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Abstract

Natural language contexts display logical reg-
ularities with respect to substitutions of related
concepts: these are captured in a functional
order-theoretic property called monotonicity.
For a certain class of NLI problems where
the resulting entailment label depends only on
the context monotonicity and the relation be-
tween the substituted concepts, we build on
previous techniques that aim to improve the
performance of NLI models for these prob-
lems, as consistent performance across both
upward and downward monotone contexts still
seems difficult to attain even for state of the
art models. To this end, we reframe the prob-
lem of context monotonicity classification
to make it compatible with transformer-based
pre-trained NLI models and add this task to the
training pipeline. Furthermore, we introduce
a sound and complete simplified monotonicity
logic formalism which describes our treatment
of contexts as abstract units. Using the no-
tions in our formalism, we adapt targeted chal-
lenge sets to investigate whether an interme-
diate context monotonicity classification task
can aid NLI models’ performance on examples
exhibiting monotonicity reasoning.

1 Introduction

NLI has seen much success in terms of perfor-
mance on large benchmark datasets, but there are
still expected systematic reasoning patterns that we
fail to observe in the state of the art NLI models.
We focus in particular on monotonicity reasoning: a
large class of NLI problems that can be described as
a form of substitutional reasoning which displays
logical regularities with respect to substitution of
related concepts. In this setting, a subphrase a of a
premise p(a) is replaced with a phrase b, yielding
a hypothesis p(b).

Usually, the resulting entailment label relies on
exactly two properties: the inclusion relation be-

Context Monotonicity
mon(p) ∈ {↑, ↓}

Concept Relation
rel(a,b) ∈
{=,v,w}

Entailment Label
for (p(a), p(b))

Figure 1: The class of entailment problems under
consideration: premise-hypothesis pairs (p(a), p(b))
whose entailment label depends only on the monotonic-
ity of the context p and the relation between a and b.

tween concepts a and b, and the systematic be-
haviour of the context p with respect to such rela-
tions.

In formal semantics, this is referred to as the
monotonicity of p (where p is either upward or
downward monotone), and this reasoning pattern is
referred to as monotonicity reasoning. Monotonic-
ity reasoning is incredibly systematic, and thus is
a much-probed behaviour in enquiries into the sys-
tematicity and generalization capability of neural
NLI models (Goodwin et al., 2020; Yanaka et al.,
2020, 2019; Richardson et al., 2020; Geiger et al.,
2020).

Determining both the concept relation and the
context monotonicity requires significant linguis-
tic understanding of syntactic structure and scope
of operators, but in terms of reasoning, this is a
very systematic pattern that nevertheless has a his-
tory of causing problems for neural models. It has
been observed (Yanaka et al., 2019; Geiger et al.,
2020) that current state of the art transformer-based
NLI models tend to routinely fail in downward
monotone contexts, such as those arising in the
presence of negation or generalized quantifiers. Re-
cent strategies (Richardson et al., 2020) to address
the shortcomings of NLI models in downward-
monotone contexts have followed the inoculation
method (Liu et al., 2019a): additional training data
which exhibits the target phenomenon (in this case,
downward-monotone reasoning) is used to fine-
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tune existing models. This is done with some
success in (Yanaka et al., 2019; Richardson et al.,
2020) and (Geiger et al., 2020). In contrast, we
wish to investigate a transfer learning strategy that
directly targets the monotonicity question as an
additional training task to see if this can further
improve the monotonicity reasoning performance
of popular transformer-based NLI models.

Our contributions are as follows:

• Emphasizing monotonicity as a property of a
context, we introduce a sound and complete
logical formalism which models the mono-
tonicity reasoning phenomenon but abstracts
away from specific linguistic operators, treat-
ing the context as a single abstract object.

• Extending our treatment of contexts as in-
dividual objects to an experimental setting,
we introduce an improvement in neural NLI
model performance on monotonicity reason-
ing challenge datasets by employing a context
monotonicity classification task in the train-
ing pipieline of NLI models. To the best of
our knowledge, this is the first use of neural
models for this specific task.

• For this purpose, we adapt the HELP dataset
(Yanaka et al., 2019) into a HELP-Contexts
dataset, mimicking the structure of our logical
formalism.

• For the class of NLI problems described as
monotonicity reasoning, we demonstrate the
impact of the proposed transfer strategy: we
show that there can be a strong improvement
on downward monotone contexts, previously
known to be a bottleneck for neural NLI mod-
els. As such, this shows the benefit of di-
rectly targeting intermediate abstractions (in
this case, monotonicity) present in logical for-
malisms that underly the true label.

2 Contexts and Monotonicity

2.1 Contexts
Informally, we treat a natural language context as
a sentence with a “gap”, represented by a variable
symbol.
A context p(x):

I ate some x for breakfast.
A sentence S = p(‘fruit’):

I ate some fruit for breakfast.

Although every sentence can be viewed as a con-
text with an insertion in as many ways as there are
n-grams in the sentence, in this work we shall con-
sider in particular those contexts where the variable
corresponds to a slot in the expression that may be
filled by an entity reference, such as a noun or noun
phrase. In the view of Montague-style formal se-
mantics, these contexts correspond to expressions
of type < e, t >.

2.2 Monotonicity

Given a natural language context p and a pair of
nouns/noun phrases (a,b), we may create a natural
language sentence pair (p(a), p(b)) by substituting
the respective subphrases into the natural language
context. When treated as a premise-hypothesis pair
(as in the experimental NLI task setting), the gold
entailment label has a strong relationship with the
kinds of relations that exist between the insertions
a and b.

In the seminal works on monotonicity (Valencia,
1991; van Benthem, 1988), the relations that are
studied are semantic containment relations, which
are defined analogously to set-theoretic contain-
ment relations (⊆).

a b

≡ couch sofa

@
apples fruit
South African soccer players soccer players
dogs with hats dogs

Table 1: Examples of the semantic containment rela-
tion between concept pairs.

For insertions related by @, the gold entailment
label depends on one other property: the combined
monotonicity profile of all the linguistic operators
within whose scope the insertion is located. If the
final monotonicity marking in the insertion’s po-
sition is “upward”, the gold label is entailment.
However, if it is “downward”, we can deduce en-
tailment of the reversed sentence pair, (p(b), p(a)).
Linguistic operators such as ”not” are downward
monotone, while generalized quantifiers such as
“every” have a more complex monotonicity pro-
file: downward-monotone in the first argument and
upward-monotone in the second argument. The
monotonicity properties of all the operators com-
pose along the syntax tree, culminating in a final
monotonicity marking for the “x” position in the
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context (the monotonicity is independent of the
inserted word). It is this final monotonicity la-

A

Every barks

Not 

barks𝒙

𝒙

𝒇(𝑥):

Every barks𝒙

𝐠(𝑥):

𝒉(𝑥):

↑

↑

↓

Figure 2: Natural language contexts have a property
which dictates logical regularities with respect to con-
cept hierarchies: like numerical functions, they can be
upward monotone or downward monotone.

bel that determines the entailment patterns with
respect to insertion relations. Although there are
formalisms that model this logical behaviour (Icard
et al., 2017), they aim to model the behaviour of
each linguistic linguistic operator and the way they
compose given the parse tree of a sentence.

We consider a simplification of this behaviour by
abstracting away the linguistic specifics of the con-
text, treating it as a single abstract object. As such,
we are not concerned with the exact monotonicity
profiles of all the linguistic operators that culmi-
nate in the monotonicity of the final context. We
describe this behaviour with a simple logic system
extending the L(all) logic of (Moss, 2008a) with
the abstracted behaviour of upward and donward
monotone contexts. We include a proof that this
adaptation is still sound and complete.

2.3 A Context-Abstracted Monotonicity
Logic

We extend the syllogistic syntax of the language
L(all) included in (Moss, 2008b) and (Moss,
2008a). In keeping with that style, we present the
syntax as natural language sentences. However, we
include the corresponding first order formulae as
well. In the subsequent proofs, we mix the styliza-
tions somewhat for readability, but the table below
should serve as a reminder for the exact correspon-
dence.

Definition 2.1. Let the language L consist of the
following:

1. A countable set A of constant symbols
a,b, a1,b1, . . .

2. Exactly two variables, x and y

3. A binary relation symbol v.

4. A set P of relation symbols vp indexed by a
countable set p, p1, . . ..

Only the following are considered sentences in
the language L:

Natural Language Styl-
ization

FOL Stylization

all a are b a v b
if p(a) then p(b)∗ a vp b

∗

p is upward monotone ∀x,y(x v y ↔ x vp y)
p is downward monotone ∀x,y(x v y ↔ y vp x)

Table 2: ∗ For every natural language context p in a set
P of contexts, and where p(a) is the substitution of a
into the natural language context p.

This can in many ways be seen as a simplifi-
cation of previous formalisms (Icard et al., 2017;
Hu and Moss, 2018) based on either extending the
syllogistic logic L(all) (Moss, 2008a) or extend-
ing typed lambda calculus with monotonicity be-
haviour. The key difference of this approach is the
abstraction away from specific linguistic operators
and their monotonicity profiles. On one hand, we
are thus only modeling one level of linguistic com-
positionality, but since the monotonicity profile of
every linguistic operator composes into one mono-
tonicity marker which affects the final entailment
label (for this class of problem), it encompasses all
of the linguistically-specific approaches. This is
useful when the monotonicity of a context can be
determined by an external system such as a neural
classifier or the ccg-2-mono system (Hu and Moss,
2018) . In this case, the monotonicity marking of
the entire context is explicit.

2.4 Semantics
Definition 2.2. A modelM of the language L is
a structure

M = (M, J·K)

consisting of a setM and an interpretation function
J·K where JaK ⊆ M , JvK is the ⊆ relation on the
powerset P(M) and JvpK ⊆ P(M) × P(M) is
any binary relation on P(M). Truth of a formula
with respect to a given model is defined as follows:

2.5 Proof Calculus
Our language will be equipped with the following
deduction rules and axioms:
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M |= a v b ⇐⇒ JaK ⊆ JbK
M |= a vp b ⇐⇒ JaK, JbK ∈ JvpK
M |= ∀x,y(x v y ↔ x vp y) ⇐⇒ ⊆= JvpK
M |= ∀x,y(x v y ↔ y vp x) ⇐⇒ ⊇= JvpK

ALL a ARE b ALL b ARE c
BARBARA

ALL a ARE c

ALL a ARE b p IS UPWARD MONOTONE
↑

IF p(a) THEN p(b)

ALL a ARE b p IS DOWNWARD MONOTONE
↓

IF p(b) THEN p(a)

Axiom1
ALL a ARE a

Axiom2
IF p(a) THEN p(a)

2.6 Soundness and Completeness

Definition 2.3. For a set of L-sentences Γ, we can
define the canonical modelMΓ as follows:

First, let M be the set of atomic constant
symbols A and define a relation ≤ on A where
a ≤ b ⇐⇒ Γ ` a @ b. The interpretation
function J·K is defined as follows:

Define JaK =↓ a = {b ∈ P | b ≤ a}.
Define JvK as the ⊆ relation on P(M).
For each p ∈ P, we have a conditional defini-

tion:
If and only if “p is upward monotone” is the

only sentence about p entailed by Γ, we define
JvpK =⊆.

If and only if “p is downward monotone” is the
only sentence about p entailed by Γ, we define
JvpK =⊆.

In all other cases, JvpK is defined as set equality
in P(M).

Lemma 1. For a set Γ of L-sentences, the canoni-
cal modelMΓ |= Γ.

Proof. The key parts of the proof are a conse-
quence of the fact that ↓ a ⊆↓ b ⇐⇒ a ≤ b,
and ↓ a ⊇↓ b ⇐⇒ b ≤ a which is crucial to
the case that Γ contains both “p is upward mono-
tone” and “p is downward monotone”. The rest is
a routine consequence of the definitions.

Theorem 2. Soundness and Completeness

Proof. We leave the perfunctory soundness proof
as an exercise to the reader. Towards showing com-
pleteness, let Γ be a set of L-sentences and φ an-
other L-sentence. Suppose that for every model
M we have that Γ |= φ. In particular, by lemma
1,MΓ |= φ. All further discussion occurs in this
specific model. The sentence φ may have one of
four forms.

Suppose firstly that φ is “if p(a) then p(b)”.
Thus, (JaK, JbK) ∈ JvpK. Since the interpretation
of vp depends on the description of p entailed by
Γ, there are three cases: Firstly, if Γ ` “p is upward
monotone” only, then it follows that JaK ⊆ JbK.
Since this holds if and only if a ≤ b by a basic
property of down-sets, then we will have Γ ` a v b
and Γ ` “p is upward monotone”, so that Γ ` “if
p(a) then p(b)” by the ↑ deduction rule.

On the other hand, if we had that Γ ` “p is down-
ward monotone” only, we can similarly deduce that
JaK ⊇ JbK, and repeating the same reasoning arrive
at Γ ` “if p(a) then p(b)”. In the last option for
p, we either have that Γ proves neither or both of
the statements “p is upward monotone” and “p is
downward monotone”, and in either case JvpK is
set equality in MΓ. As such, we will be able to
conclude that JaK = JbK. Equal down-sets imply
that a = b, so that trivially Γ ` “if p(a) then p(b)”
Hence, in all of these cases, Γ ` φ.

If φ is the sentence “p is upward monotone” (we
omit the dual, which is similar), then truth in the
canonical model gives us that ⊆= JvpK. In the
MΓ, this happens exactly when Γ ` “p is upward
monotone” . The last option for φ is covered in the
completeness theorem for the basic syllogistic logic
with the “BARBARA” deduction rule and Axiom 1.

In conclusion, in all cases we may deduce that
Γ ` φ.

3 Related Work

The study of monotonicity in natural language has
a strongly developed linguistic and mathematical
theoretical groundwork, dating back to the mono-
tonicity calculus of (Valencia, 1991) and in seman-
tic studies such as (van Benthem, 1988). Its for-
mal treatments have led to the expansion of typed
lambda calculus with an order relation so as to
model this order-theoretic behaviour, resulting in a
corresponding deduction system and completeness
theorem in (Icard et al., 2017). There are varying
presentations and some variation in terminology,
but for the most part monotonicity refers to the
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order-theoretic property of the context as a func-
tion, while the term polarity usually refers to the tag
assigned to the node in a CCG parse tree or a word
in a sentence. The inferential mechanism based on
monotonicity properties of quantifiers, determiners
and contexts in general is sometimes referred to
as natural logic, and the underlying principles of
natural logic applying to set-theoretic concept rela-
tions has led to work on generalized monotonicity
(MacCartney and Manning, 2009). However, the
additional relations such as negation, alternation
and cover are no longer order-theoretic notions.

Symbolic Implementations There are two
flavours of implementations that result in the deduc-
tions allowed by monotonicity reasoning. Firstly,
works such as (Hu et al.; Abzianidze, 2015) rely
on linguistically-informed polarity markings on
the nodes of CCG parse trees. They require ac-
curate parses and expertly hand-crafted linguistic
rules to mark the nodes with polarity tags, as in
(Hu and Moss, 2018). In (Hu et al.), a premise
is tagged for monotonicity and a knowledge base
of hypotheses created by a substitution known to
be truth-preserving is generated. Candidate hy-
potheses are compared with this set, checking for
exact matches. On the other hand, (Abzianidze,
2015) uses the CCG parses to further translate
to a lambda logical form for use in a deduction
method inspired by tableau calculus. These ap-
proaches differ from strategies such as (MacCart-
ney and Manning, 2009), which require an edit
sequence which transforms the premise into the
hypothesis. Atomic edits are tagged with gener-
alized entailment relations which are combined
with a join operator based on relational compo-
sition to determine whether the transformation is
overall truth-preserving, hence yielding a hypoth-
esis entailed by the premise. Later, (Angeli and
Manning, 2014) treated these atomic edits as edges
in a graph and phrased entailment detection as a
graph search problem. Concepts from symbolic ap-
proaches to NLI have also been applied in symbolic
question answering systems (such as in (Bobrow
et al., 2007)), and hybridized with neural systems
(such as in (Kalouli et al., 2020)).

Neural NLI Models and Monotonicity State of
the art NLI models have previously been shown
(Yanaka et al., 2019; Geiger et al., 2020) to per-
form poorly on examples where the context f is
downward monotone, as occurs in the presence of

negation and various generalized quantifiers such
as “every” and “neither”. Benchmark datasets such
as MNLI are somewhat starved of such examples,
as observed by (Yanaka et al., 2019). As a con-
sequence, the models trained on such benchmark
datasets as MNLI not only fail in downward mono-
tone contexts, but systematically fail: they tend to
treat all examples as if the contexts are upward
monotone, predicting the opposite entailment label
with high accuracy (Yanaka et al., 2019; Geiger
et al., 2020). Data augmentation techniques and ad-
ditional fine-tuning with an inoculation (Liu et al.,
2019a) strategy have been attempted in (Yanaka
et al., 2019; Richardson et al., 2020) and (Geiger
et al., 2020). In the latter case, performance on a
challenge test set improved without much perfor-
mance loss on the original benchmark evaluation
set (SNLI), but in (Yanaka et al., 2019) there was a
significant decrease in performance on the MNLI
evaluation set. These studies form the basis on
which we aim to build, and their choice of evalua-
tion datasets and models inspires our own choices.

Previous Work

Evaluation Datasets Geiger 2020
(Neural)

Yanaka 2020
(Neural)

Moss 2019
(Neural)

Hu 2020
(Symbolic)

Large,
Broad Coverage

MNLI Test x

MNLI Dev
(Mismatched)

x

SNLI Test x x

Small,
Targeted
Phenomena

MED x

SICK x∗ x
FraCaS x∗ x
MoNLI Test x
Monotonicity
Fragments

x x

Table 3: Evaluation datasets used in previous work in-
vestigating monotonicity reasoning. Positions marked
∗ indicate that the dataset is included in another used
evaluation dataset.

Neural Transformer-based language models
have been shown to implicitly model syntactic
structure (Hewitt and Manning, 2019). There is
also evidence to suggest that these NLI models
are at least representing the concept relations quite
well and using this information to predict the en-
tailment label, as corroborated by a study based on
interchange interventions in (Geiger et al., 2020).

We hypothesise that such models have the capac-
ity for learning monotonicity features. The extent
to which the representations capture monotonicity
information in the contextual representations of to-
kens in the sequence is not yet well understood,
and this is an investigation we wish to initiate and
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encourage with this work.

4 Experiments

Building on the observations in the above-
mentioned previous papers, we ask the following
questions:

• Can a context monotonicity classification task
in the model training pipeline further improve
performance on targeted evaluation sets which
test monotonicity reasoning?

• Does this mitigate the decrease in perfor-
mance on benchmark NLI datasets?

Our investigation proceeds in three parts: Firstly,
we attempt to fine-tune a SOTA NLI model for a
context monotonicity classification task.

Secondly, we retrain the above model for NLI
and evaluate the performance on several evalua-
tion datasets which specifically target examples of
both upward and downward monotonicity reason-
ing. We examine whether there is any improve-
ment over a previously suggested approach on fine-
tuning on a large, automatically generated dataset
(HELP) from (Yanaka et al., 2019).

Models We start with existing NLI models pre-
trained on benchmark NLI datasets. In particular
(and for best comparison with related studies) we
use RoBERTa (Liu et al., 2019b) pretrained on
MNLI (Williams et al., 2018) and BERT (Devlin
et al., 2019) pretrained on SNLI (Bowman et al.,
2015). These are two benchmark NLI datasets
which contain examples derived from naturally oc-
curring text and crowd-sourced labels, aiming for
scale and broad coverage. We do not deviate from
the architecture, as we are only investigating the
effect of training on different tasks (monotonicity
classification and NLI) and datasets.

4.1 Retraining NLI Models to Classify
Context Monotonicity

Traditionally, symbolic approaches treat mono-
tonicity classification as the task of labeling of each
node in a CCG parse tree with either an upward
or downward polarity marking. Our emphasis of
monotonicity as a property of a context allows for
a different framing of this problem: we consider
monotonicity classification as a binary classifica-
tion task by explicitly indicating (with a variable)
the “slot” in the sentence for which we wish to

know the polarity. Different positions of the vari-
able in a partial sentence may yield a context with
a different monotonicity label; a typical example of
this is sentences featuring generalized quantifiers
such as “every”, which may be monotone up in one
argument but monotone down in another.

4.1.1 Input Representation

The NLI models which we wish to start with are
transformer-based models, in line with the current
state of the art approaches to NLI. Transformer
models represent a sentence as a sequence of to-
kens: we take a naive approach to representing
a context by indicating the variable with an unin-
formative ‘x’ token. We refrain from using the
mask token to indicate the variable, as the under-
lying pretrained transformer language models are
trained to embed the mask token in such a way as to
correspond with high-likelihood insertions in that
position, which we would prefer to avoid.

4.1.2 Dataset

In order to ensure our monotonicity classification
task does not add any unseen data (when com-
pared to only fine-tuning on the HELP dataset) we
adapt the HELP dataset for this task. The HELP
dataset (Yanaka et al., 2019) consists of a set of
(p(a), p(b)) pairs which included labels for the en-
tailment relationship between the full sentences,
the inclusion relation between a and b, and the
monotonicity classification of p. As such, we ex-
tract only the contexts p and the monotonicity label
into dataset which we will call “HELP-contexts”,
which we split into a train, development and test
set in a 50:20:30 ratio. Examples of this dataset are
presented on Table 4. 1

Context Context Monotonicity

There were no x today. downward monotone
There is no time for x. downward monotone
Every x laughed. downward monotone
There is little if any hope for his x . downward monotone
Some x are allergic to wheat. upward monotone
Tom is buying some flowers for x. upward monotone
You can see some wild rabbits in the x. upward monotone

Table 4: Examples from the HELP-contexts dataset,
with respective labels.

1The original HELP dataset also contains a few non-
monotone examples: in the current state of this work, these are
omitted in favor of a focus on the specific confusion in existing
models where downwards monotone contexts are often treated
as upwards monotone ones.
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4.1.3 Results
As presented in Table 5, the task of predicting the
monotonicity of a context can be solved using fine-
tuned transformer models. This suggests a potential
path for inducing a bias for context classification in
downstream tasks such as NLI, which could benefit
from better modeling of context monotonicity.

Model Evaluation Data
HELP-Contexts

Dev
HELP-Contexts

Test
Precision Recall F1-Score Precision Recall F1-Score

bert-base 98.74 99.08 98.91 98.00 95.24 96.54
bert-large 98.23 98.88 98.55 97.51 95.70 96.57
roberta-large-mnli 99.62 98.92 99.26 98.73 96.64 97.64
roberta-large 99.81 99.46 99.27 98.99 96.41 97.62
roberta-base 99.81 99.46 99.63 98.10 95.56 96.76
bert-base-uncased-snli 98.88 98.19 8.53 98.92 97.29 98.07

Table 5: Performance of state of the art models for the
context prediction task. Each model was trained on
HELP context (training set).

4.2 Improving NLI Performance on
Monotonicity Reasoning

A few datasets have been curated to either fine-
tune or evaluate NLI models with monotonicity
reasoning in mind: their uses in previous related
works are detailed in table 3. We use the following
datasets for training and evaluation respectively:

4.2.1 Training Data
We start by once again using the HELP dataset
(Yanaka et al., 2019), which was designed specif-
ically as a balanced additional training set for the
improvement of NLI models with respect to mono-
tonicity reasoning. We create a split of this dataset
which is based on the HELP-contexts dataset by
assigning each example either to the train, devel-
opment or test set depending on which split its as-
sociated context f is in the HELP-contexts dataset.
This is to ensure there is no overlap between the
examples’ contexts accross the three data partitions.
Our approach combined this strategy with an addi-
tional step based on the context monotonicity task
described in section 4.1.

4.2.2 Training Procedure
We rely on the architecture implementations and
pretrained models available with the transformers
library (Wolf et al., 2020). Starting with the pre-
trained models (which we shall henceforth tag as
“bert-base-uncased-snli” and “roberta-large-mnli”),
we first fine-tune these models for the context
monotonicity classification task using the training
partition of the HELP-contexts dataset. We re-use

the classification head of the pretrained models for
this purpose, but only use two output states for the
classification.

4.2.3 Evaluation Data

Evaluation datasets are typically small, challeng-
ing and categorized by certain target semantic phe-
nomena. Following previous work in this area, we
evaluate our approach using the MED dataset intro-
duced in (Yanaka et al., 2020), which is annotated
with monotonicity information and draws from var-
ious expertly-curated diagnostic challenge sets in
NLI such as SICK, FraCaS and the SuperGlue Di-
agnostic set. It features a balanced split between
upward and downward monotone contexts, in con-
trast to the benchmark MNLI dataset. Addition-
ally, we include evaluation on the MoNLI dataset
(Geiger et al., 2020) which also features a labeled
balance of upward and downward monotone exam-
ples. However, the latter dataset’s downward mono-
tone examples are only exemplary of contexts fea-
turing the negation operator “not”, whereas MED
(Yanaka et al., 2020) also includes more complex
downward monotone operators such as generalized
quantifiers and determiners. We refer to these re-
spective papers (Yanaka et al., 2020; Geiger et al.,
2020) for full breakdowns and analyses of these
datasets.

4.2.4 Baselines

Although the main comparison to be made is the im-
provement introduced when including the context-
monotonicity-classification training on top of the
current state-of-the art roberta-large-mnli model
trained on HELP, we include an additional base-
lines: roberta-large-mnli fine-tuned on the mono-
tonicity fragment from the semantic fragments
(Richardson et al., 2020) dataset. The strategy in
this work is the same as with the HELP dataset,
but we include this in the evaluation on the chosen
challenge sets for a more complete comparison.

4.2.5 Results

We present the results on the challenge sets MED
and MoNLI in Table 6, with a break-down by up-
ward and downward monotone contexts. Further-
more, we have re-run each model on the original
benchmark evaluation datasets SNLI and MNLI,
with the results visible in Table 7.
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Model Additional
Training Data

Challenge Datasets
MoNLI Test MED

Upward Monotone Downward Monotone All Upward Monotone Downward Monotone All

bert-base-uncased-snli - 37.74 56.49 46.15 53.58 43.91 49.36
bert-base-uncased-snli HELP 30.89 85.02 55.19 43.4 72.43 60.18

bert-base-uncased-snli HELP + HELP-Contexts 21.6 97.67 55.19 32.56 87.13 66.22

roberta-large-mnli - 95.19 5.32 58.84 82.12 25.76 46.09
roberta-large-mnli Monotonicity Fragments (Easy) 92.68 79.62 86.81 74.54 65.68 70.05
roberta-large-mnli Monotonicity Fragments (All) 50.00 50.00 50.00 35.42 61.80 49.78
roberta-large-mnli HELP 94.72 98.67 96.48 64.47 86.25 77.4

roberta-large-mnli HELP + HELP-Contexts 98.78 97.17 98.06 65.24 85.12 76.44

Table 6: Performance of NLI models on challenge datasets designed to test performance on monotonicity reason-
ing.

Benchmark DatasetsModel Additional
Training Data MNLI (m∗) Dev MNLI (mm∗) Dev SNLI Dev SNLI Test

Acc ∆ Acc ∆ Acc ∆ Acc ∆

bert-base-uncased-snli - 44.96 - 45.52 - 41.54 - 40.78 -
bert-base-uncased-snli HELP 35.13 -9.83 34.37 -11.5 25.93 -15.61 25.92 -14.86
bert-base-uncased-snli HELP + HELP-Contexts 36.91 -8.05 37.36 -8.16 36.54 -5.00 37.20 -3.58

roberta-large-mnli - 94.11 - 93.88 - 93.33 - 93.14 -
roberta-large-mnli HELP 82.66 -11.45 83.38 -10.50 74.77 -18.56 74.39 -18.75
roberta-large-mnli HELP + HELP-Contexts 81.00 -13.11 82.01 -11.87 82.99 -10.34 82.31 -10.83

Table 7: Fine-tuning state of the art NLI models with the aim of improving monotonicity has tended to result in
lower performance on the original benchmark NLI datasets. We compare these performance losses in addition to
tracking performance on the the challenge datasets. ∗ MNLI (m) and (mm) refers to the matched and mismatched
dataset respectively. For MNLI, only the Dev set is publically available.

5 Discussion

Average Performance Firstly, we confirm previ-
ous observations that the starting pretrained trans-
former model roberta-large-mnli (which is consid-
ered a high-performing NLI model, achieving over
93% accuracy on the large MNLI development
set) has a dramatic performance imbalance with
respect to context monotonicity. The fact that per-
formance on downward monotone contexts is as
low as 5% suggests that this model perhaps rou-
tinely assumes upward monotone contexts. It was
noted in (Yanaka et al., 2019) that the MNLI bench-
mark dataset is strongly skewed in favor of upward
monotone examples, which may account for this.

Our approach outperforms or matches the base-
line models in three of the summary accuracy
scores, and is competitive in the fourth. Further-
more, in most cases we observe less performance
loss on the benchmark sets.

Performance by Monotonicity Category As
evident from Table 6, we observe a substantial im-
provement for the bert-base-uncased NLI models
for downward monotone contexts. For the much
larger roberta-large-mnli models, any gains over
the model trained on HELP only are quite small.
A common observation is the notable trade-off be-
tween accuracy on upward and downward mono-

tone contexts; training that improves one of these
over a previous baseline generally seem to decrease
performance of the other. This is especially evident
in the MED dataset, which is larger and representa-
tive of a more diverse set of downward monotone
examples (the MoNLI dataset is limited to the “No”
operator). Sensibly, a decrease in performance in
upward monotone contexts also leads to a decrease
in performance on the original SNLI and MNLI
datasets 7 (which are skewed in favor of upward
monotone examples). However, in most cases (ex-
cept for the roberta-large-mnli model on the MNLI
benchmark) our method results in a smaller perfor-
mance loss.

6 Conclusion and Future Work

Introducing context monotonicity classification
into the training pipeline of NLI models provides
some performance gains on challenge datasets de-
signed to test monotonicity reasoning. We see
contexts as crucial objects of study in future ap-
proaches to natural language inference. The ability
to detect their logical properties (such as mono-
tonicity) opens the door for hybrid neuro-symbolic
NLI models and reasoning systems, especially in
so far as dealing with out of domain insertions that
may confuse out-of-the-box NLI models. The lin-
guistic flexibility that transformer-based language
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models bring is too good to lose; leveraging their
power in situations where only part of our sen-
tence is in a model’s distribution would be helpful
for domain-specific use cases with many out-of-
distribution nouns. Overall, we are interested in
furthering both the analysis and improvement of
emergent modelling of abstract logical features in
neural natural language processing models.
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