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Abstract

While many NLP pipelines assume raw, clean
texts, many texts we encounter in the wild,
including a vast majority of legal documents,
are not so clean, with many of them being
visually structured documents (VSDs) such
as PDFs. Conventional preprocessing tools
for VSDs mainly focused on word segmenta-
tion and coarse layout analysis, whereas fine-
grained logical structure analysis (such as iden-
tifying paragraph boundaries and their hier-
archies) of VSDs is underexplored. To that
end, we proposed to formulate the task as pre-
diction of transition labels between text frag-
ments that maps the fragments to a tree, and
developed a feature-based machine learning
system that fuses visual, textual and seman-
tic cues. Our system is easily customizable
to different types of VSDs and it significantly
outperformed baselines in identifying different
structures in VSDs. For example, our sys-
tem obtained a paragraph boundary detection
F1 score of 0.953 which is significantly bet-
ter than a popular PDF-to-text tool with an F1
score of 0.739.

1 Introduction

Despite recent motivation to utilize NLP for wider
range of real world applications, most NLP pa-
pers, tasks and pipelines assume raw, clean texts.
However, many texts we encounter in the wild, in-
cluding a vast majority of legal documents (e.g.,
contracts and legal codes), are not so clean, with
many of them being visually structured documents
(VSDs) such as PDFs. For example, of 7.3 million
text documents found in Panama Papers (which
arguably approximates the distribution of data one
would see in the wild), approximately 30% were
PDFs'. Good preprocessing of VSDs is crucial in
order to apply recent advances in NLP to real world
applications.

!Calculated from Obermaier et al. (2016) by regarding
their emails, PDFs and text documents as the denominator.

Thus far, the most micro and macro extremes
of VSD preprocessing have been extensively stud-
ied, such as word segmentation and layout analysis
(detecting figures, body texts, etc.; Soto and Yoo,
2019; Stahl et al., 2018), respectively. While these
two lines of studies allow extracting a sequence
of words in the body of a document, neither of
them accounts for local, logical structures such as
paragraph boundaries and their hierarchies.

These structures convey important information
in any domain, but they are particulary important in
the legal domain. For example, Figure 1(1) shows
raw text extracted from a non-disclosure agreement
(NDA) in PDF format. An information extrac-
tion (IE) system must be aware of the hierarchical
structure to successfully identify target information
(e.g., extracting “definition of confidential infor-
mation” requires understanding of hierarchy as in
Figure 1(2)). Furthermore, we must utilize the log-
ical structures to remove debris that has slipped
through layout analysis (“Page 1 of 5” in this case)
and other structural artifacts (such as semicolons
and section numbers) for a generic NLP pipeline to
work properly.

Yet, such logical structure analysis is difficult.
Even the best PDF-to-text tool with a word-related
error rate as low as 1.0% suffers from 17.0% new-
line detection error (Bast and Korzen, 2017) that
is arguably the easiest form of logical structure
analysis.

The goal of this study is to develop a fine-grained
logical structure analysis system for VSDs. We
propose a transition parser-like formulation of log-
ical structure analysis, where we predict a transi-
tion label between each consecutive pair of text
fragments (e.g., two fragments are in a same para-
graph, or in different paragraphs of different hi-
erarchies). Based on such formulation, we devel-
oped a feature-based machine learning system that
fuses multimodal cues: visual (such as indentation
and line spacing), textual (such as section num-
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Figure 1: Overview of the logical structure analysis for VSDs and its formulation.

bering and punctuation), and semantic (such as
language model coherence) cues. Finally, we show
that our system is easily customizable to differ-
ent types of VSDs and that it significantly outper-
forms baselines in identifying different structures
in VSDs. For example, our system obtained a para-
graph boundary detection F1 score of 0.953 that
is significantly better than PDFMiner?, a popular
PDF-to-text tool, with an F1 score of 0.739. We
open-sourced our system and dataset’.

2 Problem Setting and Our Formulation

In this study, we concentrate on logical structure
analysis of VSDs. The input is a sequence of text
blocks (Figure 1(3)) that can be obtained by utiliz-
ing existing coarse layout analysis and word-level
preprocessing tools. We aim to extract paragraphs
and identify their relationships. This is equivalent
to creating a tree with each block as a node (Fig-
ure 1(4)).

We propose to formulate this tree generation
problem as identification of a transition label be-
tween each consecutive pair of blocks (Figure 1(5))
that defines their relationship in the tree. We define
the transition trans; between ¢-th block (hereafter
b;) and b; 1 as one of the following:
continuous b; and b;4; are continuous in a

single paragraph (Figure 1(6)).

consecutive  b;4 is the start of a new para-

https://euske.github.io/pdfminer/
*https://github.com/stanfordnlp/pdf-s
truct

graph at the same level as b; (Figure 1(7)).
down  b;yq is the start of a new paragraph that

is a child (a lower level) of the paragraph that b;

belongs to (Figure 1(6)).
up by is the start of a new paragraph that is in

a higher level than the paragraph that b; belongs

to (Figure 1(8)).
omitted  i-th block is debris and omitted (Fig-

ure 1(9)). trans;_1 is carried over to the relation-

ship betwen b; 1 and b; 1.

While down is well-defined (because we assume
atree), up can be ambiguous as to how many levels
we should raise. To that end, we also introduce a
pointer to each up block, which points at b; whose
level b; belongs to (ptr; = b;, where j < i; Fig-
ure 1(8)).

3 Dataset

In this study, we target four types of VSDs in dif-

ferent file formats and languages:

Contract2¥ English NDAs in PDF format.

Law2¥ English executive orders from local au-
thorities.

Contract%! English NDAs in visually structured
plain text format.

Contract”df Japanese NDAs in PDF format.

Examples of each type of VSDs are shown in Fig-

ure 2.

For PDFs, we downloaded PDFs from
Google.com search result. Since our focus is not
on coarse layout analysis or word-level prepro-
cessing, we selected single column documents
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(a) Contract?¥ (b) Law ¥

(c) Contract &, (d) Contract/

Figure 2: Examples of VSDs in our dataset*

and extracted blocks with an existing software.
Specifically, we utilized PDFMiner and extracted
each LTTextLine, which roughly corresponds
to each line of text, as a block. We merged
multiple LTTextLines where LTTextLines
are vertically overlapping.

For plain texts, we searched documents filed at
EDGAR?. We simply used each non-blank line of
a plain text as a block.

We annotated all documents by hand. We de-
scribe more details of the data collection and anno-
tation in Appendix A.1.

The data statistics are given in Table 1. While the
number of documents is somewhat limited, we note
that each document comes with many text blocks
and evaluations were stable. Furthermore, it was
enough to reliably show the difference between our
system and baselines in our experiments.

4 Proposed System

4.1 Transition Parser

In this work, we propose to employ handcrafted
features and a machine learning-based classifier as
the transition parser. This strategy is more suited to
our task than utilizing deep learning because (1) we
can incorporate visual, textual and semantic cues,
and (2) it only requires a small number of training

“(a) http://www.astho.org/Programs/Infec
tious-Disease/Healthcare-Associated-In
fections/Electronic-Health—-Records/Toolk
it/Data-Use-Agreement-New-York-City/, (b)
https://www2.1illinois.gov/IISNews/21288~-
Gov._Pritzker_Stay_at_Home_Order.pdf, (¢)
https://www.sec.gov/Archives/edgar/data/
86115/0000930661/0000930661-99-001321-1in
dex.htm, and (d) http://www.septima.co.jp/co
ntracts/27_himitsuhoji.pdf

Shttps://www.sec.gov/edgar.shtml

Contract?¥  Law2¥  Contract’! Contract ﬂff
Format PDF PDF Text PDF
Language English English English  Japanese
#Documents 40 40 22 40
#Text blocks 137.9 165.9 142.0 73.7
Max. depth 34 39 3.1 3.0
#continuous 954 (68%) 110.6 (67%) 109.9 (77%) 33.9 (44%)

#consecutive 20.3 (17%) 30.8 (20%) 15.3 (12%) 14.9 (20%)

#up 8.5( 6%) 7.1( 4%) 4.8( 3%)11.0(15%)
#down 9.4( 6%) 9.9( 6%) 4.6( 3%)12.1(17%)
#omitted 44(3%) 7.6(3%) 74(4%) 1.8( 2%)

A number in the second set of rows indicates an average count over
documents. A percentage represents an average ratio of each label.

Table 1: Dataset information

data which is critical in the legal domain where
most data is proprietary.

For each block, our parser extracts features
from a context of four blocks and performs multi-
class classification over the five transition labels.
Since omitted changes targets of transition,
we also omit omitted blocks in feature extrac-
tion. For trans; # omitted, we extract fea-
tures from [b;_1,b;, b;, bj11] where b; is the first
block after b; with trans; # omitted. For
trans; = omitted, we extract features from
[bi—1,bi, bit1,biya]. At test time, since we need
to know the presence of omitted before feature
extraction, we run a first pass of predictions to
identify blocks with omitted, then use that infor-
mation to dynamically extract features to identify
other labels.

Our system can be customized to different types
of documents by modifying the features. We have
designed a feature set for each document type by
visually inspecting the training dataset (Table 2).
For Contract % , we regarded space characters as
horizontal spacing and blank lines as vertical spac-
ing, which allowed us to define features that are
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Description

Document type

Contract 24

Blocks [Law 24 Contract5!  Contract }’,é’f

Visual features
V1 Indentation (up, down or same)
V2 Indentation after erasing numbering
V3  Centered
V4 Line break before right margin*
V5 Page change
V6  Within top 15% of a page
V7  Within bottom 15% of a page
V8 Larger line spacing®
V9  Justified with spaces in middle
V10 Similar text in a similar position™
V11 Emphasis by spaces between characters
V12 Emphasis by parentheses

Textual features
T1 Numbering transition®
T2 Punctuated
T3 Liststart (/[-;:,1S/)
T4 Listelements (/ (; |, land|or) $/)
T5 Page number (strict)
T6  Page number (tolerant)
T7  Starts with “whereas”
T8  Starts with “now, therefore”
T9 Dictionary-like (includes “:” & not V4)
T10 All capital
T11 Contiguous blank field (underbars)
T12 Horizontal line (“*-=#%_+" only)

Semantic features
S1  Language model coherence™®
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The “Blocks” columns list blocks used to extract features for transs (e.g. “1-2, 2-3” means [b;_1, b;] and
[bi, bi+1] are used to extract two sets of features). Features with a similar intended functionality are assigned
the same feature name and implementations may vary for different document types. *: Explained in detail in

Section 4.1.

Table 2: List of features for each feature extractor

analogous to those for PDFs.

While readers can reference our open-sourced
code for the concrete implementation, we will dis-
cuss some of the features that have important im-
plementation details. For a target block b;:

Numbering transition (T1) A categorical feature
that itself is a heuristic transition parser. It iden-
tifies a numbering in each block and keeps a
memory of the largest numberings by their types
(i.e., its alphanumeric type and styling, such as
IV. and (a)). It outputs (1) continuous if
no numbering is found, (2) consecutive if
the numbering in b; 1 is contiguous to the num-
bering in b;, (3) up if not consecutive and there
is a corresponding number in the memory, and
(4) down if it is none of above and it is the first
number in its numbering type. For example, BO
in Figure 1 is down as 1. is the first number-
ing type that it sees and “1” will be added to the
memory. Bl and B2 are continuous as no
numbering is found and B3 is consecutive
as a number “2” is found in the same type as 1 ..
B4 is down as it contains a new numbering type.

Language model coherence (S1) To determine if
b; should be classified as omitted, it utilizes
language model to classify whether it is more

natural to have b; or b; 1 after b;_;. Specifically,
we use GPT-2 (Radford et al., 2019) to calculate
language model loss ¢(i,i — 1) for b; given b;
as a context (i.e., fed into the model but not used
in the loss calculation). We then calculate £(7, i —
1) — £(i + 1,7 — 1) as the feature. If it is more
coherent to have b; after b;_1, £(i,7 — 1) will be
smaller than ¢(i 4+ 1,7 — 1) and the feature value
will be negative. We also utilize ¢(i + 1,7) —
i+ 1,i—1).

Similar text in similar position (V10) Headers

and footers tend to appear in similar positions
across different pages with similar texts. For
example, a contract may have the contract’s
title on every pages at the same position. This
feature is 1 if there exists a block b; such that
blocks’ overlapping area is larger than 50% of
their bounding box (treating as if they are on the
same page), and their edit distance is small®.

Line break before right margin (V4)

A Boolean feature that is 0 if the block
spans to the right margin and 1 otherwise (i.e.,
breaks before the right margin). To distinguish
the body and the margin of the document, we

8d(b;, b;)/ max(len(b;), len(b;)) < 0.1, where d gives
the Levenshtein distance and len gives the length of text.
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Figure 3: A sketch of how we determine right margin.
We apply 1D clustering on the right positions of the
blocks and choose the rightmost cluster with at least a
user-defined number of members. If we choose to have
a minimum of two members, the right margin would be
the cluster with three members.

apply 1D clustering’ on the right positions of
the blocks and extract the rightmost cluster with
minimum members of six per page (to ignore
headers/footers) as the right margin (Figure 3).
This margin information is used in other features
(V3, V6 and V7).

Larger line spacing (V8) A Boolean feature that
is 0 if line spacing is normal and 1 otherwise.
To determine the normal line spacing, we apply
1D clustering on line spacings and pick a cluster
with the largest number of members.

4.2 Pointer Identification

We also implement the pointer identification with
handcrafted features and a machine learning-based
classifier. Since a down transition creates a new
level that a block can point back to, we extract
all pairs of [bj,b;] (b; € C;) with trans; = up,
trans; = down and j < 7. We then extract
features from [b;, ;] and train a binary classi-
fier to predict p (ptr; = b;|bj, b;). In training, we
use ground truth down labels to extract candi-
dates C;. At test time, we aggregate C; from pre-
dicted transition labels and predict the pointer by
pir; = argmaxy cc, p (ptr; = bjlbj, bi).

While our pointer points at a block with down
(b)), it is sometimes important to extract features
from the first block in the paragraph that b; belongs
to, which we will hereafter refer as bj,cqq(;)- Using

bhead(;)» We extract the following features from
[ij bi]:

"We utilized a naive 1D clustering, where it greedily adds
elements from a sorted list to a cluster while the maximum
difference of the elements is within a user-defined threshold.

class PDFFeatureExtractor (BaseFeatureExtractor) :
def __init__ (self, text_boxes):
bboxes = np.array (
[tb.bbox for tb in text_boxes])
page_top = bboxes[:, 3].max(

page_bottom = bboxes[:, 1].min(
self.header_thresh = \

page_top - 0.15 % (page_top - page_bottom)
ngle_input_feature([1])

Aéf header_region(self, tb):
return tb.bbox[3] > self.header_thresh

@pairwise_feature ([ (0, 1), (1, 2)1)
def page_change (self, tbl, tb2):
if tbl is None or tb2 is None:
return True
return tbl.page != tb2.page

@pointer_feature ()
def pointer_left_aligned(
self, head_tb, tbl, tb2, tb3):
return self.left_aligned(tbl)

Figure 4: The Python implmenetation of a feature ex-
tractor

Consecutive numbering Boolean features on
whether a numbering in b; is contiguous to a
numbering in b; and by,cqq(j), respectively.

Indentation Categorical features on whether in-
dentation gets larger, smaller or stays the same
from b; to b; and from bjcqq(;) t0 bit1, respec-
tively.

Left aligned Binary features on whether b;, b; 1
and bycqq(j) are left aligned, respectively.

Transition counts We count numbers of blocks
{br}j<k<i with down and with up, respectively.
We use these two numbers along with their dif-
ference as features. This is based on an intuition
that a closer block with down tends to be more
important.

Pointer features are also customizable, but we used

the same features® for all the document types.
While we call our system a “transition parser”,

we do not employ a stack and instead employ the
graph-based parser-like formulation for the pointer
identification. We selected this strategy because of
the recent success of graph-based parsers (Dozat
and Manning, 2017; Zhang et al., 2019).

5 Implementation and Customization

In this section, we briefly describe the implemen-
tation of our system that allows easy customiza-
tion to different types of VSDs. Our system em-
ploys modular and customizable design and is im-
plemented in Python. A user may implement a
new feature extractor simply by writing a new fea-

$More precisely, the pointer features are implemented
slightly different for different document types, such as num-
bering being modified to Japanese for Contract_,”adf , but they are

intended to have similar functionalities.
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: Siblings
D: Descendant

Figure 5: Evaluation from IE perspective. For each
of ground truth and predicted trees, we extract a rela-
tionship matrix (right) that describes all the pairwise
relationships and calculate F1 scores/accuracy by com-
paring the matrices.

ture extractor class where each feature is imple-
mented as its class function (Figure 4). For ex-
ample, @single_input_feature ([1l]) de-
notes that the subsequent function should be
applied to the second block of each context
(thus corresponding to feature V6). Like-
wise, the features for pointer identification can
be implemented by marking a function with
@pointer_feature (), which takes a candi-
date block b; (tb1l), a target block b; (tb2), the
block next to the target block b;+; (tb3) and
bhead(j) (head_tb) as an input.

A feature extractor object is instantiated for each
document where all feature functions are automati-
cally aggregated to produce the feature vector. A
new feature extractor can inherit from an exist-
ing feature extractor (e.g., feature extractors for
Contract?¥ and Contractfff both inherit from a
base PDF feature extractor), which makes it easy
to reuse implementations.

6 Experiments

6.1 Evaluation Metrics

While we do report transition prediction accuracy,
it is not a true task metric since it is rooted on our
formulation of the task. Looking back at our initial
motivation in Section 1, we introduce two sets of
evaluation metrics.

The first set of metrics is rooted on IE perspec-
tive. For IE, it is important to identify ancestor-
descendant and sibling relationships because it al-
lows, for example, identifying a subject (in an an-
cestral block) and its objects (a decendant block
and its siblings). Thus, we evaluate F1 scores for

identifying pairs of blocks in (1) same paragraph,
(2) sibling, and (3) ancestor-descendant relation-
ships, respectively (Figure 5). Note that we do not
include cousin blocks in the sibling relationship,
because it is not clear whether cousin blocks have
any meaningful information in the context of IE.

We use the second set of metrics to evaluate a
system’s efficacy as a preprocessing tool for more
general NLP pipelines. We evaluate paragraph
boundary identification metrics since paragraph
boundaries can be used to determine appropriate
chunks of text to be fed into the NLP pipelines.
We also report accuracy for removing debris with
omitted.

We used five-folds cross validation for the evalu-
ation.

6.2 Baselines

We compared our system against the following

baselines:

Numbering baseline (Hatsutori et al., 2017) This
baseline detects numberings using a set of regu-
lar expressions and identifies dropping in hierar-
chy when the type of numberings has changed.
Adopting Hatsutori et al. (2017) to our problem
formulation, our implementation is the same as
the feature “numbering transition (T1).”

Visual baseline This baseline relies purely on vi-
sual cues; i.e., indentation and line spacing. For
each pair of consecutive blocks, this baseline out-
puts (1) continuous when indentation does
not change and line spacing is normal (as in fea-
ture V8), (2) consecut ive when indentation
does not change and line spacing is larger than
normal, (3) down when indentation gets larger,
and (4) up when indentation gets smaller. On
up, it points back at the closest block with the
same indentation.

PDFMiner We use this popular open-source
project to detect paragraph boundaries as in Bast
and Korzen (2017). PDFMiner relies purely on
geometric heuristics to detect paragraph breaks.

6.3 Implementation Details

We used Random Forest (Breiman, 2001) as the
transition and pointer classifiers, which is suited
for categorical features that occupy the majority
of our features. We did not tune hyperparameters
of the Random Forest classifier and used default
values of scikit-learn (Pedregosa et al., 2011).

For language model coherence feature S1, we
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Contract 24 Law 24 Contract &/ Contract %if
Relationship Visual Number Ours Visual Number Ours Visual Number Ours Visual Number Ours
o P 0982 0484 0.944 0.891 0.219 0.858 0.993 0.540 0.983 0.446 0.402 0.973
Same S R 0683 0947 0.951 0.681 0.969 0.957 0.708 0917 0.978 0.552  0.985 0.966
" = F 0806 0641 0.947 0.772  0.357 0.905 0.826  0.680 0.980 0.494  0.571 0.969
aragraj
paragrap o P 0980 0.644 0955 0.906 0.328 0.936 0.990 0.595 0.969 0481 0478 0.971
g R 0670 0.966 0.951 0.634 0974 0.951 0.746  0.934 0.976 0.527 0.985 0.956
s F 0782 0.736 0.948 0.731 0452 0.933 0.847 0.687 0.971 0.450 0.617 0.955
e P 0332 0677 0.841 0.430 0.647 0.849 0.397 0.780 0.784 0.106 0.151 0.699
S R 0323 0.765 0.736 0.283 0.504 0.712 0481 0.763 0.723 0.506 0.571 0.691
Siblings = F 0328 0718 0.785 0.341 0.567 0.774 0435 0.772 0.752 0.176  0.238  0.695
o P 0443 0.678 0.791 0.598 0.493 0.793 0482 0.677 0.814 0.347 0.237 0.719
2 R 0427 0.691 0.751 0417 0.379 0.696 0.557 0.603 0.758 0.506 0.536 0.663
s F 0337 0.650 0.748 0410 0.385 0.724 0.435 0.605 0.754 0.292 0.283 0.671
o P 0381 0.184 0.502 0.627 0.132 0.456 0.239 0.190 0.541 0.536 0.125 0.577
S R 0.123 0.879 0.807 0.303 0.881 0.858 0.048 0.888 0.771 0.340 0.580 0.826
Descendants = F 0.186 0304 0.619 0.409 0.229 0.596 0.080 0.313 0.635 0416 0.205 0.679
o P 0295 0242 0.655 0.438 0.173  0.581 0.193  0.269 0.639 0462 0.122  0.737
2 R 0194 0.848 0.798 0.314 0.764 0.837 0.072 0.859 0.735 0.358 0.519 0.834
s F 0203 0340 0.641 0.327 0.230 0.617 0.096 0.367 0.625 0.372  0.195 0.739
Accurac Micro 0.772 0.778 0.914 0.827 0.685 0.908 0.587 0.674 0.828 0.618 0.623 0.940
Y Macro 0.686 0.679 0.889 0.732 0427 0.840 0.571 0.580 0.841 0.623 0.492 0.899
Averace F1 Micro 0.440 0.555 0.784 0.507 0.384 0.758 0.447 0.588 0.789 0.362 0.338 0.781
Verage 'l Macro 0.441  0.576  0.779 0.489 0356 0.758 0.459 0.553 0.783 0372 0365 0.788
“Micro”: Micro-average, “Macro”: Macro-average, “P”: Precision, “R”: Recall, “F”: F1 score
Table 3: Results for evaluation on IE perspective
Contract 24 Law 24 Contract 57 Comractf’adf
Criteria PDFMiner Visual Number Ours PDFMiner Visual Number Ours Visual Number Ours PDFMiner Visual Number Ours
oP 0672 0563 0.914 0.958 0.546 0.536 0911 0.948 0.465 0.783 0.955 0.531 0.603 0.961 0.970
Paraeraph & R 0.822  0.968 0.700 0.948 0.858 0.916 0.637 0.948 0.989 0.637 0.945 0.850 0.663 0.627 0.991
b %jp =F 0739 0712 0.793 0.953 0.667 0.676 0.750 0.948 0.633 0.702 0.950 0.653 0.632 0.759 0.980
oundar
Y o P 0698 0.598 0921 0.958 0.632 0.565 0.866 0.946 0.527 0.840 0.953 0.585 0.645 0.964 0.970
2R 0798 0.964 0.703 0.945 0.874 0.930 0.522 0.943 0.984 0.633 0.944 0.867 0.653 0.624 0.988
S F 0722 0.729 0.772 0.947 0.703  0.692 0.620 0.940 0.673 0.693 0.947 0.661 0.627 0.745 0.976
oP — — — 0.969 — — — 0979 — — 0.865 — — — 1.000
Block SR — — —  0.897 — — — 0755 — — 0914 — — —  0.849
. Z2F — — — 0932 — — — 0852 — — 0.889 — — — 0919
elimination
o P — — — 0948 — — — 0929 — — 0815 — — — 0929
2R — — — 0.906 — — — 0858 — — 0.816 — — —  0.866
S F — — — 0913 — — — 0874 — — 0.800 — — —  0.888

“Micro”: Micro-average, “Macro”: Macro-average, “P”: Precision, “R’:

Recall, “F”: F1 score

Table 4: Results for evaluation on preprocessing perspective

used GPT-2 medium® for English documents and
japanese—gpt2-medium!?) for Japanese doc-
uments.

6.4 Results

Structure and preprocessing evaluations are shown
on Table 3 and Table 4, respectively. Our system
obtained micro-average structure prediction accu-
racy of 0.914 for Contract2¥, 0.908 for Law 2%,
0.828 for Contract?’ and 0.940 for Contractﬂldf,
significantly outperforming the best baselines with
0.778, 0.827, 0.674 and 0.623, respectively. Our
system performed the best with respect to F1 scores
for all but one structure relationships.

*https://huggingface.co/gpt2
Yhttps://huggingface.co/rinna/japanes
e—-gpt2-medium

The difference was even more significant for
paragraph boundary detection. For Contract2¥,
our system obtained a micro-average paragraph
boundary detection F1 score of 0.953 that is signif-
icantly better than PDFMiner with an F1 score of
0.739. PDFMiner performed on par with our visual
baseline and generally performed worse than our
numbering baseline. This shows the importance
of incorporating textual information to preprocess
VSDs.

Micro-average transition label prediction accu-
racies were 0.951 (Contract2%), 0.938 (Law2),
0.955 (Contract 4! ) and 0.923 (Contract 2%).

We investigated the importance of each feature
with greedy forward selection and greedy back-
ward elimination of the features (Table 5). We can
observe that our system makes a balanced use of
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Contract 24 Law 24/

Contract 5! Contract_’,ﬁdf

H

Forward Backward Forward Backward

Forward Backward Forward Backward

All  (0.914)
TL,2 (0.763)
V10,2 (0.796)
T10,3 (0.818)
T7,3  (0.853)
T10,2 (0.813)
V1,23 (0.844)
V4,2 (0.868)
T2,2  (0.886)

All (0.914)
T1,2  (0.855)
T10,3 (0.794)
T10,2 (0.794)
V1, 2-3 (0.796)
S1#,2 (0.808)
T8, 2-3 (0.801)
T2,2 (0.774)
V4,2-3 (0.692)

All  (0.908)
T1,2  (0.685)
V8, 2-3 (0.883)
V10,2 (0.893)
V8, 1-2 (0.885)
V5, 2-3 (0.858)
T7.3  (0.881)
V1,23 (0.898)
V3,2 (0.904)

All  (0.908)
T1,2 (0.854)
V10,2 (0.859)
T2,2 (0.836)
V8, 2-3 (0.800)
V1,2-3(0.747)
V4,2-3(0.716)
V9,2 (0.676)
S1t,2 (0.717)

[< IR e WU, I NSNS

Al (0.828)
V8, 2-3 (0.333)
T10,2 (0.465)
T9,2 (0.716)
T3,2  (0.727)
T6,2  (0.721)
T4,2  (0.723)
T2,2  (0.721)
V4,2 (0.722)

All  (0.828)
T2,2  (0.820)
V9,2 (0.811)
T3,2  (0.805)
V5 (0.785)
T10,2 (0.781)
V8, 2-3 (0.752)
s1t, 2 (0.749)
V9,3 (0.751)

All  (0.940)
T1,2 (0.596)
V12,2 (0.686)
V1,23 (0.821)
T2,2  (0.813)
V8, 2-3 (0.887)
V9,3 (0.906)
T2,1 (0.913)
V4, 2-3 (0.926)

All  (0.940)
T1,2  (0.934)
V9,2 (0.909)
V8, 2-3 (0.882)
S1%,2  (0.865)
T2,2  (0.856)
V4,2  (0.824)
V1, 2-3 (0.787)
V9,2 (0.799)

Numbers in parentheses show micro-average transition label prediction accuracy. The first line shows the results with all features.
T0(i,i— 1) — £(i + 1,4 — 1) variant. ¥: £(i + 1,4) — £(i + 1,4 — 1) variant.

Table 5: Eight most important features chosen by greedy forward selection and backward elimination.

the visual and textual cues. “Indentation (V1)”,
“Larger line spacing (V8)” and “numbering hierar-
chy (T1)”, which partially represent the baselines,
were ranked high in many cases. At the same time,
other features such as “all capital (T10)” and “punc-
tuated (T2)” were also contributing significantly to
the accuracy, which made our system much supe-
rior to the baselines.

The feature importance revealed that the seman-
tic cue (S1) was no more important than other
cues. We suspect that the feature (which compares
whether adjacent or non-adjacent block is more
likely given a context) had fallen back to mere
language model with the context being ignored in
some cases, possibly due to GPT-2 not being fine-
tuned on the legal domain.

We also conducted a qualitative error analysis.
For Contract?%, we found that our system was per-
forming poorly on documents where they had bold
or underlined section titles, followed by paragraphs
without any indentation (predicted cont inuous
instead of down). We believe incorporating ty-
pographic features would improve our system as
implied by the success of the “all capital (T10)”
feature.

For Contract 5! , we found that blocks that are all
capitals or are all underbars were misclassified as
omitted. All capital words and underbars are fre-
quently used to denote headers and footers, but they
were used as section titles and input fields in these
examples. Unlike for Contract pY we attribute this
problem to lack of training data, as those should
have been classified correctly with other features
(such as T4 and T8) if the system had seen similar
patterns in the training data.

Interestingly, we observed that the system tends
to do better in documents that are hierarchically
more complex. This may be because hierarchically
complex documents tend to incorporate more cues

to support humans comprehend the documents.

7 Related Works

As discussed in Section 1, previous works mainly
focused on word segmentation and layout analysis,
whereas fine-grained logical structure analysis of
VSDs is less addressed. Nevertheless, there exist
some studies that focus on similar goals.

Abreu et al. (2019) and Ferrés et al. (2018) have
tried to deal with logical structure analysis by iden-
tifying specific structures in VSDs such as subhead-
ings. However, these studies are too coarse-grained
and cannot handle paragraph-level logical structure,
thus they are unable to satisfy the need we have
discussed in Section 1. FinSBD-3 shared task (Au
et al., 2021) is more fine-grained than those works
and incorporates extraction of list items. However,
its main focus is not on analysis of logical struc-
tures; it has only four static levels for list hierar-
chies and does not consider hierarchies in non-list
paragraphs.

Hatsutori et al. (2017) proposed a rule-based sys-
tem that purely relies on numberings. We compared
our system against it in Section 6 and showed that
our system, which also incorporates textual and
semantic cues, is superior to their method.

Sporleder and Lapata (2004) proposed a para-
graph boundary detection method for plain texts
that purely relies on textual and semantic cues.
While their method is not intended for VSDs, some
of their ideas could be incorporated to our work as
additional features. We leave use of more advanced
semantic cues for a future work.

While the goal is different, our textual features
have some similarity to those used in sentence
boundary detection (Gillick, 2009). Since our goal
is to predict structures as well as boundaries, we
employ richer textual and visual features that they
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do not utilize.

LayoutLM (Xu et al., 2020, 2021) incorporates
multimodal self-supervised learning to utilize deep
learning for form understanding. While it may
alleviate the need for a large training dataset, it is
not trivial to adopt the same method for logical
structure analysis as text blocks would not fit onto
the LayoutLLM’s context. Furthermore, it is easier
to diagnose and to improve our system as it utilizes
a combination of hand-crafted features, while deep
learning systems tend to be completely black box.

8 Conclusions

We proposed a transition parser-like formulation
of the logical structure analysis of VSDs and de-
veloped a feature-based machine learning system
that fuses visual, textual and semantic cues. Our
system significantly outperformed baselines and an
existing open-source software on different types
of VSDs. The experiment revealed that incorpo-
rating both the visual and textual cues is crucial in
successfully conducting logical structure analysis
of VSDs. As a future work, we will incorporate
typographic and more advanced semantic cues.
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A Appendix

A.1 Details of Data Collection and
Annotation

In this section, we provide supplemental informa-
tion regarding the data collection and the annota-
tion discussed in Section 3.

For PDFs, we queried Google search engines and
downloaded the PDF files that the search engines
returned. We used the following queries and the
domains:

Contract?¥ ““non-disclosure” agreement file-
type:pdf” on seven domains from countries
where English is widely spoken (US “.com”,
UK “.co.uk”, Australia “.com.au”, New Zealand
“.co.nz”, Singapore “.com.sg”, Canada “.ca”,
South Africa “.co.za”).

Law2¥ “site:*.gov “order” filetype:pdf” on
“google.com”.

Contract}’ff RN PR FFEARY E filetype:pdf”
on “google.co.jp”.

For the collection of Contract %! , we first down-
load all the documents filed at EDGAR from 1996
to 2020 in a form of daily archives''. We uncom-
pressed each archive and deserialized files using
regular expressions by referencing to the EDGAR
specifications(The U.S. Securities and Exchange
Commission, 2018), which gave us 12,851,835 fil-
ings each of which contains multiple documents.
We then extracted NDA candidates from the doc-
uments by a rule-based filtering. Using meta-data
obtained during the deserialization, we extracted
documents whose file type starts with “EX” (de-
notes that it is an exhibit), its file extension is one of
“pdf”, “.PDF”, “.txt”, “. TXT”, “.html”, “ HTML”,
“htm” or “HTM”, and its content is matched by a
regular expression “(?<![a-zA-Z;"()]_*)([Nn]on[-
_l[Dd]isclosure)l(NON[-_ ]DISCLOSURE)”.

We then randomly selected documents that fulfill
following criteria:

« it is an NDA or an executive order,

« it has embedded texts (for PDFs),

* it is a single column document, and

* a similar document is not yet in the dataset.

The last criterion mainly targets contracts from

same organizations and executive orders from same

authorities. It ensures that we get a wide variety of
documents in our dataset.

The datasets were annotated by one of the au-
thors. We did not employ majority vote to improve

113

"https://www.sec.gov/Archives/edgar/0O
ldloads/

annotation consistency, because labels can be easily
determined by a brief inspection of the document.
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