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Abstract

We propose a probabilistic account of seman-
tic inference and classification formulated in
terms of probabilistic type theory with records,
building on Cooper et al. (2014, 2015). We
suggest probabilistic type theoretic formula-
tions of Naive Bayes Classifiers and Bayesian
Networks. A central element of these con-
structions is a type-theoretic version of a ran-
dom variable. We illustrate this account with
a simple language game combining probabilis-
tic classification of perceptual input with prob-
abilistic (semantic) inference.

1 Introduction

A probabilistic type theory was presented in Cooper
et al. (2014) and Cooper et al. (2015), which ex-
tends Cooper’s Type Theory with Records (TTR,
Cooper, 2012; Cooper and Ginzburg, 2015; Cooper,
in prep). Non-probabilistic TTR (in common with
other type theories) works with judgements of the
form a : T (“a is of type T ”) and assumes that such
judgements are categorical. In probabilistic TTR
(probTTR) we associate probabilities with judge-
ments: p(a : T ) (“the probability that a is of type
T ”).

TTR has been used previously for natural lan-
guage semantics (see, for example, Cooper, 2005
and Cooper, 2012), and to analyze semantic coor-
dination and learning (for example, Larsson and
Cooper, 2009; Cooper and Larsson, 2009). It has
also been applied to the analysis of interaction in
dialogue (for example, Ginzburg, 2012 and Brei-
tholtz, 2020), and in modelling robotic states and
spatial cognition (for example, Dobnik et al., 2013).

Two main considerations motivated recasting
TTR in probabilistic terms. First, a probabilistic
type theory offers a natural framework for captur-
ing the gradience of semantic judgements. This
allows it to serve as the basis for an account of

vagueness in interpretation, as shown by Fernández
and Larsson (2014). Second, such a theory lends
itself to developing a model of semantic learning
that can be straightforwardly integrated into more
general probabilistic explanations of learning and
inference.

Furthermore, we believe this will provide the
foundation for a unified probabilistic account of nat-
ural language semantics that accounts for reasoning
(logical as well as non-logical/enthymematic as in
Breitholtz, 2020), learning (semantic and factual)
and interaction, and that integrates low-level, sub-
symbolic real-valued perceptual information and
high-level symbolic information (Larsson, 2015).

In this paper we suggest a way of incorporat-
ing a probabilistic inference and classification into
ProbTTR. We do this because we believe that
vagueness, learning, inference and classification
are central rather than peripheral notions in seman-
tics, and that probabilistic reasoning is central to
all of them. Also, in contrast to an approach where
e.g. classifiers are implemented outside the seman-
tic theory, we want the reasoning underlying an
agent’s behaviour to be as transparent as possible
to the agent itself (and thereby potentially also to
its interlocutors).

To incorporate a probabilistic inference and clas-
sification into ProbTTR, we will need to introduce
a ProbTTR version of a random variable, not dis-
cussed in Cooper et al. (2015). We will also show
how probabilistic classification of perceptual evi-
dence can be combined with probabilistic reason-
ing.

We first provide a brief overview of TTR and
Probabilistic TTR. Section 4 provides some back-
ground on probabilistic inference and classification.
Section 5 introduces conditional probabilities and
defines a type theoretic version of a random vari-
able. We use these variables to characterise a Naive
Bayes classifier in Section 6. We illustrate Naive
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Bayes classification with an example of semantic
classification. In Section 7 we show how probabilis-
tic perception and reasoning can be combined in
ProbTTR. We then introduce a ProbTTR character-
isation of Bayesian Networks, and briefly discuss
semantic learning. In Section 10 we present our
conclusions and discuss directions for future work.

2 TTR: A brief introduction

We give a brief sketch of those aspects of TTR
which we will use in this paper. For more detailed
accounts see Cooper and Ginzburg (2015); Cooper
(in prep).
s : T represents a judgement that s is of type T .

A second kind of judgement (often written T true in
Martin-Löf type theory) is the judgement that there
is something of type T (T is non-empty).Types
may be either basic or complex (in the sense that
they are structured objects which have types or
other objects introduced in the theory as compo-
nents). One basic type that we will use is Ind,
the type of individuals; another is Real, the type
of real numbers. Among the complex types are
ptypes which are constructed from a predicate and
arguments of appropriate types as specified for the
predicate. Examples are ‘man(a)’, ‘see(a,b)’ where
a, b : Ind. The objects or witnesses of ptypes can
be thought of as situations, states or events in the
world which instantiate the type. Thus s : man(a)
can be glossed as “s is a situation which shows (or
proves) that a is a man”.

Another kind of complex type is record types. In
TTR records are modelled as finite sets of fields.
Each field is an ordered pair, 〈`, o〉, where ` is a
label (drawn from a countably infinite stock of
labels) and o is an object which is a witness of
some type. No two fields of a record can contain
the same label. Importantly, o can itself be a record.
A record type is like a record except that the fields
are of the form 〈`, T 〉 where ` is a label as before
and T is a type. The basic intuition is that a record,
r is a witness for a record type, T , just in case for
each field, 〈`i, Ti〉, in T there is a field, 〈`i, oi〉, in r
where oi : Ti. (Note that this allows for the record
to have additional fields with labels not included
in the fields of the record type.) The types within
fields in record types may depend on objects which
can be found in the record which is being tested as
a witness for the record type. We use a graphical
display to represent both records and record types
where each line represents a field. Example (1)

represents the type of records which can be used to
model situations where a man runs.

(1)

 ref : Ind
cman : man(ref)
crun : run(ref)


A record of this type would be of the form

(2)


ref = a
cman = s
crun = e
. . .


where a : Ind, s : man(a) and e : run(a).

We will introduce further details of TTR as we
need them in subsequent sections.

3 Probabilistic TTR fundamentals

The core of ProbTTR is the notion of probabilis-
tic judgement. There are two kinds of judgement
corresponding to the two kinds of judgement in
non-probabilistic TTR. The first is a judgement
that a situation, s, is of type, T , with some proba-
bility. p(s : T ) is the probability that s is a witness
for T . The second is a judgement that there is some
witness of type T . p(T ) is the probability that there
is some witness for T . This introduces a distinction
that is not normally made explicit in the notation
used in probability theory.

It is useful to have type theoretic objects corre-
sponding to judgements that a situation is of a type.
Following terminology first introduced in Barwise
(1989, Chap. 11), we call these Austinian proposi-
tions. A probabilistic Austinian proposition is an
object (a record) that corresponds to, or encodes,
a probabilistic judgement. Probabilistic Austinian
propositions are records of the type in (3).

(3)

 sit : Sit
sit-type : Type
prob : [0,1]


(where [0, 1] represents the type of real numbers
between 0 and 1). A probabilistic Austinian propo-
sition ϕ of this type corresponds to the judgement
that ϕ.sit is of type ϕ.sit-type with probability
ϕ.prob. That is,

(4) p(ϕ.sit:ϕ.sit-type)= ϕ.prob
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Figure 1: Example Bayesian Network

4 Probabilistic Inference and
Classification

A Bayesian Network is a Directed Acyclic Graph
(DAG)1. The nodes of the DAG are random vari-
ables, each of whose values is the probability of
one of the set of possible states that the variable
denotes. Its directed edges express dependency re-
lations among the variables. When the values of
all the variables are specified, the graph describes
a complete joint probability distribution (JPD) for
its random variables (Pearl, 1990; Halpern, 2003).

Russell and Norvig (1995) give the example
Bayesian Network in Figure 1. The only directly
observable evidence is whether it is cloudy or not,
and the queried variable is whether the grass is wet
or not. We do not know if it is raining, or whether
the sprinkler is on. Both of these factors depend on
whether it is cloudy, and both affect the grass being
wet.

From this Bayesian Network we can compute
the marginal probability of the grass being wet
(W = T).

(5) p(W=T)=
∑

s,r,l p(W=T, S=s,R=r, C=c)

Here, s, r and l can be either T(rue) or F(alse).
The Bayesian network in Figure 1 allows us to

simplify the computation of this JPD by encoding
independence relations between variables, so that:

(6) p(W,S,R,C)=p(W |S,R)p(S|C)p(R|C)p(C)

and hence

(7) p(W=T)=∑
s,r,l p(W=T|S=s,R=r)p(S=s|C=c)

p(R=r|C=c)p(C=c)
1This section briefly explains Bayesian nets and Naive

Bayes classifiers, and introduces examples that will be used
later. Readers familiar with this material can safely skip ahead
to Section 5.

C

E1 E2 ... En

Figure 2: Naive Bayes classifier

A standard Naive Bayes model is a Bayesian net-
work with a single class variable C that influences
a set of evidence variables E1, . . . , En (the evi-
dence), which do not depend on each other. Figure
2 illustrates the relation between evidence variables
and a class variable in a Naive Bayes classifier.

A Naive Bayes classifier computes the marginal
probability of a class, given the evidence:

(8) p(c) =∑
e1,...,en

p(c | e1, . . . , en)p(e1) . . . p(en)

where c is the value of C, ei is the value of Ei
(1 ≤ i ≤ n) and the conditional probability of the
class given the evidence is estimated thus:

(9) p̂(c | e1, . . . , en) =

p(c)p(e1 | c) . . . p(en | c)∑
C=c′ p(c

′)p(e1 | c′) . . . p(en | c′)

Of course, if the assumption regarding the inde-
pendence of the evidence variables does not hold,
this estimation may be incorrect; this is the price to
pay for the relative simplicity of the Naive Bayes
classifier.

5 Type theoretic probabilistic inference
and classification

We now turn to an account of probabilistic classifi-
cation in ProbTTR. We first show how probabilistic
inference can be modelled in ProbTTR. We then
provide a Naive Bayes classifier with a detailed
example. Finally, we generalise this account to
Bayesian Networks.

5.1 Conditional probabilities in ProbTTR
We use p(T1||T2) to represent the estimated2 con-
ditional probability that any situation, s, is of type

2Estimating p(T1||T2) is part of the learning theory.
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T1 given that it is of type T2. This contrasts
with two other probability judgements in probTTR:
p(s1 : T1|s2 : T2), the probability that a particular
situation, s1, is of type T1 given that s2 is of type
T2 , and p(T1|T2), the probability that there is a
situation of type T1 given that there is a situation of
type T2. In addition there are “mixed” probabilities
such as p(T1|s : T2), the probability that there is a
situation of type T1 given that s : T2.

5.2 Random variables in TTR
To do probabilistic inference in ProbTTR, we need
a type theoretic counterpart of a random variable in
probabilistic inference. Assume a single (discrete)
random variable with a range of possible (mutually
exclusive) values. We introduce a variable type
V whose range is a set of value types R(V ) =
{A1, . . . , An} such that the following conditions
hold.

(10) a. Aj v V for 1 ≤ j ≤ n
b. Aj⊥ Ai for all i, j such that 1 ≤ i 6= j ≤
n

c. for any s, p(s : V ) ∈ {0, 1.0} and p(s :
V ) =

∑
T∈R(V ) p(s : T )

(10 a) says that all value types for a variable type V
are subtypes of V . (A type T1 is a subtype of type
T2, T1 v T2, just in case a : T1 implies a : T2 no
matter what we assign to the basic types.) A simple
way of achieving this is to let V = Ai ∨ . . . ∨An.
(T1 ∨ T2 is the join type of T1 and T2. a : T1 ∨ T2
just in case either a : T1 or a : T2). (10 b) says
that all value types for a given variable type V are
mutually exclusive, i.e. there are no objects that
are of two value types for V . (10 c) says that the
probability of a situation s being of a variable type
V is either 0 or 1.0. If it is 0 (i.e., the variable has
no value for the situation), then the probabilities
that s is of each of the value types for V sum to 0;
otherwise these probabilities sum to 1.0.

(10) encodes a conceptual difference between
the probability that something has a property (such
as colour, p(s:Colour)), and the probability that it
has a certain value of a variable (e.g. p(s:Green)).
If the probability distribution over different val-
ues (colours) sums to 1.0, then the probability that
the object in question has a colour is 1.0. The
probability that an object has colour is either 0 or
1.0. We assume that certain ontological/conceptual
type judgements of the form “physical objects have

colour” are categorical (which in a probabilistic
framework means they have probability 0 or 1.0).

We can now formulate the example in Figure
1 in ProbTTR. We assume four binary variable
types Grass, Sprinkler, Raining and Cloudy with
corresponding variable value types as given in (11).

(11)

R(Grass)={GrassWet, GrassDry}
R(Sprinkler)={SprinklerOn, SprinklerOff}
R(Raining)={IsRaining, IsNotRaining}
R(Cloudy)={ItIsCloudy, ItIsNotCloudy}

We specify that Grass=GrassWet∨GrassDry,
and similarly for the other variable types. This
will ensure that GrassWetvGrass, and similar sub-
typing constraints hold. Assuming that the variable
types and variable value types are related as in (11)
also entails that GrassIsWet⊥GrassIsDry, and sim-
ilarly for the other variable value type pairs.

5.3 A ProbTTR Naive Bayes classifier

Corresponding to the evidence, class variables, and
their values, we associate with a ProbTTR Naive
Bayes classifier κ

(12) a. a collection of m evidence variable types
Eκ1 , . . . ,Eκn,

b. associated sets of evidence value types
R(Eκ1), . . . ,R(Eκn),

c. a class variable type Cκ, and

d. an associated set of class value types
R(Cκ).

To classify a situation s using a classifier κ, the
evidence is acquired by observing and classifying
s with respect to the evidence types. This can be
done through another layer of probabilistic classifi-
cation based on yet another set of evidence types.
Type judgements can also be obtained directly from
probabilistic or non-probabilistic classification of
low-level sensory readings supplied by observation.

We define a ProbTTR Bayes classifier κ as a
function from a situation s (of the meet type of
the evidence variable types Eκ1 , . . . ,Eκn) to a set
of probabilistic Austinian propositions that define
a probability distribution over the values of the
class variable type Cκ, given probability distribu-
tions over the values of each evidence variable type
Eκ1 , . . . ,Eκn. Formally, a ProbTTR Naı̈ve Bayes
classifier is a function κ of the type
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(13) (Eκ1 ∧ . . . ∧ Eκn →

Set(

 sit : Sit
sit-type : Type
prob : [0,1]

)

such that if3 s : Eκ1 ∧ . . . ∧ Eκn, then

(14) κ(s)={

sit = s
sit-type = C
prob = pκ(s : C)

 | C ∈ R(Cκ)}

where

(15) pκ(s : C) =∑
E1∈R(Eκ1 )

...
En∈R(Eκn)

pκ(C||E1∧. . .∧En)p(s : E1) . . . p(s : En)

(T1 ∧ T2 is the meet type of T1 and T2. a : T1 ∧ T2
just in case a : T1 and a : T2.)

We are interested in the marginal probability
pκ(s : C) of the situation s being of a class value
type C in light of the evidence concerning s. As in
the case of standard Bayesian Networks, we obtain
the marginal probabilities of a class value typeC by
summing over all combinations of evidence value
types. The classifier gives a probability distribution
over the class value types.

Note that the probabilities associated with the
evidence are probabilities that the situation s (the
situation being classified) is of the various evidence
value types. We do not assume that the evidence
variables are known, only that we have a probabil-
ity distribution over judgements of s being of the
associated evidence value types. We also do not
use the priors of the evidence value types here, as
that would give us the marginal probability of any
situation being of the class value type C, rather
than the situation s being classified. Our ProbTTR
notation allows us to make this distinction clear.

As above in (9), for the Naive Bayes classifier
we estimate the conditional probability of the class
given the evidence using the assumption that the
evidence variable types are independent:

3Recall that that Eκ1 . . .Eκn are variable types and that for
any variable type V and situation s, p(s : V ) ∈ {0, 1.0}.
Therefore, any type judgement regarding a variable type, such
as that involved in the classifier function, can be regarded as
categorical.

(16) p̂κ(C||E1 ∧ . . . ∧ En) =

p(C)p(E1||C) . . . p(En||C)∑
C′∈R(Cκ) p(C

′)p(E1||C ′) . . . p(En||C ′)

6 Semantic Classification: Example

We will now illustrate classification in ProbTTR
using a Naive Bayes classifier for fruits. We can
imagine this classification taking place in the set-
ting of an Apple Recognition Game. In this game a
teacher shows a learning agent fruits (for simplicity,
we assume there are only apples and pears in this
instance of the game). The agent makes a guess,
the teacher provides the correct answer, and the
agent learns from these observations. (This paper
describes only the classification step, leaving the
learning step for future work.)

We will use shorthand for the types correspond-
ing to an object being an apple vs. a pear

(17) a. Apple =
[

x : Ind
capple : apple(x)

]

b. Pear =
[

x : Ind
cpear : pear(x)

]
We take it that the probability of judgements that

something is of type Ind is always 1.0, and that

(18) p(s :
[

x : Ind
c : T(x)

]
) = p(s.c : T (s.x))

so that e.g. if

(19) s =
[

x = a
c = prf

]
,

then

(20) p(s : Apple) = p(prf : apple(a))

.
Furthermore, we will assume that the objects

in the Apple Recognition Game have one of two
shapes (a-shape or p-shape) and one of two colours
(green or red). We define shorthands for the record
types involved.

(21) a. Ashape =
[

x : Ind
c : ashape(x)

]

b. Pshape =
[

x : Ind
c : pshape(x)

]
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c. Green =
[

x : Ind
c : green(x)

]

d. Red =
[

x : Ind
c : red(x)

]
The class variable type is Fruit, with value

types R(Fruit) = {Apple,Pear}. The evidence
variable types are (i) Col(our), with value types
R(Col) = {Green,Red}, and (ii) Shape, with
value types R(Shape) = {Ashape,Pshape}. Fig-
ure 3 shows the evidence and class types of the
Apple Recognition Game in a simple Bayesian Net-
work.

Fruit

Shape Colour

Figure 3: Bayesian Network for the Apple Recognition
Game

For a situation s, the classifier FruitC(s) returns
a set of probabilistic Austinian propositions assert-
ing that s instantiates a certain type of fruit. This
set is a probability distribution over the variable
types of Fruit.

(22) FruitC(s) =

{

sit = s
sit-type = F
prob = pFruitC(s : F )

 | F ∈ R(Fruit)}

We compute the probability of a classification in
the Apple Recognition Game with the equation in
(23), which is a special case of (15).

(23) for each F ∈ R(Fruit), pFruitC(s : F ) =∑
L∈R(Col)
S∈R(Shape)

p(F ||L ∧ S)p(s : L)p(s : S)

Therefore, to determine the probability that a
situation is of the apple type, we sum over the
various evidence type values for apple.

(24) pFruitC(s:Apple) =
p(Apple||Green ∧ Ashape)p(s:Green)p(s:Ashape) +

p(Apple||Green ∧ Pshape)p(s:Green)p(s:Pshape) +

p(Apple||Red ∧ Ashape)p(s:Red)p(s:Ashape) +

p(Apple||Red ∧ Pshape)p(s:Red)p(s:Pshape)

Conditional probabilities for the fruit classifier
are derived from previous judgements of the form
p(F ||C ∧ S). The example values in the matrix in
(25) illustrate a JPD for the Bayesian Network in
Figure 3.

(25)
Apple/Pear Ashape Pshape
Green 0.93/0.07 0.63/0.37
Red 0.56/0.44 0.13/0.87

For each square with Apple/Pear type values, the
conditional probabilities of the fruit being an apple
and of its being a pear sum to 1. These probabilities
are estimated using (16). For example:

(26) p̂(Apple||Green ∧ Ashape) =

p(Apple)p(Green||Apple)p(Ashape||Apple)∑
F ′∈{Apple,Pear} p(F

′)p(Green||F ′)p(Ashape||F ′)

The non-conditional probabilities in (24) are de-
rived from the agents’ take on the particular situa-
tion being classified; let us call it s5.

(27)

T = Ashape Pshape Green Red
p(s5:T ) 0.90 0.10 0.80 0.20

With these numbers in place, we can compute
the probability that the fruit shown in s5is an apple:

(28) pFruitC(s5: Apple) =
0.93 ∗ 0.80 ∗ 0.90 + 0.63 ∗ 0.80 ∗ 0.10 +

0.56 ∗ 0.20 ∗ 0.90 + 0.13 ∗ 0.20 ∗ 0.10 =
0.67 + 0.05 + 0.10 + 0.00 =
0.82

In this section, we have shown how a Naive
Bayes classifier, taking as input [1] judgements
about how a situation s is classified with respect to
a set of evidence value types, [2] conditional prob-
abilities of some situation being of an evidence
value type given that it is of a class value type, can
be cast in ProbTTR.
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7 Perceiving evidence

We might at this point ask, where do the non-
conditional probabilities concerning the situation
s being classified (exemplified in 27) come from?
We suggest regarding these probabilities as result-
ing from probabilistic classification of real-valued
(non-symbolic) visual input, where a classifier as-
signs to each image a probability that the image
shows a situation of the respective type. Such a
classifier can be implemented in a number of dif-
ferent ways, e.g. as a neural network, as long as it
outputs a probability distribution.

Larsson (2015) shows how perceptual classi-
fication can be modelled in TTR, and Larsson
(2020) reformulates and extends this formalisa-
tion to probabilistic classification. Adapting the
notion of a probabilistic TTR classifier to the cur-
rent setting, a probabilistic perceptual (here, visual)
classifier corresponding to an evidence value type
Ei(1 ≤ i ≤ n) provides a mapping from percep-
tual input (of a type V, e.g. a digital image) onto a
probability distribution over evidence value types
in R(Eκi ), encoded as a set of probabilistic Aus-
tinian propositions:

(29) πEκi :SitV→

{

sit : SitV
sit-type : RecTypeR
prob : [0,1]

| R ∈ R(Eκi )}

where SitV is the type of situations where percep-
tion of some object (labelled x) yields visual infor-
mation (labelled c) concerning x:

(30) SitV=
[

x : Ind
c : V

]
and where RecTypeR is the (singleton) type of
record types identical to R, so that e.g.

(31) T :RecTypeGreen iff T :RecType and T =
Green

In the Apple game, an agent would be equipped
with visual classifiers corresponding to Shape and
Col, where e.g.

(32) πCol :
[

x : Ind
c : V

]
→

{

sit : SitV
sit-type : RecTypeGreen

prob : [0,1]

,

sit : SitV
sit-type : RecTypeRed

prob : [0,1]

}
If we take s5 to be e.g.

(33)
[

x = a453
c = Img9876

]
where

(34) a. a453:Ind

b. Img9876:V

and we assume that

(35) πCol(s5)=

{

sit = s5
sit-type = Green
prob = 0.8

,

sit = s5
sit-type = Red
prob = 0.2

}
then (4) yields that

(36) a. p(s5:Green)=0.8

b. p(s5:Red)=0.2

which, incidentally, are the probabilities also shown
in (27). This illustrates how ProbTTR allows com-
bining probabilistic perceptual classification and
probabilistic reasoning.

8 Bayesian networks in TTR

To extend the above to full Bayesian networks, we
need to distinguish evidence variables from unob-
served variables, and incorporate the latter into our
classifier. A TTR Bayes net classifier is associated
with

• Eκ1 , . . . ,Eκn is a collection of evidence vari-
able types,

• R(Eκ1), . . . ,R(Eκn) are sets of evidence value
types,

• Iκ1 , . . . , Iκm is a collection of unobserved vari-
able types,

• R(Iκ1), . . . ,R(Iκm) are sets of unobserved
value types.

Given this, a TTR Bayes net classifier is a function
κ of type

(37) Eκ1 ∧ . . . ∧ Eκn → Set(

 sit : Sit
sit-type : Type
prob : [0,1]

)

such that if s : Eκ1 ∧ . . .∧Eκn and 1 ≤ j ≤ m, then

(38) κ(s) = {
sit = s

sit-type = Ij
prob = pκ(s : Ij)

 | Ij ∈ R(Iκj )}
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pκ(s : Ij) =
∑

I1∈R(Iκ1 )
...

Ij−1∈R(Iκj−1)

Ij+1∈R(Iκj+1)
...

Im∈R(Iκm)
E1∈R(Eκ1 )

...
En∈R(Eκn)

p(Ij ||I1 ∧ . . .∧ Ij−1 ∧ Ij+1 ∧ . . .∧ Im ∧E1 ∧ . . .∧En)p(s : E1) . . . p(s : En)

Figure 4: A TTR Bayes net classifier

where pκ(s : Ij) is as in Figure 4.
The dependencies encoded in a Bayes net will

affect how the conditional probability p(C||I1 ∧
. . . Ij−1 ∧ Ij+1 ∧ Im ∧ E1 ∧ . . . ∧ En) is com-
puted. In the sprinkler example, we have three
unobserved variable types Grass, Sprinkler and
Rain, and one evidence variable type Cloudy. For
S ∈ R(Sprinkler), R ∈ R(Rain), L ∈ R(Cloudy)
and G ∈ R(Grass), the dependencies encoded in
the Bayesian network in Figure 1 entail that

(39) p(G||S ∧R ∧ L) =

p(G||S ∧R)p(S||L)p(R||L)

and hence for G ∈ R(Grass),

(40) pκ(s : G) =∑
S∈R(Sprinkler)
R∈R(Raining)
L∈R(Cloudy)

p(G||S ∧R)p(S||L)p(R||L)p(s : L)

9 Semantic learning

A central question is, of course, how we get the
conditional and prior probabilities used for classi-
fication. This is the role of the semantic learning
component. For a ProbTTR classifier, the learn-
ing component needs to estimate the probabilities
required for computing p(C||E1 ∧ . . . ∧ En).

In Cooper et al. (2015) a solution is sketched,
based on the idea that an agent makes judgements
based on a finite string of probabilistic Austinian
propositions, the judgement history J. When an
agent A encounters a new situation s and wants to
know if it is of type T or not, A uses probabilis-
tic reasoning to determine p(s : T ) on the basis
of A’s previous judgements J. We are currently
working on casting a couple of learning theories in
ProbTTR, and this will be reported in future work.

10 Conclusions

Cooper et al. (2014) and Cooper et al. (2015) pre-
sented a probabilistic formulation of a rich type
theory with records, and used it as the foundation
for a compositional semantics in which a proba-
bilistic judgement that a situation is of a certain
type plays a central role. The basic types and type
judgements at the foundation of the type system
correspond to perceptual judgements concerning
objects and events in the world, rather than to en-
tities in a model, and set theoretic constructions
defined on them. This approach grounds meaning
in observational judgements concerning the likeli-
hood of situations holding in the world.

Here, we have proposed a Bayesian account of
semantic classification and inference formulated in
terms of probabilistic type theory. We have sug-
gested probabilistic type theoretic formulations of
Naive Bayes Classifiers and Bayesian Networks. A
central element of these constructions is a ProbTTR
version of a random variable.

Future work includes applying Bayesian infer-
ence and classification in ProbTTR to a variety of
problems in natural language semantics, including
vagueness (where some initial steps are taken in
Fernández and Larsson (2014)), probabilistic rea-
soning in dialogue, and learning grounded mean-
ings from interaction (along the lines of Larsson
(2013)). We will also implement this integrated
system in order to demonstrate its viability as a
computational model of natural language learning,
reasoning and interaction.
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