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Abstract

In most of neural machine translation distil-
lation or stealing scenarios, the goal is to
preserve the performance of the target model
(teacher). The highest-scoring hypothesis of
the teacher model is commonly used to train a
new model (student). If reference translations
are also available, then better hypotheses (with
respect to the references) can be upsampled
and poor hypotheses either removed or under-
sampled.

This paper explores the importance sampling
method landscape (pruning, hypothesis upsam-
pling and undersampling, deduplication and
their combination) with English to Czech and
English to German MT models using standard
MT evaluation metrics. We show that careful
upsampling and combination with the original
data leads to better performance when com-
pared to training only on the original or syn-
thesized data or their direct combination.

1 Introduction

Model distillation is a process of transferring the
knowledge of one or more, usually larger, model(s)
into another, usually smaller, model (Buciluǎ et al.,
2006). A variation of this is training a new model in
a way that its performance is similar to that of the
already trained one. This is achieved by making use
of either teacher predictions (black-box) or other
products of the workings of the teacher, such as
attention-score or decoder score (grey/glass-box).
Assuming we have access to a parallel corpus, we
focus on sampling the translation hypotheses and
making use not only of the teacher scores but also
of their comparison to the reference.

There are various possible motivations for model
distillation. The student model can be much smaller
than the teacher model, which has the benefit of
faster inference speed (Germann et al., 2020). It
can also be used for model stealing, where an adver-
sary tries to copy the teacher functionality. This is a

practical concern for production-level MT systems
(Wallace et al., 2020).

One of the approaches for knowledge distillation
is to use the teacher model to generate a new dataset
for the student model to train on. Having access
to a trained teacher model, this approach does not
require parallel data and can leverage large mono-
lingual corpora. Reference translations, however,
help with determining which of the teacher’s trans-
lations are good and which are of low quality.

We focus on this approach and propose and com-
pare several importance sampling approaches to
prepare training data for student models that lever-
age access to reference translations. These include
pruning, upsampling and undersampling, dedupli-
cation and their combination. We show that a com-
bination of these methods improves the student
performance over just using the reference or the
best hypothesis (by the decoder score), which is a
common distillation practice.

The experiment code is available open-source.1

1.1 Related work
The general methodology for knowledge distilla-
tion in the form of teacher-student has been pro-
posed by Hinton et al. (2015). For the MT task
specifically, Tan et al. (2019) focus on vastly reduc-
ing the number of parameters, while retaining the
performance of a multi-lingual teacher. Wei et al.
(2019) and Gordon and Duh use distillation during
training to further improve the model performance.

The work of Kim and Rush (2016) shows that
taking either the top sentence with respect to the
teacher decoder score or BLEU (Papineni et al.,
2002) improves the performance. Germann et al.
(2020) presented student models that distil knowl-
edge from a larger teacher model with a negligible
loss in performance. They manipulate the queried
data based on target sentence quality, such as by re-
moving sentences that are not correctly recognized

1github.com/zouharvi/reference-mt-distill

https://github.com/zouharvi/reference-mt-distill
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by a language identifier. For the parallel part of the
data, they extract the best BLEU scoring sentence
out of 8 hypotheses. Freitag et al. (2017) experi-
ment with pruning sentences that are below some
TER (Snover et al., 2006) threshold (lower is bet-
ter). They further document the effect of using an
ensemble of teachers and also reducing the student
model size.

2 Methods

The evaluation of every sampling method follows
the following three-step process. First, the spe-
cific parallel corpus (Section 2.1) is translated by
the teacher model (Section 2.2) for the consid-
ered translation direction. New datasets based on
metrics are then created. The reference is taken
into consideration during the hypothesis selection.
We train new models (students) on these datasets
and measure their performance. There are 12 hy-
potheses (default in Marian NMT) provided by the
teacher using beam search for every source sen-
tence which we consider when composing a new
dataset.
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Figure 1: Scheme of an example of hypothesis sam-
pling with BLEU metric.

Figure 1 shows an example of the sampling pro-
cess with BLEU. Twelve translations are made of
Source and each receives a score against the pro-
vided reference. The new data contain Translation
2 three times, because of its high score. Transla-
tion 12 is omitted because of its low score. This
upsampling is explained in detail in Section 2.3.

2.1 Data

We make use of the Europarl v10 parallel corpus
(Koehn, 2005) for English-Czech (0.6M sentences)
and English-German (1.8M sentences). The sen-
tences are longer (23 target words per sentence on
average) than in the WMT News Task domain (Bar-
rault et al., 2020). To modern standards, this dataset
is relatively small and very domain restricted. This
was chosen deliberately because of computational
limitations.2 Despite that it demonstrates the re-
sults of the different sampling methods with respect
to each other. These results may not be transferable
to large parallel corpora in which training data is
abundant.

For every language pair, we randomly sample
15k sentences as development dataset (used only
for determining the best epoch and early stopping)
and 15k sentences for final test evaluation which
is reported. The WMT News test dataset is not
used for student evaluation, because the students
are trained on a limited amount of data and on
a different domain. Out of the WMT20 News to-
kens, 0.18% are not present in the Europarl training
set. This would introduce a higher variance into
the WMT News test evaluation, which would be
largely dependent on the diversity of the teacher
vocabulary.

2.2 Models

The teachers3 in this experiment are transformer-
based (Vaswani et al., 2017), speed optimized
and were themselves created by knowledge dis-
tillation from state-of-the-art models (Popel et al.,
2020; Junczys-Dowmunt, 2019), as proposed by
Germann et al. (2020). The Czech↔English
model is described by Germann et al. (2020) and
the English→German model by Bogoychev et al.
(2020). Our student models follow the teacher’s
architecture with half the size of the embedding
vector (256 instead of 512) and half of the attention
heads (4 instead of 8). Student models were trained
with an early stopping of 20 evaluations on vali-
dation data with evaluation performed every 10k
sentences. Vocabularies were not shared from the
teacher because they did not affect the results, and
not using them makes fewer assumptions regarding
the level of access to the teacher model. Marian
NMT (Junczys-Dowmunt et al., 2018) is used for
teacher decoding and student training.

2∼4500 GPU hours in total for the whole experiment
3Version student.base at github.com/browsermt/students

https://github.com/browsermt/students
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Table 1 shows the teacher performance measured
on WMT20 News and the test subset of Europarl.
Czech models performed better on the Europarl
than on the News task, while for the German model
the trend was the opposite. This may be caused
by the fact that the models were distilled from a
system that had Europarl as part of the training
data, CzEng 2.0 (Kocmi et al., 2020).

Dataset: CS→EN EN→CS EN→DE

BLEU:
WMT20 News 28.2 35.8 42.7
Europarl 46.1 38.2 32.1

ChrF:
WMT20 News 0.57 0.55 0.66
Europarl 0.69 0.64 0.61

TER:
WMT20 News 0.57 0.71 0.51
Europarl 0.41 0.50 0.61

Table 1: Teacher models BLEU, ChrF and TER scores
on WMT20 News Task dataset and Europarl domain.

2.3 Sampling
Concerning the sampling metrics (always between
the considered hypothesis and the reference), we
make use of BLEU, ChrF (Popović, 2015), TER
(negative), the difference (negative of absolute
value) in subword unit counts by SentencePiece
(Kudo and Richardson, 2018) (SP) and decoder
probability divided by the number of output tokens
(score). TER and SP are negative in Section 3 so
that higher is always better. The motivation for SP
is to capture the difference in length of the hypothe-
ses with respect to the reference. This is a very
naive metric, but we can use it to see the perfor-
mance and the behaviour of all the other metrics.
Although BLEU is a document-level metric, it can
also be used to determine sentence similarity. Stan-
dard machine translation metrics4 are computed
using Sacrebleu (Post, 2018). Different sampling
methods are used even though the goal is to maxi-
mize the BLEU scores of the student models. There
is no reason to assume that sampling only based on
BLEU will lead to the best results.

The number of training sentences differs for ev-
ery method. We define the following notation.

4Sacrebleu metrics version strings:
BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a+v1.4.14
ChrF2+numchars.6+space.false+v1.4.14
TER+tok.tercom-nonorm-punct-noasian-uncased+v1.4.14

• T - top; Tn
metric takes n top translation hypothe-

ses according to metric; equal to S
1,1,...1(n)
metric .

The student model may benefit from seeing e.g.
the second best hypothesis, even though it’s
not the best available. This results in n times
the number of original sentences which are all
different.

• S - skewed; Sk1,k2,...kn
metric takes k1× the top trans-

lation hypotheses according to metric, k2×
the second top translation, etc. As opposed
to Tn

metric, this method tries to preserve the in-
formation of the ordering by setting k1 ≥ k2 ≥
. . . kn. This results in (

∑
ki) times the number

of original sentences but only n times of which
are different sentences.

• Dedup[X] deduplicates sentence pairs of X .
It is used after joining the results of other meth-
ods. This method is useful for emulating the
or operation: Dedup[A+B] then means “all
sentences in either A or B.” The output size is
strictly dependent on their overlap.

• G - greater than; Gm
metric takes all sentence trans-

lations with metric at least m. This results in
sentences that are close to the reference ac-
cording to the metric. The number of output
sentences highly dependent on the threshold
and is discussed in the corresponding section.

Sampling methods can be combined: T 2
bleu +

G−10
score joins the top 2 sentences measured by BLEU

and adds them to the hypotheses with decoder score
of at least −10. Duplicates are intentionally not re-
moved; thus, hypotheses in both sampling methods
are upsampled.

3 Results

Baseline. Table 2 shows results for baseline sam-
pling methods. Original corresponds to training
only to the provided parallel corpus (references).
T 1

score takes only the highest-scoring hypothesis
from the decoder, which is related to the scenario
where the reference is not available, and the de-
coder score is the best measure for hypothesis qual-
ity.5 The sampling method T 12

− takes all available
hypotheses (metric does not matter).

Training on the original data leads to better re-
sults than training on the best scoring hypotheses.

5MT quality estimation tools could be used to approximate
the sentence translation quality or language models to use
sentence fluency in lieu of translation quality.
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Dataset CS→EN EN→CS EN→DE

Original 41.6 31.8 25.1

T 1
score 40.0 31.2 28.5

T 12
− 41.1 31.6 28.4

Table 2: BLEU scores for students trained on baseline
datasets

Training on all hypotheses results in slightly lower
BLEU performance. This may be caused by the
small amount of training data available in which
case taking all hypotheses just improves the vocab-
ulary and language modelling capacity.

Best hypotheses. The results of datasets created
by taking either the best one or the four best hy-
potheses for every source sentence is shown in Ta-
ble 3. In the case of multiple hypotheses having the
same score, the one with the highest decoder score
is chosen. The top one and top four hypotheses
were chosen to show that the optimum is neither
the top one nor the top twelve (all) hypotheses.

On average, the hypothesis overlap6 in sampling
between metrics is 29% for T 1 and 51% for T 4.
This is expected and shows that when more top
hypotheses are taken into the new dataset, the indi-
vidual metrics tend to matter less.

Dataset CS→EN EN→CS EN→DE

T 1
BLEU 42.6 34.4 29.5

T 1
ChrF 43.8 33.9 30.5

T 1
TER 43.0 36.1 28.5

T 1
SP 39.9 29.5 28.2

T 4
BLEU 44.0 33.3 29.3

T 4
ChrF 44.3 34.9 29.6

T 4
TER 44.2 32.0 28.8

T 4
SP 41.8 32.3 27.9

T 4
score 44.2 32.0 28.8

Table 3: BLEU scores for students trained on best-one
and best-four hypotheses datasets

Taking only the top-scoring hypothesis of
reference-based metrics, T 1 showed better results
than the baseline (training on the original data, tak-

6Overlap computed as averagem1 6=m2|T
1
m1 ∩ T 1

m2|/n and
averagem16=m2|T

4
m1 ∩ T 4

m2|/(4n). Original data size is n.

ing the highest decoder scoring hypothesis or tak-
ing all hypotheses). In all cases the T 4 outper-
formed T 1. The main gains were on CS→EN and
EN→CS. Although the results on EN→DE are
only slightly better than the baseline, they are sys-
tematic across all metrics except for SP. The effect
of choosing the metric for the top four hypotheses
seems marginal, even compared to sampling based
on the decoder score. The only exception is the SP
difference, which leads to lower results.

Thresholding. Determining a single threshold
for all datasets leads to a vastly different number
of hypotheses being selected (the use of G65

BLEU re-
sults in 1.3× the original dataset for CS→EN, but
0.6 for EN→DE). Therefore, we establish differ-
ent metric thresholds for every dataset so that the
new datasets are 1× to 1.5× the original size for
consistent results across language pairs.

Some of the source sentences were easier to
translate, and more of their hypotheses were put
into the new dataset. Others had no hypothesis
above a given threshold and were not included in
the new data at all. On average only 25% of orig-
inal sentences were preserved for BLEU, ChrF,
TER and SP. For the decoder score metric, it is
46%. The high loss of source sentences is expected
since most of the hypotheses share large portions of
the target sentence and only differ in a few words.
All of them will then behave similarly with respect
to the metric.

Dataset CS→EN EN→CS EN→DE

GBLEU 39.0 65 30.2 60 27.2 55

GChrF 37.4 0.82 29.2 0.81 26.5 0.80

GTER 37.8−0.2 30.2−0.25 25.2−0.24

GSP 32.5 –1 19.6 –2 23.0 –1

Gscore 39.0 –0.08 32.0 –0.09 27.6 –0.11

Table 4: BLEU scores for students trained on datasets
made of hypotheses above threshold of different met-
rics. Metrics thresholds are in subscript.

The highest performance is achieved using
Gscore which can be explained by how much of the
original sentences were preserved. Gscore shows
that it is possible to achieve a performance com-
parable to T 1

score with less than half of the source
sentences by only taking all hypotheses with a de-
coder score above a threshold. GBLEU gets worse
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results (on average −1.1 BLEU), but with only
27% source sentences preserved.

Better performance could be achieved by lower-
ing the threshold to allow more source sentences
and by intersecting the result with some of the other
sampling methods, thus eliminating only the very
low-quality sentence pairs. This is the approach
(done with 5 hypotheses) done by Freitag et al.
(2017): T 1

score ∩G−0.8
TER.

Upsampling. In the first upsampling case,
S4,3,2,1, the best hypothesis is present four times,
the second-best three times, the third-best two
times and the fourth-best once. The reason for up-
sampling better hypotheses is that we want to force
the optimizer to make bigger steps for sentence
pairs that are of high quality, but at the same time,
we want to present other hypotheses to enlarge
the vocabulary and improve the student’s language
model. The most straightforward approach is to put
multiple copies of the high-quality example into the
dataset. We also experiment with S2,2,1,1, because
the upsampling intensity for every hypothesis rank
is an independent variable as well. Both of these
schemes are relatively conservative so that they can
be compared to each other and to T 4. Results for
upsampling within a single metric are shown in
Table 5.

Dataset CS→EN EN→CS EN→DE

S4,3,2,1
BLEU 45.2 37.1 29.7

S4,3,2,1
ChrF 42.9 36.6 30.1

S4,3,2,1
TER 44.4 36.9 29.8

S4,3,2,1
SP 41.8 30.7 28.5

S4,3,2,1
score 41.4 33.7 27.9

S2,2,1,1
BLEU 44.3 36.5 29.6

S2,2,1,1
ChrF 45.2 36.1 29.8

S2,2,1,1
TER 43.5 33.4 29.6

S2,2,1,1
SP 41.8 33.3 28.9

S2,2,1,1
score 43.5 33.4 29.6

Table 5: BLEU scores for students trained on datasets
made by upsampling top hypotheses within a single
metric using S4,3,2,1 and S2,2,1,1

Both versions of upsampling (S4,3,2,1 and
S2,2,1,1) outperformed all of the previous results.
There seems to be no systematic difference between
S4,3,2,1 and S2,2,1,1. With the exception of SP and

decoder score, the metrics are comparable. A direct
comparison can be made to T 4 = S1,1,1,1 because
both T 4 and the upsampling methods contain all
source sentences and even the same hypotheses.
The only difference is that in the upsampling case,
the better hypothesis is upsampled. In this case
S2,2,1,1 had higher results over T 4 with p < 0.005
by Student’s t-test.7

Combination. For the combination scenarios,
the newly sampled datasets are joined together.
This is shown in Table 6. In the first four cases,
the sampling methods were joined with the original
data. A baseline to this is T 1

score + Original, which
is commonly used for distillation.

Deduplicating the top four hypotheses accord-
ing to BLEU or decoder score and adding them to
the original data did not improve over the baseline.
Combining the upsampling according to the de-
coder score with the original data also did not help.
Replacing the decoder score with BLEU resulted
in a significant improvement. The original data is
upsampled so that the ratio of synthetic to original
data is 4:1 in the first case and 2:1 in the second
one.

For the rest of the cases, the methods are com-
bined without the original data. Baselines are
shown in Table 2. The combination of the top
four hypotheses (T 4

BLEU or T 4
score) with all of the

hypotheses, T 12
− , improved over the baseline, in-

cluding T 12
− , but performed poorly with respect to

the other methods. Taking hypotheses that are in
the top four according to either BLEU or decoder
score leads to the best results in this section. The
top one hypothesis, according to BLEU, is upsam-
pled at least two and at most four times. This seems
to work best for EN→DE where the training data
were three times larger.

Bigger student model. To demonstrate the data
sampling method behaviour on slightly larger mod-
els, the common distillation baseline (T 1

score +
Original) and the best performing proposed sam-
pling method (S4,3,2,1

BLEU +4×Original) were used to
train a student of the same size as the used teacher
(embedding vector dimension 512 and 8 attention
heads). The results are shown in Table 7. They are
systematically higher than for the smaller models,
and the difference between the baseline and the
best sampling is preserved.

7Average was subtracted from the three directions so that
T 4 and S2,2,1,1 could be treated as only two distributions.
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Dataset CS→EN EN→CS EN→DE

T 1
score + Original 44.4 36.4 28.3

Dedup[T 4
BLEU + T 4

score] + Original 43.7 35.3 29.1

S4,3,2,1
score + 2× Original 43.9 36.1 28.3

S4,3,2,1
BLEU + 2× Original 45.5 37.3 28.8

S4,3,2,1
BLEU + 4× Original 45.5 ? 37.4 ? 28.9

T 4
score + T 12

− 41.6 33.2 28.3

T 4
BLEU + T 12

− 42.6 33.9 28.7

T 4
BLEU + T 4

score 43.3 33.2 28.9

Dedup[
∑

T 2
metric] 43.6 34.7 29.1

Dedup[
∑

T 2
metrics] + T 12

− 40.8 32.0 27.2

Dedup[T 4
BLEU + T 4

score] + T 1
BLEU + T 1

score 43.5 34.7 29.2

Dedup[T 4
BLEU + T 4

score] +Dedup[T 1
BLEU + T 1

score] 42.6 34.9 29.6 ?

Dedup[T 4
BLEU + T 4

score] 43.5 35.0 29.3

Table 6: BLEU scores for students trained on datasets made of combination of sampling methods.
∑

metric sums
over all used metrics (BLEU, ChrF, TER, SP, score).

Dataset CS→EN EN→CS EN→DE

T 1
score + Original 44.7 36.2 28.3

Dedup[T 4
BLEU + T 4

score]+ Original 44.3 36.2 28.5

S4,3,2,1
BLEU + 2× Original 46.9 38.5 28.8

S4,3,2,1
BLEU + 4× Original 47.4 ? 38.9 ? 28.9

Table 7: BLEU scores for students trained on datasets made of combination of top hypothesis and original data.
Trained with parameters equal to the teacher’s: embedding vector dimension 512 and 8 attention heads.

4 Summary
Although widely used, taking only the highest-
scoring sentence (with respect to the decoder score
or any reference-based metrics, such as BLEU)
does not lead to the best results. In the context of
the proposed experiments, these are achieved by
a combination of top hypotheses and the original
data, such as S4,3,2,1

BLEU +4×Original (upsampling ac-
cording to BLEU and joining with the original data
duplicated four times). Here, an improvement of an
average +2 BLEU points against T 1

score + Original
was achieved.

The choice of the sampling metric does not sig-
nificantly influence the results, especially in cases
where more than the top one hypothesis is sampled.
Because of this, in most scenarios the decoder score
can be used instead, reducing the need for transla-
tion references.

Future work. We worked with only two upsam-
pling schemes: S4,3,2,1 and S2,2,1,1. However, the
two vectors are arbitrary and more of the vast vec-
tor space should be explored, especially with more
than the top four hypotheses considered or more
skewed towards the best hypothesis. More sophis-
ticated methods based on the value of the metric
instead of just the ordering could also be tried out.

The effects of large models (both teacher and
student) and data access should be explored to ver-
ify the transferability of the results of the current
setup. Specifically, the teacher model should not
be a distilled model itself. The robustness of the
training should also be established.

Even though this paper focused solely on MT,
the importance sampling methods could also be
applied and verified on other NLP tasks, possibly
even on more general machine learning problems.
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Zdeněk Žabokrtskỳ. 2020. Transforming machine
translation: a deep learning system reaches news
translation quality comparable to human profession-
als. Nature communications, 11(1):1–15.
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