
Proceedings of NAACL-HLT 2021: Student Research Workshop, pages 76–87
June 6–11, 2021. ©2021 Association for Computational Linguistics

76

Exploration and Discovery of the COVID-19 Literature
through Semantic Visualization

Jingxuan Tu1, Marc Verhagen1, Brent Cochran2, James Pustejovsky1

1Brandeis University 2Tufts University School of Medicine
{jxtu,verhagen,jamesp}@brandeis.edu

brent.cochran@tufts.edu

Abstract

We propose semantic visualization as a lin-
guistic visual analytic method. It can enable
exploration and discovery over large datasets
of complex networks by exploiting the se-
mantics of the relations in them. This in-
volves extracting information, applying param-
eter reduction operations, building hierarchi-
cal data representation and designing visual-
ization. We also present the accompanying
COVID-SEMVIZ, a searchable and interac-
tive visualization system for knowledge explo-
ration of COVID-19 data to demonstrate the
application of our proposed method.1 In the
user studies, users found that semantic visual-
ization-powered COVID-SEMVIZ is helpful
in terms of finding relevant information and
discovering unknown associations.

1 Introduction

COVID-19 is the first global pandemic within a
century. To facilitate the scientific and medical
effort to stop this pandemic, most publishers are
making full text of COVID-19 related manuscripts
freely available.2 However, every year, the num-
ber of published papers is growing at a rate that
makes full use of these resources a daunting task
(Johnson et al., 2018), and it is getting severer espe-
cially during the COVID-19 pandemic when new
information is rapidly emerging.

To facilitate the research over these articles,
many researchers also publish corpora of pre-
processed and curated COVID-19 articles such
as LidCovid (Chen et al., 2020) and CORD-19
(Wang et al., 2020). However, for most users and
researchers, it is still challenging to fully explore
such a corpus due to the complexity of scientific
content it contains (for example, complicated path-
ways in biomedical field (Mercatelli et al., 2020)).

1https://www.semviz.org/
2https://www.who.int/emergencies/dise

ases/novel-coronavirus-2019/global-resea
rch-on-novel-coronavirus-2019-ncov

Finding connections among multiple corpora is
another challenge. Even for corpora that are tar-
geting a specific topic like COVID-19, they may
contain information at different scale for differ-
ent purposes. For example, one dataset provides
parsed text and meta information of articles (Wang
et al., 2020), and another provides detailed protein-
protein interactions extracted from sentences (Gy-
ori et al., 2017). It is difficult to gain full insight by
looking either one of those individually. Although
search engine is supported for some corpora and
portals, this query-based and targeted search is lim-
ited in finding connections and patterns that are
not obvious from individual articles or sentences
(White and Roth, 2009).

To enhance the scientific discovery over complex
corpora, we propose semantic visualization, a set
of text processing and visualization techniques and
accompanying tool COVID-SEMVIZ for enhanced
knowledge exploration of COVID-19 data (Figure
1). Semantic visualization transforms large datasets
of complex networks into rich semantic-aware text
data; processes text data in a hierarchical manner;
and provides visualizations for the indexed data.

The tool COVID-SEMVIZ allows for searchable
and interactive visualization of data through word
clouds, heat maps, graphs, etc. Unlike other work
(See Section 4), we focus on constructing and nav-
igating information from biomedical datasets in a
unified hierarchical structure. For example, the ac-
tivation relations between proteins and COVID-19
can be constructed as the functional type “COVID-
19 activators”. By reducing relations to a sin-
gle functional type, it enables the visualization
of higher order relations (e.g. relations between
COVID-19 activators and other protein inhibitors)
through a simple 2-dimensional heat map. Other
types of visualizations will also appear on the
side such as a word cloud of proteins that activate
COVID-19, and a tabular form of evidencing sen-
tences. All these visualizations compose a habitat

https://www.semviz.org/
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov
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Figure 1: A system overview of COVID-SEMVIZ. The top shows the processing of raw corpora into semantic-
aware data. At the bottom it shows the semantic data along with the original corpora are processed in the hierarchi-
cal manner and fitted in to the data index or transformed into graph data. Finally data is explored via dashboards
and graphs.

of information about COVID-19. Through this, we
aim to provide researchers with a global view of se-
lected relationship subtypes drawn from hundreds
or thousands of papers at a single glance. This en-
ables the ready identification of novel relationships
that would typically be missed by directed keyword
searches.

We summarize our main contributions as the
follows: (1) Proposed semantic visualization, a
linguistic visual analytic method that enhances
the exploration and visualization of scientific text
datasets; (2) Implemented COVID-SEMVIZ, a
working prototype for enhanced knowledge ex-
ploration of COVID-19 datasets; (3) User studies
that evaluate the effectiveness of our system to the
biomedical research community as well as future
improvements.

2 Semantic Visualization

We propose Semantic visualization as a general
linguistic visual analytic method for enabling ex-
ploration and discovery over large text datasets by
exploiting the semantics of the relations in them.
This involves (i) collecting data and applying NLP
to extract named entities, relations and knowledge
graphs from the original text; (ii) indexing the out-
put and creating hierarchical representations for all
relevant entities, relations and text that can be visu-
alized in many different ways such as tag clouds,
heat maps, graphs, etc.; (iii) applying parameter
reduction operations to the extracted relations, cre-
ating functional types that can also be visualized us-
ing the same methods, allowing the visualization of

multiple relations, partial graphs, and exploration
across multiple dimensions.

2.1 Data collection and Extraction
The first step of semantic visualization involves
collecting multiple text datasets of same domain
and applying NLP techniques for information ex-
traction to complement original data.

Recently, there is some important work that fo-
cuses on publishing new corpora and mining useful
text from literature related to COVID-19. In our
implementation, we choose to use the following
three datasets of COVID-19 literature:

COVID-19 Open Research Dataset (CORD-19)
is one of the most comprehensive resource of arti-
cles on COVID-19 (Wang et al., 2020). It contains
metadata and parsed full text of each article col-
lected from various sources.

Harvard INDRA CORD-19 causal assertions
dataset (CKN) 3 contains over 320,000 causal
assertions (CAs) extracted from the full text of
CORD-19 articles by multiple machine reading
systems including REACH (Valenzuela-Escárcega
et al., 2018) and Sparser (Mcdonald, 1992). Ex-
tracted events were assembled by INDRA4 and 24
relation types were defined (Gyori et al., 2017).

Blender lab Covid Knowledge Graphs (Blender
KG) 5 contains knowledge including entities, re-

3https://emmaa.indra.bio
4https://github.com/sorgerlab/indra
5http://blender.cs.illinois.edu/covid1

9/

https://emmaa.indra.bio
https://github.com/sorgerlab/indra
http://blender.cs.illinois.edu/covid19/
http://blender.cs.illinois.edu/covid19/
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CKN DATASET

Evidence: Ocrelizumab[Protein] and Cladribine may increase the
risk of acquiring[Relation] COVID-19[Protein].

Relation: (ocrelizumab, COVID-19, Activation)

BLENDER KG
Evidence: 10074-G5[Chemical] results in decreased

expression[Relation] of MYC[Gene] protein.
Relation: (10074-G5, MYC, Decrease Expression)

Table 1: Example data from CKN and Blender KG.

lations, and events that are extracted from the
CORD-19 dataset through deep learning methods
(Lin et al., 2020).

Table 1 shows data samples from both the IN-
DRA CKN and Blender KG. Each sample con-
tains a biomedical relation and a corresponding
evidencing sentence of that relation. For CORD-
19, we extracted and normalized PMID, Title,
Abstract, Authors, Publish time and
Journal as the metadata for each article.6 For
the CKN dataset, we applied the ScispaCy NER
model (Neumann et al., 2019) trained on the
BIONLP13CG corpus (Pyysalo et al., 2013) on the
original evidencing sentences to extract biomedical
named entities, and constructed knowledge graph
over encoded relations. For the Blender KG, we use
the chemical-gene, chemical-disease, gene-disease
relation extraction results. It has over 1,640,000 re-
lations with evidencing sentences from biomedical
articles.

In general, semantic visualization suggests infor-
mation extraction of different granularity. General
practice includes named entity recognition, rela-
tion extraction, document summarization and graph
completion.

2.2 Parameter Reduction
Relational information usually is denoted as (en-
tity1, entity2, relation-type) tuples. While in-
dividual relations can be visualized through 2-
dimensional display techniques like heat maps,
demonstrating how multiple relations relate to each
other when chained together can be tricky to visu-
alize, requiring cumbersome network visualization
techniques (Mercatelli et al., 2020; Nelson et al.,
2019). In the biomedical data we are processing,
the large number of nodes and connections along
with the heterogeneity of both node types (pro-
teins, chemicals, diseases) and edges (structural,
functional, and causal interactions) complicates the

6The release date of the dateset we use is 2020-7-5 to
match the latest version of Blender KG. It contains over
180,000 scientific papers on COVID-19 and related histor-
ical coronavirus research. Download from www.semantic
scholar.org/cord19/download.

visualization (Agapito et al., 2013; Salazar et al.,
2014; Baryshnikova, 2016).

Particularly for relational information from the
data, we propose semantic parameter reduction, a
method that reduces relations to functional types,
allowing them to be treated as individuals. Func-
tional types can show more capability and flexibil-
ity in terms of encoding information and visual-
ization. The term “parameter reduction” has been
used in computer science to refer to reducing model
parameters (Kim et al., 2017; Glaws et al., 2020),
and our proposed method has the same spirit that
aims to reduce the complexity of multiple relations.

Formally, in our current model M , for any given
relation tuple (x, y, rel), we define the function
of relation type rel as:

JrelKM = [λy ∈ De.[λx ∈ De. 1 iff

(x, y, rel) ∈ M ]]
(1)

where x and y denote the entities appear in this re-
lation tuple; De denotes the set of all entities. Take
the tuple (ocrelizumab, COVID-19, Activation) as
an example, if we pass in COVID-19 as the first
argument to the relation function of activation, we
will be able to get:

JactivationKM = [λx ∈ De. 1 iff

(x, COVID-19, activation) ∈ M ]
(2)

Through the parameter reduction, we can get the
functional type of Equation (2) such that:

JocrelizumabKM ∈ COVID-19 activator (3)

where the functional type COVID-19 activator can
be treated as an individual entity instead of a re-
lation. ocrelizumab is a member of the functional
type in this example. We make the names of func-
tional types both semantically and biologically
meaningful based on the relation types, e.g. ac-
tivation→activator, phosphorylation→kinase, etc.

Instead of visualizing relations in a heat map, the
generated functional types can be visualized using
single dimensional display techniques such as tag
clouds as shown in Figure 2.

Functional types can also be arguments that will
be passed into the relation function, enabling a
chain of relations to be expressed in a conventional
heat map visualization. For example, Equation (4)
is the function of relations between an entity and
the functional type TNF regulator:

JrelKM = [λx ∈ De. 1 iff

(x, TNF regulator, rel) ∈ M ]]
(4)

www.semanticscholar.org/cord19/download
www.semanticscholar.org/cord19/download
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Figure 2: Functional Types as Regulators Tag Cloud
from COVID-SEMVIZ.

Figure 3 illustrates such a dense heat map in the
Blender KG dataset, where a functionally typed
protein is implicated in a disease relation (e.g.,
“those proteins that are down regulators of TNF
which are implicated in obesity”)7.

Figure 3: Regulatory Processes-Disease Interactions
Heat Map from COVID-SEMVIZ.

2.3 Hierarchical Data Structure
Conceptually, semantic visualization suggests pro-
cessing and representing data in a hierarchical man-
ner. The resulting data structure composes of three
different generic layers that enables better utility
of information of various granularity and a global
view of data. Although previous work has explored
different text structure in data mining (Section 4),
they didn’t make a clear mapping from informa-
tion in different layers to various visualization tech-

7We use the following symbols to indicate the “action” in
each relation: “++” = increase, “−−” = decrease, “→” =
affect.

niques. With the semantic parameter reduction,
data can be also be passed and decomposed be-
tween different layers from the hierarchical struc-
ture.

Type-level layer Represents data that are enti-
ties or can be “parameter reduced” as functional
types. In our data, individual arguments such as
COVID-19 and MYC that are involved in the re-
lation (Table 1), can be seen as entities. In addi-
tion, the argument and predicate of a relation can
be reduced as a functional type. The causal as-
sertion (ocrelizumab, COVID-19, Activation) (Ta-
ble 1) can be reduced to the entity COVID-19
Activator. Subsequently, it is implied that
ocrelizumab is also included in the COVID-19
Activators set.

Phrase-level layer Represents data that can be
transformed into “term tuples”. A term tuple can
be a natural relation that is identified in the datasets,
e.g. the relation (10074-G5, MYC, Decrease Ex-
pression) in Table 1. It can also be built from en-
tities and functional types. Term tuple (COVID-
19, Viruses) contains the entity COVID-19 that
appears in the abstract of an article, and entity
Viruses is the journal name where this article
is from.

Figure 4: Hierarchical data representation for the
datasets. Boxes from bottom to top show how data is
represented in different layers. Arrows show how data
is passed and decomposed between layers.

Document-level layer Represents data as docu-
ments that provide context information to the func-
tional entities and term tuples. The document text
is of variable length and it can be a phrase, sentence,
or a whole paragraph. In our implementation, we
index evidencing sentences, article titles and ab-
stracts as documents. A clickable PubMed URL
is also indexed to show the provenance of each
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evidencing sentence and article title.

Figure 4 shows how the data is processed into
the hierarchical data representation. Arrows in-
dicate some extracted relations and entities can
be fitted into the other layers. For example,
Coronavirus from document layer can be used
to form a new term tuple with 2020-03 of
type (keyword in abstract, Publish time). In the
phrase layer, the author name Sin-Yee Fung
and journal name Emerg Microbes Infect
that from the CORD-19 dataset can be processed
into a new relational tuple. In the type layer, the
generated entity RegulateActivity and the
functional type SH2D3A Activator are all as-
sociated with a tuple in the phrase level.8

2.4 Visualization Techniques

We choose and apply multiple visualization tech-
niques and combinations that are compatible with
the hierarchical data representation and allows
users to design and build semantically meaning-
ful interactive visualization strategies. In practice,
the following general visualization techniques are
suggested to be considered: Word Cloud (a group
of words), Heat Map (2D grid matrices for rela-
tional data), Bar Chart (for categorical data), Line
Chart (for series of data), Network (graphs for com-
plex pathways, KGs, etc), Tabular Form (tables for
unstructured text) and Indicator (displays of the
meta information of datasets).

2.5 COVID-SEMVIZ Overview

We release processed data and an implementa-
tion of COVID-SEMVIZ visualization system that
has been applied with semantic visualization tech-
niques. It contains three dashboards that use differ-
ent subsets of the data. The Covid CA dashboard
holds various visualizations designed principally
for CKN dataset and CORD-19, and the Covid
KGs dashboard contains visualizations designed
for Blender KG and CORD-19. Covid Graph dash-
board contains graph-based visualizations to show
the all-connected knowledge graph and protein
pathways. Due to the space limit, we will pro-
vide a detailed overview and technical aspects of
the system in the extra page upon accepted.

8RegulateActivity is the parent relation of
Activation.

3 User Studies and Evaluation

We present user studies from five researchers (T1-
T5) by letting them interacting with COVID-
SEMVIZ in their own research on coronaviruses.9

Finding supporting evidence and articles.
Based on the search of anti-SARS CoV-2 antibod-
ies, T1 found most of the relevant literature and
“allowed me to quickly zero in on the papers and
evidencing sentences I would highlight.” T2 is
interested in HEs activities in SARS CoV-2 and
found “Many of the common and well known play-
ers were revealed in the word cloud”.

Discovering unknown interactions. From the
protein functional type word cloud, T2 also found
“TTN Complex that we had not previously con-
sidered.” T3 searched for AT2R and IL-6 inhibition
and found the “linkage between those terms and
respiratory distress”, but the strategy in the linked
literature “is not a viable therapeutic strategy in
patients of certain conditions”. T4 also found “new
links to follow up on, like glycosylation of the coro-
navirus M protein”.

Raising new questions. Based on the search
result for AT1R, T3 found “AT2R activation may
have a similar effect on IL-6 levels without impact-
ing blood pressure”, and “this is one that I can ex-
plore in my research”. T5 searched for TMPRSS2,
and found TMPRSS4 appears in the same regula-
tor word cloud. through the checking of linked
evidence, T5 found “Both TMPRSS2 and 4 can
cleave the viral fusion protein. This raises the ques-
tion whether the same is true for COVID-19”.

Table 2 shows a summary of what levels of in-
formation from the hierarchical data structure that
users have mentioned in their comments. We notice
that all users find functional types are useful, sug-
gesting the richness of information contained in the
functional types from parameter reduction. Interest-
ingly, only two users interacted with phrase-level
information. This is probably due to the partial
overlapping between phrases and functional types.

We also identify the limitations of our proposed
system. One comes from the frequency-based
method for displaying data, which means terms or
relations that have larger counts are more “salient”
in the visualizations (e.g. larger font in the word
cloud or darker grids in the heat map). This might

9T1 and T5 study tumor virus and cancer cells; T2’s re-
search focuses on the interface of chemistry, medicine and
biology; T3 studies medicine and nutrition and T4 studies
viral proteins.
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User TERM FUNCTIONAL TYPE PHRASE DOCUMENT

T1 3 3

T2 3 3 3

T3 3 3 3 3

T4 3 3 3

T5 3 3 3

Table 2: Summary of different levels of information
that each user has interacted with.

lead to uncommon or less-studied topics unreach-
able unless the accurate term has been searched.
Another limitation is from the integration of mul-
tiple datasets and tools. Artifacts that are in the
original data or generated after processing might
persist in the final visualizations.

4 Related Work

With the emerging of various COVID-19 data re-
sources, many tools have been developed to en-
able the visualization and exploration of the large
amount of articles that are growing everyday.

Hope et al. (2020) developed SciSight10, a
tool that can be used to visualize co-mentions of
biomedical concepts such as genes, proteins and
cells that are found in the articles related to COVID-
19. It focuses more on displaying purely the associ-
ation between entities that are mined from articles.
IBM COVID-19 Navigator11 supports the semantic
search by building queries with the combination of
general terms, UMLS (Unified Medical Language
System) concepts, authors and boolean operators.
It only provides term-level search and no visual-
ization functionality. COVID-SEE12, proposed by
Verspoor et al. (2020), supports the search from
CORD-19 dataset and visualization of article topics
and relational concepts. Most other visualizations,
however, relate to epidemiological statistics and the
effects of Covid-19 on social and health factors13.

Recent work has been mining useful data from
biomedical text. Kordjamshidi et al. (2015) ex-
plored the text structure of biomedical data and
used information from different levels of the struc-
ture as the features to automatically extract bacteria
names. Liu et al. (2015) proposed a text mining sys-
tem for identifying relationships between biomedi-
cal entities. It supports template-based queries for

10https://scisight.apps.allenai.org/jn
lpba/

11https://covid-19-navigator.mybluemix
.net/search

12https://covid-see.com/
13https://www.cdc.gov/coronavirus/2019

-ncov/covid-data/data-visualization.htm

structured search and also provides key sentences
as the provenance of identified relations. Fabregat
et al. (2018) proposed a knowledge base of human
pathways and reactions. It supports visualization
of event hierarchy and pathway networks.

Linguistic visualization research in general is
an emerging field of visual analytics for linguis-
tics (Butt et al., 2020). Previous research in this
field covers thematic text cluster analysis (Gold
et al., 2015), NER-based document content analy-
sis (El-Assady et al., 2017b), multi-party discourse
analysis (El-Assady et al., 2017a) and topic mod-
eling visualization (El-Assady et al., 2018). Butt
et al. (2020) propose a web framework that con-
sists of various linguistic visualization techniques.
However, existing work in this field focuses on
the analysis of corpora of conversational text and
transcripts, and does not include approaches for
analyzing and visualizing semantics of relations.

5 Conclusion

We have proposed semantic visualization, a lin-
guistic visual analytic method of multiple steps
involving data extraction, parameter reduction, hi-
erarchical structure building and visualization de-
sign. It can facilitate the exploration over large and
complex datasets by exploiting the semantics of the
relations in them. We have also presented COVID-
SEMVIZ, a working prototype for the visualiza-
tion and exploration of three COVID-19-related
datasets. Our user studies indicate that COVID-
SEMVIZ is helpful to the biomedical community
and the utility of semantic visualization techniques.
Although we only demonstrated how to apply se-
mantic visualization to COVID-related articles, our
proposed method is generalizable enough to be ap-
plied to other text corpora. Future work includes ad-
dressing current limitations, applying to data from
other domains and incorporating more and useful
information extraction models in the pipeline. It is
our hope that this semantic visualization environ-
ment will enable the discovery of novel inferences
over relations in complex data that otherwise would
go unnoticed.
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A COVID-SEMVIZ Overview

Figure 5 shows the various visualization techniques
that have been applied in COVID-SEMVIZ.

Technical Detail We store the processed hierar-
chical structured data as the JSON format, and
store the generated COVID graph data into neo4j14

database. The back-end text-based search func-
tionality of COVID-SEMVIZ is built using Elastic-
search15, and the back-end graph-based retrieval is
supported by querying neo4j database. The front-
end visualizations are build using Kibana16 and
D3.js17. Kibana supports a collection of visualiza-
tion types. It can be directly applied on the data that
has been indexed for Elasticsearch. Elements built
from Kibana can be arranged as desired and visual-
izations will be updated in real-time when a search
is performed. It can also provide quick insights
into subset of data and enable users to drill down
into details through a few clicks. We think our
hierarchical indexed data can largely benefit from
these features for interaction. D3.js is a JavaScript
library that can be used to build customized inter-
active visualizations. We primarily used it to build
graph-based visualizations.

Navigation The navigation of a dashboard from
COVID-SEMVIZ is through clicking and search-
ing. By clicking the functional type CASP3
Activator in the word cloud named “Regulatory
Processes” (Figure 5), a constraint on the type and
regulators of proteins is added. Correspondingly,
all the other visualizations will be changed. For
example, the “Subject Proteins” word will only con-
tains protein entities that can activate CASP3; the
“Evidence Sentences and PubMed URL” tabular
form will display evidencing sentences that involve
proteins that can activate CASP3 in the relations.
The “Abstract Keyword - Journal Relations” heat
map will form new color shade clusters based on
the new set of articles that mentioned CASP3 or its
regulators. One can also put a query into the search
box to navigate the dashboard. Navigation through
the Covid Graphs is similar. One can use search-
ing and clicking to retrieve relevant sub-graphs and
examine the context information of a node such as
the relations it belongs to and its provenance. In
addition, COVID-SEMVIZ supports abstracting

14https://neo4j.com/
15https://www.elastic.co/elasticsearch/
16https://www.elastic.co/kibana
17https://d3js.org/

graphs by reducing nodes to functional types and
expanding node neighbors that are specifically for
graphs.

The Covid Causal Assertions Visualization
The Covid Causal Assertions (CA) dashboard con-
tains a set of visualizations that are designed to
enable users to discover novel inferences of protein-
protein interactions and associated context infor-
mation. Users can type in a query to search for
relevant CA and context information. We include
several kinds of visualizations: (1) tabular forms
for tracing evidence associated with relations, (2)
indicator panes to display the count of evidences
and of unique articles, (3) word clouds and heat
maps for some metadata, (4) type-level and phrase-
level visualizations that enable users to drill down
into the elements in the relations, (5) dense visual-
izations for functional types, and (6) visualizations
of upstream regulators. We now elaborate on the
last three of these.

Type-level and phrase-level visualizations. Each
CA contains three elements: protein-A, relation
type, and protein-B. We group the 24 relation types
into two “metatypes”: RegulateActivity
and Modification. Furthermore, protein-A
and protein-B involved in RegulateActivity rela-
tions are categorized into Subject and Object.
Protein-A and protein-B involved in Modifica-
tion relations are categorized into Enzyme and
Substrate. We believe this categorization al-
lows our visualizations to conform to biological
convention. On the dashboard, we create words
clouds for these categories. We also create a
subject-object interaction heat map to show regula-
tory relationships, an enzyme-substrate interaction
heat map to show protein modification relation-
ships, and heat maps for some common relation
types such as Activation and Inhibition.
Finally, we include word clouds for entity types
extracted with the NER model.

Visualizations for functional types. We also en-
able the visualization of CAs by applying param-
eter reduction, which is a critical step in semantic
visualization. Given two CA tuples (Protein-A,
Activation, Protein-B) and (Protein-B, Activation,
Protein-C), we create the functional type Protein-C-
Activator with members Protein-A and Protein-B.
We now have a word cloud for all functional types
(see Figure 6) and a separate word cloud for the
subject proteins associated with them. Clicking
one of the functional types restricts the subject pro-

https://neo4j.com/
https://www.elastic.co/elasticsearch/
https://www.elastic.co/kibana
https://d3js.org/
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Figure 5: Visualization techniques from COVID-SEMVIZ. First row: (1) Word cloud of functional types as regu-
latory processes; (2) Heat map represents the relations between article keywords and journal names; (3) Indicator
of total number of articles. Second row: (4) Tabular form of evidencing sentences and provenance URL; (5) Bar
chart shows the number of articles that are published in each month from year 2015 to 2019.

Figure 6: Sample regulators.

teins to just the ones involved in the functional type
selected.

Visualizations for upstream regulators. One ad-
vantage of parameter reduction is that it can repre-
sent higher order relations so that those relations
can be easily visualized with word clouds and heat
maps . In the Covid CA dashboard, We present two
types of second order CAs: one that has the same
relation type as the functional type, and one that
has the opposite relation type. In the dashboard,
we add the “Upstream Regulators” word cloud and
the “Opposite Upstream Regulators” word cloud
to display second order relations. For example,
with a functional type Interferon-Activator the "Up-
stream Regulators" word cloud would include all
proteins X that activate one of the Interferon acti-

vators, thereby generating a novel inference from
X to Interferon. Through navigation over the key-
words in each word cloud, one can easily check
the evidencing sentences of deeper CAs that are
inferred through parameter reduction.

Formally, if we have identified Protein-2
Activator and have the opposite relation
pair Activation and Inhibition in our
dataset, we are interested in a set of X that
X activate Protein-2 Activator or inhibit
Protein-2 Activator. Thereby we are able
to generate novel inference from X to Protein-2.
X is also called the second order containers in our
case. We pair the opposite relation types in our
dataset and leave the others unchanged that can
only have the same second order relations.

The Covid KGs Visualization The Covid KG
dashboard contains a collection of visualizations
that enable the discovery of the relationships
among genes, chemicals and diseases that are re-
lated to COVID-19. This includes chemical-gene,
chemical-disease and gene-disease relations, which
are supported by the evidencing sentences not only
from COVID-19 articles but also from various other
medical articles. Thus, the most challenging part in
the visualization is to simplify and unify the com-
plex relations while displaying the information in
breadth and depth.
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We start by making the connections between
chemical-gene and gene-disease relations using the
same gene entries that appear in both sides. Then
we index the new chemical-gene-disease relations
and visualize them via chemical-gene sub-relation
heat map and gen-disease sub-relation heat map.
These two heat maps are designed to be interactive
with each other to show the full chemical-gene-
disease triplet relations, as well as to be flexible
enough to be controlled by enabling or disabling
arguments of the triplet relations.

Similar to the Covid CA dashboard, we build a
tabular form that displays evidencing sentences and
PubMed URLs, as well as word clouds of chemi-
cals, genes and diseases from the relations. Users
can navigate the dashboard to find relevant con-
text information by filtering on entities from the
word clouds. we also create a word cloud of gene
functional types by grounding chemical-gene rela-
tions. For example, given a chemical-gene tuple
(D014013, Decrease Reaction, CASP3), the func-
tional type -CASP3 Regulator is generated.

The Covid Graph Visualization Covid Graph
dashboard contains two graph-based visualizations:
the all-connected knowledge graph and protein
pathways. Figure 7 shows the knowledge graph
visualization. The main window shows a color-
coded graph of predefined nodes such as proteins,
evidence and PPIs. Nodes are connected by dif-
ferent relationships based on the labels of nodes.
The sidebar on the right displays the information
of clicked node. For example, if an evidence node
is clicked, it shows the content of the evidence and
the article URL that contains this evidencing sen-
tence. An input box on the bottom takes a Cypher
query and generates the corresponding graph. The
knowledge graph enables the visualization of data
of different granularity in one place. It can also
be context-aware by dynamically generating neigh-
bors of a right-clicked node.

Figure 8 shows the interface of protein path-
ways visualization. A variable-length pathway
can be retrieved by specifying the starting and
ending proteins as well as the number of hops.
We also apply parameter reduction operations on
sub-paths of the whole pathway, compressing the
graph without any semantic information loss, and
provides the clear and dense visualization over
complex graph. Specifically, given a sub-path
of length 3 (e.g. SP-[decreseAmount]→ACE2-
[Activates]→COVID-19), it can be compressed

into a binary relation containing a functional
type and an entity (e.g. ACE2 down-regulator-
[Activates]→COVID-19). Each functional type
like “ACE2 downRegulator” represents a set that
can contain any protein down-regulating ACE2.
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Figure 7: Interface of Covid knowledge graph visualization.

Figure 8: Interface of protein pathways visualization.


