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1 Overview

The goal of text ranking is to generate an ordered
list of texts retrieved from a corpus in response to
a query for a particular task. Although the most
common formulation of text ranking is search, in-
stances of the task can also be found in many text
processing applications. This tutorial provides an
overview of text ranking with neural network ar-
chitectures known as transformers, of which BERT
(Bidirectional Encoder Representations from Trans-
formers) (Devlin et al., 2019) is the best-known ex-
ample. These models produce high quality results
across many domains, tasks, and settings.

This tutorial, which is based on the preprint (Lin
et al., 2020a) of a forthcoming book to be published
by Morgan and & Claypool under the Synthesis
Lectures on Human Language Technologies series,
provides an overview of existing work as a single
point of entry for practitioners who wish to deploy
transformers for text ranking in real-world appli-
cations and researchers who wish to pursue work
in this area. We cover a wide range of techniques,
grouped into two categories: transformer models
that perform reranking in multi-stage ranking ar-
chitectures and learned dense representations that
perform ranking directly.

2 Multi-Stage Ranking Architectures

The most straightforward application of transform-
ers to text ranking is to convert the task into a text
classification problem, and then sort the texts to
be ranked based on the probability that each item
belongs to the relevant class. The first application
of BERT to text ranking, by Nogueira and Cho
(2019), used BERT in exactly this manner. This rel-
evance classification approach is usually deployed
in a module that reranks candidate texts from an
initial keyword search engine.

One key limitation of BERT is its inability

to handle long input sequences and hence dif-
ficulty in ranking texts beyond a certain length
(e.g., “full-length” documents such as news arti-
cles). This limitation is addressed by a number of
models (Nogueira and Cho, 2019; Akkalyoncu Yil-
maz et al., 2019; Dai and Callan, 2019b; MacA-
vaney et al., 2019; Wu et al., 2020; Li et al., 2020),
and a simple retrieve-then-rerank approach can
be elaborated into a multi-stage architecture with
reranker pipelines (Nogueira et al., 2019a; Mat-
subara et al., 2020; Soldaini and Moschitti, 2020)
that balance effectiveness and efficiency. On top
of multi-stage ranking architectures, researchers
have proposed additional innovations, including
query expansion (Zheng et al., 2020), document
expansion (Nogueira et al., 2019b; Nogueira and
Lin, 2019) and term importance prediction (Dai
and Callan, 2019a, 2020).

A natural question that arises is, “What’s be-
yond BERT?” We describe efforts to build rank-
ing models that are faster (i.e., lower inference la-
tency), that are better (i.e., higher ranking effective-
ness), or that manifest interesting tradeoffs between
effectiveness and efficiency. These include rank-
ing models that leverage BERT variants (Li et al.,
2020), exploit knowledge distillation to train more
compact student models (Gao et al., 2020a), and
other transformer architectures, including ground-
up redesign efforts (Hofstätter et al., 2020b; Mitra
et al., 2020) and adapting pretrained sequence-to-
sequence models (Nogueira et al., 2020; dos Santos
et al., 2020). These discussions set up a natural tran-
sition to ranking based on dense representations,
the other main category of approaches we cover.

3 Learned Dense Representations

Arguably, the single biggest benefit brought about
by modern deep learning techniques to text rank-
ing is the move away from sparse signals, mostly
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limited to exact matches, to dense representations
that are able to capture semantic matches to bet-
ter model relevance. The potential of continuous
dense representations for natural language analysis
was first demonstrated nearly a decade ago with
word embeddings on word analogy tasks (Mikolov
et al., 2013). As soon as researchers tried to build
representations for any larger spans of text: phrases,
sentences, paragraphs, and documents, the same
issues that arise in text ranking come into focus. In
fact, ranking with dense representations predates
BERT by many years (Huang et al., 2013; De Boom
et al., 1999; Mitra et al., 2016; Henderson et al.,
2017; Wu et al., 2018; Zamani et al., 2018).

In the context of transformers, the general setup
of ranking with dense representations involves
learning transformer-based encoders that convert
queries and texts into dense, fixed-size vectors. In
the simplest approach, ranking becomes the prob-
lem of approximate nearest neighbor (ANN) search
based on some simple metric such as cosine sim-
ilarity (Lee et al., 2019; Xiong et al., 2020; Lu
et al., 2020; Reimers and Gurevych, 2019; MacA-
vaney et al., 2020; Gao et al., 2020b; Karpukhin
et al., 2020; Zhan et al., 2020; Qu et al., 2020;
Hofstätter et al., 2020a; Lin et al., 2020b). How-
ever, recognizing that accurate ranking cannot be
captured via simple metrics, researchers have ex-
plored using more complex machinery to compare
dense representations (Humeau et al., 2020; Khat-
tab and Zaharia, 2020). Here, as with multi-stage
ranking architectures, limitations on text length
and effectiveness–efficiency tradeoffs are impor-
tant considerations. It becomes increasingly diffi-
cult to accurately capture the semantics of longer
texts with fixed-sized representations, and increas-
ingly complex comparison architectures increase
latency and may necessitate reranking designs.

4 Looking Ahead

Learned dense representations complement sparse
(bag-of-words) term-based representations central
to keyword search techniques that have domi-
nated the landscape for more than half a cen-
tury. Together, hybrid multi-stage approaches (e.g.,
combining both ranking and reranking) present a
promising future direction.

Despite the excitement in directly ranking with
dense learned representations, we anticipate that
reranking transformers will remain important in the
future. For one, results from dense retrieval can

usually be reranked to achieve even higher effec-
tiveness. At a high level, there are three current ap-
proaches: apply existing transformer models with
minimal modifications, adapt existing transformer
models, perhaps adding additional architectural el-
ements, and redesign transformer-based architec-
tures from scratch. Which approach will prove to
be most effective? The jury’s still out.

Related, in NLP we see that the GPT fam-
ily (Brown et al., 2020) continues to push the fron-
tier of larger models, more compute, and more
data. For text ranking, is the simple answer to build
bigger models? Probably not, since ranking has
important differences with many traditional NLP
tasks. But if not, what are the evolving roles of zero-
shot learning, distant supervision, transfer learning,
domain adaptation, data augmentation, and task-
specific fine-tuning? This remains an interesting
open research question.

While there are aspects of text ranking with
pretrained transformers that are well understood,
many promising directions await further explo-
ration. Looking ahead, we anticipate many more
exciting developments!
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