destroy〉, and

• 〈DP, Sensitive Documents, prep_of, copy〉.

The “none” class retains features to estimate inde-
pendent probabilities.

Deviating from Chambers and Jurafsky (2008,
2009)’s goals for slot extraction, the system skips
the constraint of looking strictly at verbs to extract
such relationships. While contracts may tell stories,
they are not themselves intended as narrative texts.
Rather, it extracts 〈k,m, r, p〉-tuples for every men-
tion of an entity, regardless of what r is.

In both training and slot identification, the sys-
tem excludes any chains whose mention form is
either “party” or “third party.” This is because the
meanings of these nouns are often conditioned on
determiners and adjuncts with qualities that require
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more sophisticated handling of the coreference in-
formation entailed within them—e.g. “each party”
vs “the party.” These terms rarely point specifi-
cally and unambiguously to one party or the other,
and thus do not help to determine the way a slot is
referred to in a given text.

From there, the system estimates probabilities
as:

P (t) =
counts(t) + α∑

τ∈T counts(τ) + α|T |
(1)

where counts(t) is the number of times feature tu-
ple t appeared in the corpus, T is the set of all tuples
of features observed for that particular model of the
type comparable to that tuple, and α is a constant
smoothing parameter.

Permutations of three features determine con-
figurations of the system—in other words, which
tuples are counted and included in the set T . This
paper refers to each configuration by the feature
tuple of the joint probability—e.g. the model that
uses the relation r and parent form p features is
referred to as the P (k, r, p) model, as it yields the
joint probability of a particular class k with the
other two features.

Pointwise mutual information (pmi) of a tuple
T is defined as:

pmi(t) = log
P (t)∏|t|
i=0 P (ti)

(2)

The exact contents of T and, consequentially, the
probabilities multiplied in the denominator will
depend on the specific probability we are using. For
example, for the P (k, r, p) model, pmi is realized
as:

pmi(k, r, p) = log
P (k, r, p)

P (k)P (r)P (p)
(3)

To prevent rare items from being weighted highly—
often a flaw of pointwise mutual information—the
system forces PMI to be 0.0 for joint items with
counts less than six.

When observing new items in a new document,
for a given chain C, the system measures how well
it fits with a particular class k using S:

S(k,C) =

∑
f∈C

pmi(〈k, f0, ..., fn〉)

− |C|
(4)

where |C| is the length of the chain C. Since the
system does not know the class yet, the extracted
chains are composed of tuples 〈m, r, p〉. Thus, S

evaluates the pmi of each link of the chain as if
it is a member of k. Subtracting the length of the
chain—i.e. −|C|—acts to penalize longer chains.

5 Slot Selection

A score alone is not enough to decide which chains
correlate with which slot. To decide which chains
actually represent each slot, the system employs
Algorithm (1). This is composed of roughly two
parts: a score for every chain as every possible slot
and a selection procedure. The first loop scores ev-
ery chain’s association with every class; if a score
is 0.0 or less, it is omitted from further considera-
tion. These are sorted from highest score to lowest.
The second loop, in the specified reverse score or-
der, assigns chains to particular slots—only if the
chain has not yet been assigned to a slot or the slot
has not yet been assigned a chain. If a slot has no
assignments made to it, it is left blank.

Algorithm 1: Slot selection over a docu-
ment.
Data: coreference chains R extracted from

a document as a sequence of
〈m, r, p〉 tuples

Result: assignment of a chain to each slot
scores = [] for slot k ∈ slots do

for chain Ci ∈ coreference chains R do
if S(k,C) > 0.0 then

scores.append(〈S(k,C), k, i〉)

scores.sort()
scores.reverse()
slot_selections = {}
for score tuple 〈s, k, i〉 in scores do

if k ∈ slot_selections.keys then
#skip

else if i ∈ slot_selections.values then
#skip

else
slot_selections[k] = i

if slot_selections.keys == slots then
break

return slot_selections

Figure (2) shows an example of Algorithm (1)
in practice. The table on the left of Figure (2) rep-
resents the full array of scores; these are stored and
sorted, resulting in the list of 3-tuples in the center
of the figure. The second loop of Algorithm (1)
traverses these in order, assigning each chain to



168

RP DP A CI

0

1

2

3

4.1 4.00.20.1

3.2 3.10.51.0

2.81.6 0.7 2.7

0.0 0.20.6 0.5

(4.1, RP, 0)
(4.0, DP, 0)
(3.2, RP, 1)
(3.1, DP, 1)
(2.8, RP, 2)
(2.7, CI, 2)
(1.6, DP, 2)
(1.0, CI, 1)
(0.7, A, 2)
(0.6, A, 3)
...
 

RP

DP

A

CI

0

1

2

3C
ha

in
s

Slots

4 0.1 0.40.5 0.4

5 0.3 0.20.1 0.0

Figure 2: Illustration of an Example of Algorithm (1)

a slot if no constraints interfere. These are illus-
trated with boxes highlighting cause of interference.
For example, the second tuple gives a high score
to Chain 0 for the disclosing party slot; however,
Chain 0 was already selected for receiving party,
so this tuple is ignored. The next tuple—third from
the top—gives a high score to Chain 1 for the re-
ceiving party slot, but receiving party has already
been assigned Chain 0, so this tuple is also ignored.
Next, the fourth tuple in the sequence assigns a
high score for disclosing party to Chain 1. Nothing
inhibits this, so Chain 1 is assigned to disclosing
party. This process continues until all slots are
assigned for the given document.

To clarify what has happened here, the assign-
ment is of a chain—and specifically, of its surface
form—that corresponds with the slot—and its men-
tion form—in the document. Our annotations also
correspond with such mention forms, and thus we
evaluate based on whether the mention form iden-
tified by the system corresponds with the mention
form annotated.

6 Results

Evaluation employs a holdout of 19 NDAs and
18 Services agreements against a total of 14 dif-
ferent models—7 for NDAs and 7 for Services—
representing different ablations of the features con-

sidered.2 The first ablation predicts class based
on only one feature: either the mention P (k,m),
dependency relation label P (k, r), or dependency
parent P (k, p). The second ablation predicts class
based on pairs of features: mention and relation
P (k,m, r), mention and parent P (k,m, p), and
relation and parent P (k, r, p). The third ablation
considers all features jointly, yielding one model
P (k,m, r, p).

Table 2: Precision and recall scores for the model abla-
tion study.

Joint prob. NDA Services
in PMI numer. Prec. Rec. Prec. Rec.
P (k,m) 0.882 0.882 0.639 0.582
P (k, r) 0.300 0.039 0.167 0.051
P (k, p) 0.691 0.500 0.302 0.241
P (k,m, p) 0.900 0.829 0.623 0.544
P (k,m, r) 0.855 0.855 0.625 0.570
P (k, r, p) 0.947* 0.934* 0.806* 0.734*
P (k,m, r, p) 0.901 0.842 0.623 0.544

At the first level of ablation, the mention-only
model (P (k,m)) performs best on both NDAs
and Services agreements. When other features
are added to the mentions, however, the mention-

2A reviewer pointed out the limitations of this experimental
configuration, as the absence of a third dev split lowers the
rigorousness of these results. The absence of this further split
is, in part, a consequence of the success of the system in
production. There have been too few complaints from users
about the slot system to justify further improvement.
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related models (P (k,m, p) and P (k,m, r)) gener-
ally decline in performance (NDA recall, Services
precision and recall) or experience only small im-
provement (NDA precision) in performance.

However, when the two features from the first
ablation that performed the most poorly are com-
bined, they result in the highest performance over
all, across both genres of contract.

7 Analysis

The results in both genres show an interesting
trend—when the values are considered indepen-
dently, mention is the strongest feature in terms
of performance. However, this changes in the
second level, where mention being excluded and
only the dependency-parent pairs of mentions (i.e.
P (k, r, p)) results in the strongest performance.
This outperforms the results in the third ablation,
leading to a decline in precision and recall. These
trends hold in both the NDA and Services genres
of contracts, albeit to different degrees.

The relationship between a candidate chain and
the rest of the contract—as embodied through its
dependency labels and parent—best embodies the
slots, even more than the explicit mention of the
label. Though this was somewhat predictable from
prior literature, it has not been explicitly tested. It
is actually striking that, in a genre of text where
the slot itself is so often explicitly named that per-
formance is higher when that explicit naming is
omitted, and the decision itself is only directly con-
nected to how a particular entity participates in a
contract rather than what it is called.

Among the top performing models, errors were
generally concentrated in the terms used to refer
to either one of the parties, especially in the NDA
results.

Examining the output more closely, mention
form’s harm to performance can be more read-
ily teased apart. A particularly interesting NDA,
“Software Group Inc. NDA” actually expresses a
four-part relationship between the State of Min-
nesota, the State Court Administrator’s Office, a
contractor, and another company Tyler Technolo-
gies. These last three are defined as “Court,” “Re-
cipient,” and “Tyler” respectively. The agreement
seeks to protect, primarily, “Tyler trade secret infor-
mation,” which our annotators marked as the term
for confidential information, and since it revolves
around Tyler’s trade secrets, “Tyler” is the disclos-
ing party; “Recipient,” in this case, is actually the

receiving party.
Both the P (k, r, p) and P (k,m, r, p) models

made errors on this document, but different errors
that reveal some of their flaws. The P (k,m, r, p)
model missed slots that included “Tyler” in the
name, as that explicit mention form was unpre-
dictable in advance. Instead, the model guessed
nothing for the disclosing party and “information”
for confidential information. On the other hand, the
P (k, r, p) model was able to get both of those slots
correct; however, it incorrectly guessed the other
defined term “Court” to be the receiving party. This
is due to a use of “Court” in a very similar man-
ner to “Recipient” and is expressed in relationships
very similar to other chains in prior texts labelled
receiving party. For example, in defining exclu-
sions to the confidential information, the contract
states (emphasis added):

“Tyler trade secret information” shall
not include (i) any information which
was known to or readily ascertainable by
proper means by the Court or Recipient
before being disclosed to the Court or
Recipient by Tyler; (ii) any information
which is or becomes available to the gen-
eral public without fault or action of the
Court or Recipient...

The relations expressed here for “Court” are
〈Court, prep_by, ascertainable〉, 〈Court, prep_to,
disclosed〉, and 〈Court, prep_of, action〉, all rela-
tions indicative of a receiving party while “Recip-
ient”, in our model, only obtains three instances
of 〈Recipient, conj, Court〉. A more sophisticated
handling of the dependency tree may rectify this—
retrieving the proper semantic relationship for “Re-
cipient.” Above all, while these are errors, none
of them are embarrassing errors; their causes are
highly transparent given the design of the model
and suggest opportunities for further improvement.

In the Services agreements, the error rate was
higher for all models. This may, in part, be due
to data sparsity, since far fewer Services agree-
ments were available for annotation. However,
there were differences between the slots in each
genre. NDAs preferred more generic mention
forms—e.g. “Discloser”—while Services agree-
ments usually have at least one company name as
one of the parties, so this hurt the P (k,m, r, p)
model more than in the NDAs where it labelled at
least one slot wrong in all but one evaluation con-
tract (17 of 18) because the mention contained a
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proper noun. The P (k, r, p) model also made some
similar errors, but only in 6 of the 18 contracts. Ad-
ditionally, Services agreements were more likely to
have multiple mention forms for the same slot—for
example, the “Apple - Developer Agreement” uses
both “you” and “Apple Developer” for service re-
ceiver. Our algorithm is incapable of determining
that both of those chains are part of the same slot—
a limitation, but an intentional one, since opening
up the possibility for slots to be multiple chains
opens up tremendous room for error.

8 Conclusions

This paper demonstrates a technique for identify-
ing participant slots in NDAs and Services agree-
ments. The mention form alone obtains high per-
formance, but performance declines as other fea-
tures are added. This is likely because the spe-
cific mention form makes it harder to capture the
highly common phenomenon of referring to a slot
by a party name rather than the name of the role.
Those features, dependency relation and depen-
dency parent, on their own—excluding mention
form—outperform mention form alone. This shows
that what a participant does better reflects their role
in a contract rather than the specific string used to
refer to them.

There are a number of improvements that could
be made to future systems. It is possible that a
model that considers the disjunction of the mention
form and relation-parent pairs could perform even
better than those attempted here, which are strictly
joint models. This would more tightly conform to
Chambers and Jurafsky (2009)’s typed schemas
system design. Further annotation of Services
agreements would likely result in performance im-
provements, as well as better traversal of the parse
tree, improved parsers for contract language, and
architectures that allow for multiple mention form
chains to be considered for a single slot to capture
ambiguous cases.
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