Applied Medical Code Mapping with Character-based Deep Learning
Models and Word-based Logic

John T. Langton
Wolters Kluwer Health
230 3rd Avenue
Waltham, MA 02451

Krishna Srihasam
Wolters Kluwer Health
230 3rd Avenue
Waltham, MA 02451

jlangton@wolterskluwer.com ksrihasaml@wolterskluwer.com

Abstract

Logical Observation Identifiers Names and
Codes (LOINC) is a standard set of codes that
enable clinicians to communicate about med-
ical tests. Laboratories depend on LOINC
to identify what tests a doctor orders for a
patient. However, clinicians often use site-
specific, custom codes in their medical records
systems that can include shorthand, spelling
mistakes, and invented acronyms. Software so-
lutions must map from these custom codes to
the LOINC standard to support data interoper-
ability. A key challenge is that LOINC is com-
prised of six elements. Mapping requires not
only extracting those elements, but also com-
bining them according to LOINC logic. We
found that character-based deep learning ex-
cels at extracting LOINC elements while logic-
based methods are more effective for combin-
ing those elements into complete LOINC val-
ues. In this paper, we present an ensemble
of machine learning and logic that is currently
used in several medical facilities to map from
custom codes to standard LOINC values.

1 Introduction

LOINC supports several use cases in the medical
domain. For instance, a doctor can use LOINC
codes to precisely indicate which blood tests they
want a laboratory to perform. A major challenge
is that clinicians often use custom codes when en-
tering data into medical records systems. Custom
codes may be more intuitive for humans to un-
derstand but also suffer from personal nuance and
error. They can contain misspellings, shorthand,
and invented acronyms. Further, custom codes are
site-specific such that the codes in one facility may
differ from those in another. These differences
make it difficult for facilities to communicate. For
instance, if a doctor uses one set of codes to order
tests, and a laboratory uses a different set of codes
to perform tests, then the laboratory may not be

7

able to correctly identify which tests to perform
what tests the doctor is ordering. It is necessary
for software solutions to map from custom codes
to standards like LOINC to eliminate differences
between the codes that facilities use and support
data interoperability.

2 The Task

There are around 40,000 LOINC codes. Each code
contains six elements as shown in Table 1. Our
task is to first extract the six elements from a noisy
input string (e.g. custom code), then combine those
elements to form a standard LOINC output. Equa-
tion (1) shows a real-world example with a cus-
tom hospital code on the left mapped to a stan-
dard LOINC code on the right. The following are
five additional input strings from different hospi-
tals that refer to the exact same LOINC code: {”Ur
Leukocyte Esterase”, "LEUK ESTER”, ”UR Leuko
Est—Clinitek”, ”LEUKOCYTE E URINE”, ” Leuk
Est Test Strip U”}. One can readily see the dif-
ferences that complicate communication and data
interoperability.

5799-2 Leukocyte esterase,
Urine, Ordinal, PT,
Test Strip, Presence

U Leuk Est —

(D

3 Data

The data for our project came from prior mappings
that were performed manually by clinical infor-
maticists. The distribution of LOINC values was
skewed, with ten codes making up 87.7% of the
data. The remaining codes made up a long tail dis-
tribution but not all possible LOINC codes were
present. Table 3 shows the possible unique LOINC
element values along with the coverage of those val-
ues in the available data. If we treat each LOINC

Proceedings of the 1st and 2nd Workshops on Natural Logic Meets Machine Learning (NALOMA), pages 7-11
June 16, 2021. ©2021 Association for Computational Linguistics

What is being measured, observed, or evaluated
specimen type collected for measurement

the scale of measure such as ordinal or nominal
interval of time for measurement or observation
Method of measurement

Property of what is being measured such as mass or volume

Table 1: The six LOINC elements with examples.

Element Example Description
Component Leukocyte Esterase
Specimen Urine

Scale Ordinal

Timing PT

Method Test Strip

Property Presence

Challenge Example
;Irll\c]leglties(:iigi ItltyeIrI;S Lkct for Leukocyte
Misspellings Luykocite

Missing delimiters | UrLeukEst
Missing LOINC el- | Leuk Est (compo-
ements nent only)
e

Table 2: Challenges of mapping custom codes to
LOINC standards.

code as a class, then the data distribution corre-
sponds with severe class imbalance.

Medical facilities rarely have local codes for ev-
ery possible LOINC. Instead, they maintain a sub-
set of codes that are most commonly used in their
practice. As a result, custom codes at a facility of-
ten exclude LOINC elements that are irrelevant to
their practice. For example, a blood laboratory may
exclude specimen because they implicitly know the
value is always ’blood”. Our data, therefore, con-
tained many codes with only a subset of the ele-
ments necessary to specify a full LOINC. Efforts
to map custom codes to LOINC standards must
contend with several challenges as enumerated in
Table 2.

4 Related Research

Both machine learning and logic-based methods
for NLP struggle with noisy text inputs. Vectoriza-
tion methods including Term Frequency — Inverse
Document Frequency (TF-IDF) vectorization (Xu
et al., 2009) and word embeddings (Kim, 2014;
Pennington et al., 2014) are particularly sensitive,
though the use of sub-words (i.e. n-grams of char-
acters) can somewhat ameliorate the issue (Edizel

et al., 2019). Pre-trained transformer models have
recently topped some NLP benchmarks but are also
sensitive to noisy text (Devlin et al., 2018; Wang
et al., 2019; Rajpurkar et al., 2018). Pruthi, Dhin-
gra, and Lipton have shown that misspellings re-
duce BERT performance by significant margins and
propose an independent model for spelling correc-
tion (Pruthi et al., 2019). Luong and Manning have
used hybrids of character and word based recurrent
neural networks (RNN) to address unknown words
in translation (Luong and Manning, 2016). Zhang
and Yang have used a lattice of Long Short Term
Memory (LSTM) and Gated Recurrent Unit (GRU)
models (variants of RNNs) at the character and
word level to improve performance of named entity
extraction (Zhang and Yang, 2018). We evaluated
multiple methods and determined to use a similar
hybrid approach for extracting canonical LOINC
terms from noisy text inputs.

5 Hybrid Solution for LOINC Mapping

We evaluated several methods for addressing noisy
text inputs. Logic-based methods were paired with
fuzzy matching, word frequency analysis, and syn-
onym dictionaries. Only around 3% of incom-
ing strings could be mapped in this manner. We
found that character-based GRUs excelled at ex-
tracting LOINC elements from noisy text inputs
but plateaued around 60% accuracy when com-
bining those elements into a final code. A com-
bination of machine learning and logic-based ap-
proaches achieved much higher accuracy and cover-
age. The resulting hybrid model is shown in Figure
1. A given input string is first processed by six,
character-based GRUs for each of the LOINC el-
ements (though the figure shows only three). The
outputs of these models are then input to logic that
combines them in a final LOINC code. The fol-
lowing sections describe these processing steps and
provide a final evaluation.

Name Unique Possible Values Unique Values in Data Coverage
Component 19,507 4,783 25%
Specimen 344 143 42%
Scale 6 6 100%
Timing 668 380 57%
Method 504 212 42%
Property 116 91 78%
LOINC Codes 46,156 11,190 24%
Table 3: Data coverage of possible LOINC values.
Input String
Component Specimen
Model Model Prediction Conf
* Terml/confl [l * Terml/confl |l * Term|/confl
* Term2/conf2 [l * Term2/conf2 | * Term2/conf2 LEUKOCYTES
: .. ® e e ESTERASE 0.81
NITRITE
ALBUMIN 0.002

Logic-based Inference for LOINC Selection

Figure 1: Hybrid solution combining machine learning
models with logic for LOINC mapping.

5.1 Extracting Terms with Deep Learning

A character-based GRU was trained for each of
the six LOINC elements using the scikit-learn and
Keras packages (Pedregosa et al., 2011). The out-
put classes for each element model were the possi-
ble values for that element. For instance, the model
for the component element was trained to output
19,507 possible classes. A softmax activation func-
tion was used with categorical cross-entropy for
the loss function. This approach enabled the model
to output a probability between O and 1 for each
of the possible class values. Table 4 shows the top
three predictions for the component element given
the input string ”Ur Leukocyte Esterase”. Table 5
shows the top predictions for each LOINC element
for the same input string.

5.2 Combining Terms with Logic

We hypothesize that several factors contribute to
the poor performance of machine learning when
predicting a final code from the LOINC elements:

Table 4: Example component predictions for the input

string Ur Leukocyte Esterase”.

Element | Prediction Conf
Component E?,}J];(RO AS:SETE 875
Specimen | URINE 95
Scale ORD .86
Method NONE .84
Timing NONE .856
Property | PRTHR 763

Table 5: Example predictions for each of the 6 LOINC
elements for the input string ”Ur Leukocyte Esterase”.

Character Embeddings

GRU Layer

Figure 2: Character-based RNN for extracting a
LOINC element.

Class imbalance was severe. While there were
sufficient samples of LOINC elements, there were
insufficient and imbalanced samples for complete
LOINC codes. Machine learning methods are sensi-
tive to class imbalance, whereas logic-based meth-
ods are not.

LOINC logic dictates that some elements can
be combined while others cannot. For instance,
liquid units of measure cannot be combined with
specimen that are not liquids. It is easier to explic-
itly represent these constraints than train models to
adhere to them.

Implicit knowledge about the relative impor-
tance of LOINC elements is only revealed through
conversations with clinical informaticists. For ex-
ample, clinicians often prioritize the component
LOINC element over other elements. A code that
has the correct component but incorrect specimen
may be acceptable for certain use cases. Because
of this implicit prioritization, it is useful to weight
elements based on use case rather than taking a
completely data-driven approach that treats each
element equally in a classifier.

An inference engine was built to combine ele-
ment predictions into a final LOINC code. The
general processing steps are as follows:

1. Start with the highest priority element and gen-
erate all candidate LOINC codes that contain
the predicted value for that element.

. Go to the next highest priority element and
filter out any candidates that do not have the
predicted value for that element.

. Repeat for all elements, then sort the remain-
ing candidates by a priority weighted average
of element confidence values.

For example, the component GRU predicts ~’Leuko-
cyte Esterase” for the example input string ”Ur
Leukocyte Esterase”. If we start with component

10

Bin Accuracy % Coverage %
H R H R
c>.99 90 71 10 4
99< ¢ <0.75 | 85 62 81 63
I5<ec<S5 | 80 37 23
c<.5 56 18 11

Table 6: Accuracy and coverage percentages binned
according to confidence intervals for hybrid and rules-
only models. H columns represent hybrid models and
R columns represent rules-only models.

as the most essential element, we generate a candi-
date list of LOINC codes with the predicted value
for component: {2563 — 5,27297 — 1,5799 —
2,59262 — 6,60026 — 2,77563 — 5}. We then
filter out candidates that do not contain the pre-
dicted specimen (or top n predicted specimen). We
continue filtering for the rest of the elements in
order of priority. Note that it is entirely possible
for an input string to be lacking any value for one
of the six elements.

5.3 Evaluation

Clinical informaticists average 80% accuracy in a
completely manual mapping process. Initial ap-
proaches to automate mapping were purely rules-
based. Approaches using purely machine learning
scored high for element prediction but were less
than 70% accurate at predicting final LOINC codes.
A hybrid approach combining logic and machine
learning provided a dramatic increase in accuracy
and coverage. Table 6 shows a comparison. Ac-
curacy metrics are broken into bins based on con-
fidence intervals where ¢ = confidence. Binning
was performed to simplify decisions for clinicians.
By accepting predictions with a confidence higher
than .5, we can achieve human performance of 80%
accuracy on a combined coverage of the top three
bins or 98% of all incoming custom codes.

5.4 Conclusion

Practical applications of artificial intelligence often
require an ensemble of approaches. Combining the
multiple approaches can overcome their respective
weaknesses in particular use cases. We found that
machine learning approaches were best equipped
to extract LOINC elements from noisy text inputs,
whereas logic-based methods were better at com-
bining those elements into final LOINC codes.

References

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Bora Edizel, Aleksandra Piktus, Piotr Bojanowski,
Rui Ferreira, Edouard Grave, and Fabrizio Silvestri.
2019. Misspelling oblivious word embeddings.
CoRR, abs/1905.09755.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 17461751,
Doha, Qatar. Association for Computational Lin-
guistics.

Minh-Thang Luong and Christopher D. Manning. 2016.
Achieving open vocabulary neural machine trans-

lation with hybrid word-character models. CoRR,
abs/1604.00788.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825-2830.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1532—1543.

Danish Pruthi, Bhuwan Dhingra, and Zachary C. Lip-
ton. 2019. Combating adversarial misspellings with
robust word recognition. CoRR, abs/1905.11268.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for squad. CoRR, abs/1806.03822.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Inter-
national Conference on Learning Representations.

Jinzhong Xu, Jie Liu, and Ming Liu. 2009. Research
on topic relevancy of sentences based on how net
semantic computation. volume 2, pages 195-198.

Yue Zhang and Jie Yang. 2018. Chinese NER using
lattice LSTM. CoRR, abs/1805.02023.

11

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1905.09755
https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.3115/v1/D14-1181
http://arxiv.org/abs/1604.00788
http://arxiv.org/abs/1604.00788
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://arxiv.org/abs/1905.11268
http://arxiv.org/abs/1905.11268
http://arxiv.org/abs/1806.03822
http://arxiv.org/abs/1806.03822
https://doi.org/10.1109/HIS.2009.150
https://doi.org/10.1109/HIS.2009.150
https://doi.org/10.1109/HIS.2009.150
http://arxiv.org/abs/1805.02023
http://arxiv.org/abs/1805.02023

