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Abstract

Many state-of-the-art (SOTA) language mod-
els have achieved high accuracy on several
multi-hop reasoning problems.  However,
these approaches tend to not be interpretable
because they do not make the intermediate
reasoning steps explicit. Moreover, models
trained on simpler tasks tend to fail when di-
rectly tested on more complex problems. We
propose the Explainable multi-hop Verbal Rea-
soner (EVR) to solve these limitations by (a)
decomposing multi-hop reasoning problems
into several simple ones, and (b) using natu-
ral language to guide the intermediate reason-
ing hops. We implement EVR by extending
the classic reasoning paradigm General Prob-
lem Solver (GPS) with a SOTA generative lan-
guage model to generate subgoals and perform
inference in natural language at each reason-
ing step. Evaluation of EVR on Clark et al.
(2020)’s synthetic question answering (QA)
dataset shows that EVR achieves SOTA per-
formance while being able to generate all rea-
soning steps in natural language. Furthermore,
EVR generalizes better than other strong meth-
ods when trained on simpler tasks or less train-
ing data (up to 35.7% and 7.7% absolute im-
provement respectively).'

1 Introduction

Large pretrained language models such as BERT
(Devlin et al., 2019) and RoBERTa (Liu et al.,
2019) have been successfully used in multi-hop
reasoning problems (Banerjee et al., 2020; Asai
et al., 2019; Yadav et al., 2019). Usually, these pre-
trained language models solve multi-hop reasoning
problems in a discriminative end-to-end manner:
these models take the question and all the relevant
evidence as the input, and produce the final answer
to the question. This raises two problems. First,
this direction lacks interpretability, i.e., it is hard to

'The code is available at: https://github.

com/clulab/releases/tree/master/
naacl202l-evr

(Input Facts:) Alan is blue. Alan is rough. Alan is
young. Bob is big. Bob is round. Charlie is big. Charlie is
blue. Charlie is green. Dave is green. Dave is rough.
(Input Rules:) Big people are rough. If someone is
young and round then they are kind. If someone is round
and big then they are blue. All rough people are green.
Q1: Bob is green. True/false? [Answer: T]

Q2: Bob is kind. True/false? [Answer: F]

Figure 1: An example taken from (Clark et al., 2020).
The context includes two types of statements: facts
and rules. Multiple facts and rules are usually needed
to answer the questions. For example, to prove “Bob
is green,” the model needs to construct the reasoning
chain “All rough people are green <— Big people are
rough < Bob is big”.

know which individual reasoning steps are taken in
each iteration and why. Second, the trained models
usually suffer from the compositionality generaliza-
tion problem, meaning that they tend to fail when
the number of reasoning steps are much larger in
the evaluation set than in the training set (Hupkes
et al., 2020; Hahn, 2020; Clark et al., 2020).
Newell (1994) categorized cognitive processes
based on their time scales: unconscious activities
take around 50 ms, whereas conscious actions can
vary from 100 ms to hours. Importantly, Newell
(1994) argued that conscious actions are sequences
of simple conscious/unconscious actions. Extrapo-
lating from cognitive science to natural language
processing (NLP), in this paper we ask the question:
can we design an interpretable multi-hop reasoning
system that sequentially applies neural networks
trained on simpler tasks? Further, motivated by the
finding from cognitive science that people might
use internal monologues to guide their reasoning,
we want to explore whether it is possible to use
natural language to guide this sequential process.
In this paper, we propose a solution for these im-
portant questions. We provide a neural implementa-
tion for a classic planning/reasoning paradigm that
is designed to mimic the human reasoning process:
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the General Problem Solver (GPS) (Newell et al.,
1959). We augment GPS with a SOTA sequence-to-
sequence (Seq2Seq) model and apply this model re-
cursively to achieve high interpretability and better
generalization of compositionality for a synthetic
QA task (Clark et al., 2020).

The contributions of our paper are the following:

(1) We extend (Clark et al., 2020)’s dataset with
natural language intermediate goals/statements nec-
essary to answer each question.

(2) We propose a neural GPS to address
this QA task while generating all intermediate
goals/statements in natural language.

(3) Evaluation on the above task shows that our pro-
posed method achieves SOTA performance. Impor-
tantly, our method generalizes better when trained
only on simpler tasks (26.5% to 35.7% absolute im-
provement), and less training data (7.7% absolute
improvement) compared with other strong reason-
ing methods.

2 Task Description and Baseline Models

We build our approach from the multi-hop reason-
ing problem proposed in (Clark et al., 2020), which
we summarize first. Figure 1 shows an example
from this dataset. Each reasoning problem consists
of the context C, the question () and the answer
A = {True, False}. C includes facts F' and rules
R. To answer a question, multiple statements in C
need to be combined.

2.1 Proof Strategy

The proofs of the questions are provided by the
creators of the dataset, and each question is proved
by one of three available strategies: “proof”, “inv-
proof” and “fail-to-prove”. “Proof” directly proves
a statement is true using the facts and the rules;
“inv-proof” proves a statement is false using the
facts and rules; and, lastly, “fail-to-prove” means
the statement could not be explicitly proved to be
true or false given the rules and facts. In the latter
case, a positive statement is considered to be False,
and a negative statement is considered to be True.

For example, assuming we are given the facts
and rules in Figure 1, the reasoning chain provided
to prove “Bob is green” is using the “proof” strat-
egy. Conversely, “Alan is not green” is false by
“inv-proof™, because “Alan is green” can be proved
by “All rough people are green <— Alan is rough”.
Finally, “Alan is nice” is false and “Alan is not nice”
is true due to “fail-to-prove”.

2.2 Dataset Details

The dataset is synthesized using hand-crafted rules
and formal language, then translated to natural
language. Some language variation is inserted
(e.g., in Figure 1 the rules are expressed differ-
ently). Depending on the number of rules and facts
needed, there are 5 partitions in the dataset: DUO,
DU1, DU2, DU3 and DUS, where “DU” stands for
“Depth Upto”. “DUO” means the reasoning depth
of the questions is 0, i.e., the questions can be an-
swered by just looking at the facts without applying
any rules. DUS means the questions may require
applying the rules for upto 5 times (but DUS5 also
has questions that require applying the rules for O
to 4 times).

Additionally, a “birds-electricity” dataset is also
provided to test the model’s generalization abil-
ity. The F', R, ) are generated by similar tem-
plates of DUO to DUS, but with different enti-
ties/predicates/attributes that do not appear in the
DUO to DUS partitions.

Summing up all partitions, the dataset has ap-
proximately 500K questions, and the train/dev/test
ratio is 70/10/20. More details can be found in
(Clark et al., 2020).

2.3 Baseline Models

We will compare our approach against two strong
baselines. The first baseline is a RoOBERTa classi-
fier from the original paper of Clark et al. (2020).
In this approach, the questions are solved in a text
classification manner. That is, for each question,
the model takes C' and () as the input, and calcu-
lates the probability of A being true or false. We
abbreviate this baseline as “RT” in our paper.

The second baseline is PROVER (Saha et al.,
2020), which handles the reasoning problem as
a graph problem. This approach takes the in-
put C and ) to produce both the final answer
{True, False}, and a graph that indicates the rea-
soning path. We abbreviate this baseline is as “PR”.

2.4 Shortcomings and Opportunities

We see two shortcomings for these research direc-
tions, which motivate our proposed idea.

Shortcoming #1: Limited interpretability RT
models this reasoning problems as a text classifi-
cation task over a “bag of evidences”. That is, RT
takes all context and produces an answer in a single
forward inference process. Although its predictions
can often achieve high accuracy, there are several
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Executor updates goal:
Goal = E(Goal, Operator)

ok

| Initial state: On(8, A) ||

1

Goal state: On(C, A) |

‘ Goal ‘ |Operator|

Action 1: Remove from A Action 2: Put on top of A
- ions: On(8, A) - Clear(A)
- Add effect: Clear(A) - Add effect: On(C, A)

- Delete effect: On(B, A) - Delete effect: Clear(A)

Operator proposer:
P(Goal)=Operator

(A) (B)

Figure 2: (A) GPS’s working cycle. (B) A toy example
showing the goal and operators (action 1 and 2). This
problem can be solved in two cycles: in the first cycle,
the proposer reads the goal state On(C, A) and search
for available actions. In this case action 2 is proposed
because its effect matches the goal state. Next, the goal
is updated as Cllear(A) (i.e., preconditions of action 2).
In the second cycle, the proposer reads the new goal
Clear(A) and action 1 is proposed. By applying ac-
tion 1 the goal is further updated as On(B, A). Since
On(B, A) is the initial state, the proposer then termi-
nates the reasoning process.

problems with this and similar directions, which
limit their interpretability. First, it is unclear which
part of the context was used by the answering en-
gine. Second, although some methods such as PR
improve over RT by producing an explanation con-
sisting of multiple supporting facts at the end, it
is still hard to explain the underlying reasoning
process in human understandable terms. Finally, it
has been shown theoretically and empirically that
neural networks suffer from the compositionality
generalization problem (Hupkes et al., 2020; Hahn,
2020). That is, neural networks have limited ability
to learn recursive patterns, and they fail to general-
ize to recursive patterns that are much deeper than
the ones seen in training.

Shortcoming #2: Differences from the human
cognitive process People do not usually solve very
complex problems at once. Instead, people con-
stantly generate subgoals and solve complex prob-
lems incrementally (Newell, 1966). Second, verbal
strategies are sometimes used to guide one’s rea-
soning (Bacon et al., 2003). This is different from
the approaches taken by both RT and PR.

A desired explainable multi-hop verbal rea-
soner: Motivated by these shortcomings, we pro-
pose several desired characteristics for an ideal
problem solver. First, the method should be able
to decompose complex problems into simple ones
that are easy to answer. This should not only in-
crease the interpretability of the reasoning process,
but also help reduce the compositionality general-
ization problem, because the unseen distributions

(the complex problem) can be reduced to a series
of seen distributions (simple problems). Second,
each reasoning step should be guided by natural
language, so that each step is easily explainable to
the human end user.

3 Neural General Problem Solver for
Multi-hop Verbal Reasoning

In this section, we first review a classic plan-
ning/reasoning paradigm that is designed to mimic
the human reasoning process, the General Problem
Solver (GPS) (Newell et al., 1959), then propose
our neural implementation of it.

3.1 The General Problem Solver

GPS works in cycles (Figure 2 (A)): in each cycle,
the operator proposer P reads the current goal
G to propose an operator O = P(G). Then the
proposed operator is used by the executor E to
update the goal G = E(G, O). The cycle stops
when the goal is satisfied, or no new operators are
proposed. Figure 2 (B) shows a toy example from
the block world, where the agent starts from the
goal state and searches for a sequence of actions to
reach the initial state.

3.2 The Neural General Problem Solver

Although GPS has been widely used to mimic
the human reasoning process, it has shortcomings.
First, the representations of the goals are usually in
a formal language, which has limited expressive-
ness and readability compared to natural language.
Second, the proposer uses human-crafted rules to
match and propose operators, which may not be
flexible enough to handle situations that diverge
from the training examples.

Due to these drawbacks, we propose to add neu-
ral components to GPS (a working cycle is shown
in Figure 3). More specifically, the neural GPS has
the following characteristics:

Goal (Extended to Working Memory): First, the
goal is represented in natural language instead of
formal language to enable better readability and
expressiveness. Second, the goal is extended to a
working memory buffer, which contains not only
the goal but also other information that might be
useful to the reasoning process.

Operator Proposer and Executor: The operator
proposer is no longer using explicit rules. Instead,
we use a Seq2Seq neural network to directly map
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Executor updates WM:
WM = E(WM, Operators)

EPISODIC_BUFFER

‘ WM ‘ ‘ Operators ‘

L 1

Operator proposer:
P(WM)=0perators

(A)

FACT_BUFFER_i]

RULE_BUFFER_[i]

Working memory fields Examples of the stored information

there are 2 fact buffers and 2 rule buffers

i want to prove “bob is green”.

according to rule 1, i need to prove “bob is big”.
fact 1: alan is blue. fact 2: alan is rough. fact 3: ...

rule 1: big people are rough. rule 2: if someone is young and
round then they are kind. rule 3: ...

(B)

Figure 3: (A) A working cycle for the proposed neural GPS. The goal in GPS is extended to a working memory
buffer (WM), and multiple operators might be generated in a cycle. (B) The composition of the working memory

and possible values stored in each field.

input episodic buffer: there are 2 fact buffers and 2 rule buffers.
episodic buffer: i want to prove “bob is green”.

output GENERATE_SUBGOALS

input
episodic buffer: | want to prove “bob is green”’.
operator: GENERATE_SUBGOALS

output

input episodic buffer: there are 2 fact buffers and 2 rule buffers.

episodic buffer: i want to judge whether the facts can prove “bob is green”.

output GENERATE_SUBGOALS

input episodic buffer: there are 2 fact buffers and 2 rule buffers.
episodic buffer: | want to judge whether the facts can prove “bob is green”.
operator: GENERATE_SUBGOALS

output | iwant to judge whether the fact buffer 1 can prove “bob is green” OR i want to judge whether fact buffer 2 can prove “bob is green”.

episodic buffer: there are 2 fact buffers and 2 rule buffers.

i want to judge whether the facts can prove “bob is green” OR i want to judge whether the rules can prove “bob is green’.

input episodic buffer: there are 2 fact buffers and 2 rule buffers.

episodic buffer: i want to judge whether the rules can prove “bob s green”.

output GENERATE_SUBGOALS

™ S

input episodic buffer: there are 2 fact buffers and 2 rule buffers.

episodic buffer: i want to judge whether the rules can prove “bob is green”’.
‘operator: GENERATE_SUBGOALS

output | iwant tojudge whether the rule buffer 1 can prove “bob is green” OR i want to judge whether rule buffer 2 can prove “bob is green’”.

input episodic buffer: there are 2 fact buffers and 2 rule buffers.
episodic buffer: i want to judge whether fact buffer 1 can prove “bob s green".

output ‘GET(FACT_BUFFER_1) THEN RUN(EPISODIC_BUFFER, FACT_BUFFER_1)
'

input episodic buffer: there are 2 fact buffers and 2 rule buffers.
episodic buffer: | want to judge whether fact buffer 1 can prove “bob is green”.
fact 1: alan is blue. fact 2: alan is rough. .. fact 5: bob is round.
operator: RUN

output false, CWA

input episodic buffer: there are 2 fact buffers and 2 rule buffers.
episodic buffer: i want to judge whether rule buffer 2 can prove “bob is green”

output GET(RULE_BUFFER_2) THEN RUN(EPISODIC_BUFFER, RULE_BUFFER _2)

input episodic buffer: there are 2 fact buffers and 2 rule buffers.
episodic buffer: i want to judge whether rule buffer 2 can prove “bob is green”.
rule 4: all rough people are green.
operator: RUN

output according to rule 4, i need to prove "bob is rough”

Prove “bob is rough” ...

Figure 4: A walk through example of EVR solving the problem mentioned in Figure 1. The format in the example
is the same as the actual output of our method. The red solid lines indicate the path that proves the goal statement.
An example of the actual output of our model is shown in Appendix A.S.

the text in the working memory to a sequence of op-
erators. The operators are later used by the execu-
tor, which also has neural components, to update
the working memory buffer.

3.3 Adapting the Neural GPS to Multi-hop
Verbal Reasoning

In this section we explain in detail the working flow
of the neural GPS (referred as Explainable Verbal
Reasoner or EVR later) and the design of each of
its components for multi-hop verbal reasoning.

A Walk-Through Example: Figure 4 shows an
example of how our method solves the problem
in Figure 1. Every two consecutive blocks form a
working cycle (e.g., patterns 1&2 or 3&4). In each
cycle, the odd pattern is the operator proposing
stage, and the even pattern is the executing stage.
For example, pattern 1 shows an operator propos-
ing stage in a cycle. There are two episodic

buffers available for the operator proposer, with
the first buffer storing some general knowledge
about the problem, and the second describing the
goal. The operator proposer, a Seq2Seq neural
model, first concatenates the two episodic buffers,
then proposes “GENERATE_SUBGOALS” as the
operator. At the executing stage, the executor
(another Seq2Seq neural model), takes the two
episodic buffers in the working memory and the
“GENERATE_SUBGOALS” operator to produce
the subgoals: judge whether the facts can prove
the goal or the rules can prove the goal. Finally,
the newly generated subgoals replace the old goal
in the episodic buffer (i.e., the goals in pattern 3
and 7 are different from pattern 1, because the goal
in pattern 1 is replaced) and one working cycle is
finished. At pattern 10, the EVR discovers that the
new goal is to prove “bob is rough”, so another
recursive search process starts (largely repeating
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the process of pattern 1 to 10).

Working Memory: Working memory is a global
memory space with several storage fields, where
each field is indexed by a textual key (Figure
3 (B)). In this verbal reasoning problem, three
types of information can be stored in the work-
ing memory: episodic buffer (indexed by the key
“EPISODIC_BUFFER”), fact buffer (indexed by
FACT_BUFFER_|[7], since there are probably more
than one fact buffers), and rule buffer (indexed by
RULE_BUFFER_[7]).

The episodic buffer stores three types of infor-
mation: (a) general statements about the reasoning
task that are useful throughout the reasoning pro-
cess (e.g., row 1 in Figure 3 (B)); (b) goal (row 2,
Figure 3 (B)). Similar to GPS, a description of goal
should be included in the working memory. We use
natural language to describe the goals, and goals
are updated periodically; (c) inferred knowledge
during the reasoning process (row 3, Figure 3 (B)).

Note that the working memory is not equivalent
to the input text in the patterns in Figure 4. The
input text in Figure 4 is obtained from the work-
ing memory, but some information in the working
memory might not be needed by many patterns. For
example, fact buffers and rule buffers are only the
input for pattern 6 and 10, whereas other patterns
do not use them.

Ideally, at each cycle, both the proposer and the
executor need to determine what information to
use from the working memory, and the executor
also needs to determine what information to mod-
ify in the working memory. This is a hard problem:
assume there are n pieces of information in the
working memory, there will be 2" ways to read
from/modify the memory. Therefore we make the
following simplifications for this verbal reasoning
problem. First, the size of episodic buffer is fixed
to 2, and the first episodic buffer slot (i.e., “there
are X fact buffers and Y rule buffers”) can not be
modified; the second episodic buffer slot is con-
stantly modified as the new subgoals are generated.
Second, the fact buffers and the rule buffers could
not be modified. Third, the proposer and the execu-
tor only use the two episodic buffers as the input
by default. The fact buffer and rule buffer can be
used as input, but only when explicit commands
are generated (e.g., pattern 5 and 6 in Figure 4).

Operator Proposer: We use a SOTA Seq2Seq
language model, Google T5 (Raffel et al., 2020), as
the operator proposer. The proposer concatenates

the two episodic buffer slots as a single piece of
text, and uses this text as the input to produce a
sequence of operators.

Executor: The executor has three functions: (1)
parse the operators, (2) call the correct neural mod-
ule given the operator, to get the answer/get the sub-
goal, and (3) update the working memory. Since
the operators are fairly simple, we just use several
if-else conditions to determine what actions need
to be taken. Some examples are given in Table 1.
As discussed above, the changing of working mem-
ory is restricted to changing the second episodic
buffer slot. The major part of the executor is the
neural module, which is responsible for generat-
ing subgoals (pattern 2 ,4 ,8 in Figure 4), answer-
ing questions (pattern 6 in Figure 4) and deriving
statements (pattern 10 in Figure 4). Again we use
Google TS as this neural module to read from the
working memory and produce textual output. More
details can be found in Appendix A.3.

Operators: We design a simple domain specific
language (DSL) as the operators. The meaning of
some DSL commands are shown in Table 1.

3.4 Training Data Generation

Finally, to train the working flow we proposed in
Section 3.3, 12 patterns of training data need to be
generated (only 10 are shown in Figure 4). The
generation strategies for some critical patterns are
shown in Table 2. In summary, we write rules to
generate the input text and the output text for each
pattern. Around 1M training samples are generated
for the 12 patterns in total.”

We implemented three variants of EVR to learn
these 12 tasks:

EVR1: This is the EVR baseline. For this baseline
we use three distinct TS5 models: one to learn pat-
tern 6 data, one to learn pattern 10 data, and one to
learn the rest of the patterns. The fact buffer size is
set to 5 and the rule buffer size is set to 3 (5 facts
per fact buffer and 3 rules per rule buffer).

EVR2: The fact buffer size and rule buffer size are
the same as the EVR1. However, we use a single
T5 model to learn all patterns of data. This is to
test whether multi-task learning helps or harms the
performance of EVR.

EVR3: We use three T5 models like EVR1, but
the fact buffer size is set to 20 and the rule buffer
The data generation code can be found at:

https://github.com/clulab/releases/tree/
master/naacl202l-evr

1229


https://github.com/clulab/releases/tree/master/naacl2021-evr
https://github.com/clulab/releases/tree/master/naacl2021-evr

Operator Example Description

AND/OR Pattern 2, 4,8  Conjunction/disjunction operator to connect two branches.
in Figure 4

GENERATE_SUBGOALS Pattern 2,4,8  When the neural model takes this operator it generates subgoals
in Figure 4

NAF/CWA

GET(FACT_BUFFER_[i])
THEN
RUN(EPISODIC_BUFFER,
FACT_BUFFER_[i])

Pattern 6 in
Figure 4

NAF is the abbrevation for “Negation as Failure”. It is generated when a
negative statement (e.g., “bob is not nice”) is not contradicted by any facts.
“CWA” is the abbrevation for “Close World Assumption”. It is output when a
positive statement (e.g., “Bob is nice”) is not confirmed by any facts.
“GET(FACT_BUFFER_[:])” is to get the text of the facts in
FACT_BUFFER_[i] (e.g., in pattern 6 Figure 4, FACT_BUFFER_1
contains the text from fact 1 to fact 5). “THEN” connects two commands that
need to be executed sequentially. Finally, the neural module in the executor
takes the episodic buffer and fact buffer as the input to produce the output.

Pattern 5, 6 in
Figure 4

Table 1: The major defined operators and their meanings.

Ptn Generation Specifications

1

2

10

The input always has two episodic buffers: “there are [ X] fact buffers and [Y'] rule buffers”; “i want to prove [statement]”.
The output is always “GENERATE_SUBGOALS”.

The input consists of two parts: the episodic buffer copied from pattern 1’s input, and the added operator “operator:
GENERATE_SUBGOALS”. The output is “i want to judge whether the facts can prove [statement] OR i want to judge
whether the rules can prove [statement]” if [statement] is a positive statement. For the negative statement, the output is “i
want to judge whether the facts do not contradict [statement] AND i want to judge whether the rules do not contradict
[statement]”.

The input has two episodic buffers: “there are [ X] fact buffers and [Y'] rule buffers”, and “i want to judge whether the
facts can prove/do not contradict [statement]”, depending on the generated goals in pattern 2. The output is always

“GENERATE_SUBGOALS”.

The input consists of two parts: the episodic buffer copied from pattern 3’s input, and the added operator “operator:
GENERATE_SUBGOALS”. The output is “i want to judge whether fact buffer 1 can prove [statement] OR i want to

judge whether fact buffer 2 can prove [statement] OR ...” if [statement] is a positive statement. For negative statement,

the output is “i want to judge whether fact buffer 1 does not contradict [statement] AND i want to judge whether fact
buffer 2 does not contradict [statement] AND ...”.

The input has two episodic buffers: “there are [ X] fact buffers and [Y] rule buffers”, and “i want to judge whether fact
buffer [¢] can prove/does not contradict [statement]”, depending on the generated goals in pattern 4. The output is always

“GET(FACT_BUFFER_|[¢]) THEN RUN(EPISODIC_BUFFER, FACT_BUFFER_[7])".

The input has three parts. (1) the episodic buffer copied from the input of pattern 5; (2) the facts from the fact buffer
indicated by the output of pattern 5; (3) the operator “operator: RUN”. There are four possible outputs: when [statement]
is a positive statement, the output is “true, this is confirmed by fact [¢]” if there is a fact in the fact buffer to prove it, and
is “false, CWA” if the [statement] is not proved by any facts in the buffer. When [statement] is a negative statement, the
output is “true, NAF” if no facts in the fact buffer contradict it, and is “false, this is contradicted by fact [¢]” if a fact in
the fact buffer contradicts it.

The input has two parts: the episodic buffer and the rule buffer determined by pattern 9, where episodic buffer is “there
are [X|] fact buffers and [Y] rule buffers” plus “i want to judge whether rule buffer [j] can prove/does not contradict
[statement]”, and the rule buffer is all the rules in RULE_BUFFER_[7] as determined by pattern 9 (please check Figure
4 as an example). The output is the statements derived from the matched rules. For example, “all rough people are green”
can be used to prove “bob is green”, and in order to prove “bob is green” using this rule, one needs to prove “bob is
rough”. In this case the output is “according to rule [7], i need to prove bob is rough”. There are other edge cases that
need to be handled such as negative query. For the handling of other edge cases, please check Appendix A.4.

Table 2: The strategy to generate the training data for some of the patterns. Each pattern has an input and an output
to be generated. [statement] is the query to prove, e.g., “bob is green”. Patterns 7, 8, 9, 11 and 12 are not included
because they are generated in the similar manner as the patterns shown here. Please see Appendix A.2 for the
generation strategies of all patterns.

size to 10. Therefore for all problems there will be
only one fact buffer and one rule buffer. Since there
are more facts and rules in the buffer, the input text
to the TS will be longer. And since there are more
rules in the rule buffer, the number of matched
rules could be more, so the target text could be
potentially longer. We conjecture the longer input
and output will make the model harder to train.

4 Experiments

4.1 Training and Evaluation

We use TS small for all experiments, with the learn-
ing rate set to le-4. In each epoch, the models are
trained on 24,000 training examples, and evaluated
on the first 2,000 dev samples. Edit distance be-
tween the generated text and target text is used to
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D 0 1 2 3 4 5 all D 0 1 2 3 4 5 all
Cnt 6299 4434 2915 2396 2134 2003 20192 Cnt 1934 1934 1934 1934 1934 1934 11604
DU1 DUI1

RT 100.0 99.0 36.8 23.1 114 123 635 EVR1I 964 919 863 757 731 645 813
PR — — — — — — 73.7 EVR2 96.1 912 867 779 768 674 82.7
EVR1 99.7 988 978 955 91.7 90.7 970 EVR3 964 93.0 89.8 832 84.1 751 86.9
EVR2 995 983 96.8 931 893 881 959 DU5

EVR3 998 99,5 99.0 989 982 979 99.2 EVR1I 960 90.6 86.6 768 746 660 81.8
DU5

RT 100.0 984 984 988 99.2 998 99.2 Table 4: Justification quality of our approach. “Cnt” indicates
PR 100.0 99.0 98.8 99.1 9838 993 993 the number of questions eligible for proof comparison.
EVR1 995 982 965 928 883 862 955

Table 3: Answer accuracy of EVR variants trained on DU1
(top) and DUS (bottom), and evaluated on all data depths
(DUS).

evaluate the models performance on the dev set.
The training is stopped when the edit distance on
the dev set starts to increase.

In addition to the accuracy of the model’s predic-
tion of the final answer (T /F), we also report the
quality of the generated proofs. We extracted the
critical facts/rules from EVR’s reasoning process
and reconstructed the reasoning chain in the same
format as the provided proofs in the dataset. The
proof is considered correct as long as the generated
reasoning chain matches one of the provided rea-
soning chains. We use depth-{0, 1,2, 3,4,5} data
(i.e., all depths) from DUS to test all methods.

4.2 EVR Compared with Other Baselines

Table 3 lists the performance of the three EVR vari-
ants for QA. We compare EVR against RT and PR
trained on the same DU1 data (top part of the ta-
ble), and all the data (DUS) (bottom part). EVR
outperforms the other two baseline methods trained
on DU on nearly all splits. The best performing
EVR is EVR3, which successfully maintains a 97.9
accuracy on depth-5 testing data, and a 99.2 accu-
racy on all testing splits. EVR3 trained on DU1
approaches the performance of the other methods
trained on DUS. This indicates that when the train-
ing data are abundant, longer input or output does
not harm the performance of our method.

Table 4 shows the quality of the generated proofs.
Only the samples that can be proved (either by
“proof” or “inv-proof”) are compared with our
method’s proofs. The number of samples subject to
this comparison is indicated by “Cnt”. The results
in the table demonstrate that EVR obtains high-
quality proofs most of the time, regardless of the
proof depth.

Subset B1 B2 E1 E2 E3 E4 all

Cnt 40 40 162 180 624 4224 5270
DUI1

RT 100.0 100.0 889 80.0 939 975 96.2
EVR1 725 725 100.0 100.0 98.1 984 98.1
EVR2 775 725 100.0 100.0 98.1 93.6 943
EVR3 875 775 100.0 100.0 99.0 957 96.2
DUS

RT 97.5 100.0 969 983 91.8 76.7 80.2
PR 95.0 95.0 100.0 100.0 89.7 84.8 86.5
EVR1 70.0 750 648 600 63.1 61.1 616
EVRI®' 750 725 1000 750 981 938 93.6

Table 5: Evaluation of EVR answers, under the zero-shot
learning scenario on the birds-electricity dataset. There are 6
subsets in the dataset, denoted from B1 to E4.

Subset B1 B2 E1 E2 E3 E4 all

Cnt 28 28 72 90 312 1206 1736
DUI1

EVR1 28.6 321 100.0 100.0 73.1 90.5 86.3
EVR2 357 464 100.0 100.0 73.1 87.6 84.6
EVR3 50.0 679 100.0 100.0 75.0 91.0 88.0
DUS

EVR1 286 286 583 40.0 452 684 6l1.1
EVRI! 28.6 357 1000 500 708 816 77.2

Table 6: Evaluation of EVR-generated proofs, under the
zero-shot learning scenario on the birds-electricity dataset.

4.3 Zero-Shot Results on the
Birds-Electricity Dataset

Table 5 shows the performance of EVR when tested
under a zero-shot learning scenario on the birds-
electricity dataset. The results show that EVR
yields good generalization ability and outperforms
the other two baseline methods in general. Notably,
EVR1 trained on DU1 considerably outperforms
the baseline methods trained on DUS. A surprising
result is that RT trained on DU1 yields a better
results than that trained on DUS. The RT creators
explained that it is because some extremely rare
cases in the training data are not well learned by
their DUS model.

Surprisingly, EVR1 trained on DUS yields a low
performance in the evaluation (e.g., 61.6 on all
datasets). We inspected several outputs of the rea-
soning steps generated by EVRI, and observed
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D 0 1 2 3 4 5 all D 0 1 2 3 4 5 all

Cnt 6299 4434 2915 2396 2134 2003 20192 Cnt 1934 1934 1934 1934 1934 1934 11604
10k 10k 964 92.1 86.0 73.6 704 625 802
PR — — — — — — 87.1 30k 964 915 849 750 726 648 809
EVRI 999 99.1 96.8 904 843 829 948 70k 964 919 863 757 731 645 813
30k

PR — — — — — — 97.8 Table 8: Evaluation of the generated proofs of EVR1, when
EVRI 996 985 96.8 934 89.6 885 96.0 trained on less data.

70k

PR 100.0 99.0 98.8 99.1 988 993 99.3

EVR1 99.7 988 978 955 91.7 90.7 97.0

Table 7: Evaluation of the predicted answers of EVR1, when
trained on less data. 70k is the number of original training
examples. PR is trained on DU5 whereas EVR1 is trained on
DUI.

that the major reason for this failure is because pat-
tern 4 is not successfully learned due to the bias
in DUS data. In DUS training data, there are at
least 7 facts for each question (i.e., at least 2 fact
buffers when the fact buffer size is set to 5). In this
case, the target output for pattern 4 would be “I
want to judge whether fact buffer 1 ... OR I want to
judge whether fact buffer 2 ...”. In contrast, in the
birds-electricity dataset, some questions have only
3 supporting facts, so there is only 1 fact buffer.
In this case, T5 should generate “I want to judge
whether fact buffer 1 can prove [query].” without
further disjunctions. However, since such exam-
ples never appear in the DUS training data, the T5
still generates instructions to loop over multiple
fact buffers, which causes the reasoning program
to fail (due to the attempt to access non-existent
fact buffers).

To verify the above observation, we trained pat-
tern 6 and 10 using DUS, and all other patterns
on DU1. We report this model’s performance (in-
dicated by EVR!) in Table 5 and 6. These re-
sults indicate that our intuition was correct, as
EVR®! yields good generalization performance on
the birds-electricity dataset.

Table 6 shows EVR generates high-quality
proofs overall, but the proofs on B1 and B2 are
poor. The reason is that the B1 and B2 datasets con-
tain some examples that have proofs unsupported
by our model (e.g., to directly prove a positive
statement is False by contradiction).

4.4 Results Using Less Training Data

Tables 7 and 8 show that EVR1 yields stable perfor-
mance and proofs when trained with considerably
less data (10k and 30k examples). In the lowest
data configuration (10k), EVR outperforms PR con-
siderably, even when PR is trained on DUS. This

experiment supports our claim that EVR suffers
less from the compositionality generalization prob-
lem by recursively decomposing complex problems
and reasoning over simple ones.

5 Related Work

Neural Symbolic Methods: One branch of neural-
symbolic reasoning methods is to design different
components in the network, but keeping the whole
network differentiable. Typical works include the
Differential Neural Computer (DNC) (Graves et al.,
2016), End-to-end Memory Networks (Sukhbaatar
et al., 2015), Dynamic Memory Networks (DMN)
(Kumar et al., 2016) and Compositional Attention
Networks (MAC) (Hudson and Manning, 2018).
Another direction are the neural modular networks,
where what components to use are determined dy-
namically for each question (Gupta et al., 2019;
Jiang and Bansal, 2019). However, it is hard to
prove the components are actually fulfilling the
designed functionality after training due to the dis-
tributed nature of the intermediate representations.
In contrast, we explicitly evaluate the performance
of each component of EVR after training, achieving
better faithfulness (Subramanian et al., 2020).

Formal Theorem Prover: Neural components
have been used to augment formal theorem proving
in several ways. Polu and Sutskever (2020) apply a
Seq2Seq neural network for mathematical theorem
proving by training the neural network to generate
the proof at each step. Some works seek to use dis-
tributed representations to augment the rule-based
backward chaining (Weber et al., 2019; Dong et al.,
2018). However, these works still highly rely on
the formal representations and they do not generate
the natural language subgoals at each step.

Problem Solver and Cognitive Architectures:
Our work is also largely inspired by cognitive ar-
chitectures such as ACT-R (Anderson et al., 1997)
and SOAR (Laird, 2012), which originate from
Newell’s GPS. These cognitive architectures em-
ploy symbolic systems to simulate the human gen-
eral cognitive processes, but have not been used on
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complex reasoning problems in NLP.

Internal Monologue: Internal monologue is the
subjective experience of language without overt ar-
ticulation, and it plays important roles in cognition
(Alderson-Day and Fernyhough, 2015). The role of
internal monologue in problem solving/reasoning
is mixed. Studies have been shown that internal
monologue might not be crucial to visual reasoning
(Phillips, 1999), whereas in verbal reasoning tasks,
some subjects indeed rely more on the internal
monologue than the visual imagery (Bacon et al.,
2003). However, there is still not a wide concensus
on the form/grammar of the internal monologue.

Question Decomposition: Our work is also dif-
ferent from several existing works about question
decomposition, where the strategy of decomposi-
tion is largely reflected by the question itself (Min
et al., 2019; Wolfson et al., 2020). In contrast, the
expressions of our questions are already simple,
and don’t reflect the decomposition strategies.

6 Discussion and Future Work

6.1 Discussion of the Current Method

Does EVR solve the problems raised in Section
2.4? We believe our neural GPS at least partially
solves the issues mentioned in Section 2.4. First,
EVR decomposes a hard problem into several sim-
ple ones, thus resembling the human thinking pro-
cess more. In addition, this modular strategy also
enables EVR to suffer less from the compositional-
ity generalization problem (as shown in Section 4).
Second, during each step of reasoning, all the sub-
goals and the derived statements are expressed in
natural language, thus making the reasoning proofs
interpretable.

Could this task be addressed with a pure rule-
based approach? Due to the language variations
introduced (by the authors) to this dataset, a pure
rule-based method is probably not easily applica-
ble. For example, during the generation of pattern
10 training data, we use the provided meta data
(formal language, no variation, not available at test
time) to help us produce the necessary supervision.
We found it otherwise hard to compose the rules
directly from the natural language representation.

Can the operator proposer be replaced by a
rule-based one? Due to the synthetic natural of
the dataset, it is possible to replace the operator
proposer in Section 3.3 with some rule-based al-
gorithm (e.g., patterns 1, 3, 5,7, 9, 11 can be pro-

cessed with pure rules). However, this is not the
goal of our work. In this paper, we study how well
a Seq2Seq model can learn under more realistic
conditions, i.e., in real-world scenarios, the agent
might only have access to input-output training
pairs (rather than rules).

6.2 Challenges of Applying EVR on Real
World Problems

While EVR achieved the goals set in this work,
several important questions remain for future work:

Limited language variation: Although the data
used here contains some variations in language, it
is still considerably simpler than real-world natural
language. Thus, it remains unanswered whether
the Seq2Seq components can achieve a robust per-
formance under actual natural language.

Can other complex problems be reduced to sim-
ple ones? It is unclear whether most of the real-
world multi-hop reasoning problems can be re-
duced to a (not too large) set of basic cognitive
processes that can be learned.

Non-recursive problems and memory manage-
ment: Due to the recursive nature of the prob-
lem we solve in this paper, the memory ac-
cess/modification can be simplified. However, it is
unknown whether recursive and context-free pat-
terns are the only way in which human think. If not,
the access and modification of working memory
will become a challenging problem.

Acquisition of training data: Finally, the acquisi-
tion of high-quality training data is not always easy
in real world. It is possible that low-quality training
data introduce dangerous cascading errors.

7 Conclusion

In this paper we propose the Explainable multi-
hop Verbal Reasoner (EVR) to solve a synthetic
question answering problem that requires multi-
hop reasoning (Clark et al., 2020). EVR answers
a question by reducing a complex one to several
simple ones, and guiding all reasoning steps with
natural language for better interpretability. Evalua-
tion of EVR shows it achieves high accuracy, suffer
less from the compositionality generalization prob-
lem, and generalizes well when training data are
not abundant.
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A Appendix
A.1 Reproducibility Checklist

Source code: https://github.com/clulab/releases/tree/master/naacl2021l-evr
Computing infrastructure: Experiments are done with Nvidia RTX2070 and Nvidia V100.

Average run time: The running time of EVR1: it takes about 4 to 6 hours to train the three TS models
on RTX2070. On V100 this time is reduced by about 40%. Evaluation costs a lot of time. EVRI1’s
evaluation on about 20000 test data (depth from 0 to 5) takes about 84 hours. Time using V100 is reduced
by about 40%. This is because for EVR1, every question requires running T5 for many times, and the
time grows with depth.

Number of parameters: T5 small:60 million; RT (RoBERTa-large): 355 million; PR: uses RoOBERTa
(355 million).

Validation performance: Not provided.
Evaluation Measure: Provided in the result section.

Bounds for hyper-parameter Only 3 hyperparameters. The learning rate is set to 1e-4, according to
recommendations of other tutorials of using T5. The fact buffer size and rule buffer size are manually
tuned.

Number of training and evaluation runs: Only run for one time, because evaluation consumes a lot
of time. But random seed is set to 0 to ensure reproducibility.

Hyperparameter Configuration: Provided in paper. Fact buffer size = 20 and rule buffer size = 10.
This is manually tuned.

Statistics of results: Not applicable because models are evaluated for only once.
Number of training samples: Provided.

Data processing: discussed in paper and appendix. For the detailed process please look at our code:
https://github.com/clulab/releases/tree/master/naacl202l-evr

Train/Dev/Test spits: provided.
Downloadable link: https://github.com/clulab/releases/tree/master/naacl202l-evr
Name of language: English

Data collection process: Discussed in paper and appendix.
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A.2 Full Table of All Data Pattern Generations

Table 9 shows the generation strategies of all the 12 patterns of training data. Note that the pattern 12’s
generated goal (i.e., ‘i want to prove [statement]”) has exactly the same format as the pattern 1’s input
goal (i.e., “i want to prove [statement]”).

Ptn  Generation Specifications

1 The input always has two episodic buffers: “there are [X] fact buffers and [Y] rule buffers”; “i want to prove
[statement]”. The output is always “GENERATE_SUBGOALS"”.
2 The input consists of two parts: the episodic buffer copied from pattern 1’s input, and the added operator “operator:

GENERATE_SUBGOALS”. The output is “i want to judge whether the facts can prove [statement] OR i want to
judge whether the rules can prove [statement]” if [statement] is a positive statement. For the negative statement, the
output is “i want to judge whether the facts do not contradict [statement] AND i want to judge whether the rules do
not contradict [statement]”.

3 The input has two episodic buffers: “there are [ X] fact buffers and [Y'] rule buffers”, and “i want to judge whether
the facts can prove/do not contradict [statement]”, depending on the generated goals in pattern 2. The output is
always “GENERATE_SUBGOALS”.

4 The input consists of two parts: the episodic buffer copied from pattern 3’s input, and the added operator “operator:
GENERATE_SUBGOALS”. The output is “i want to judge whether fact buffer 1 can prove [statement] OR i want
to judge whether fact buffer 2 can prove [statement] OR ...” if [statement] is a positive statement. For negative
statement, the output is “i want to judge whether fact buffer 1 does not contradict [statement] AND i want to judge
whether fact buffer 2 does not contradict [statement] AND ...”.

5 The input has two episodic buffers: “there are [ X] fact buffers and [Y'] rule buffers”, and “i want to judge whether
fact buffer [7] can prove/does not contradict [statement]”, depending on the generated goals in pattern 4. The output
is always “GET(FACT_BUFFER_[¢]) THEN RUN(EPISODIC_BUFFER, FACT_BUFFER_[:])".

6 The input has three parts. (1) the episodic buffer copied from the input of pattern 5; (2) the facts from the fact
buffer indicated by the output of pattern 5; (3) the operator “operator: RUN”. There are four possible outputs: when
[statement] is a positive statement, the output is “true, this is confirmed by fact [¢]” if there is a fact in the fact
buffer to prove it, and is “false, CWA” if the [statement] is not proved by any facts in the buffer. When [statement]
is a negative statement, the output is “true, NAF” if no facts in the fact buffer contradict it, and is “false, this is
contradicted by fact [¢]” if a fact in the fact buffer contradicts it.

7 The input has two episodic buffers: “there are [ X] fact buffers and [Y'] rule buffers”, and “i want to judge whether
the rules can prove/do not contradict [statement]”, depending on the generated goals in pattern 2. The output is
always “GENERATE_SUBGOALS”.

8 The input consists of two parts: the episodic buffer copied from pattern 7’s input, and the added operator “operator:
GENERATE_SUBGOALS?”. The output is “i want to judge whether rule buffer 1 can prove [statement] OR i want
to judge whether rule buffer 2 can prove [statement] OR ...” if [statement] is a positive statement. For negative
statement, the output is “i want to judge whether rule buffer 1 does not contradict [statement] AND i want to judge
whether rule buffer 2 does not contradict [statement] AND ...”.

9 The input has two episodic buffers: “there are [ X] fact buffers and [Y'] rule buffers”, and “i want to judge whether
rule buffer [¢] can prove/does not contradict [statement]”, depending on the generated goals in pattern 8. The output
is always “GET(RULE_BUFFER_[7]) THEN RUN(EPISODIC_BUFFER, RULE_BUFFER_[:])”.

10 The input has two parts: the episodic buffer and the rule buffer determined by pattern 9, where episodic buffer is
“there are [X] fact buffers and [Y] rule buffers” plus “i want to judge whether rule buffer [j] can prove/does not
contradict [statement]”, and the rule buffer is all the rules in RULE_BUFFER_|[j] as determined by pattern 9 (please
check Figure 4 as an example). The output are the statements derived from the matched rules. For example, “all
rough people are green” can be used to prove “bob is green”, and in order to prove “bob is green” using this rule, one
needs to prove “bob is rough”. In this case the output is “according to rule [7], i need to prove bob is rough”. There
are other edge cases that need to be handled, such as multiple matched rules and negative query. For the handling of
other edge cases, please check Appendix A.4.

11 The input always has two episodic buffers: “there are [X] fact buffers and [Y] rule buffers”; “according to
rule [7], i need to prove [statement]” depending on the generated text of pattern 10. The output is always
“GENERATE_SUBGOALS”.

12 The input consists of two parts: the episodic buffer copied from pattern 11°s input, and the added operator “operator:
GENERATE_SUBGOALS”. The output is “1 want to prove [statement]” (the [statement] is what comes from the
episodic buffer).

Table 9: The generation strategy for all the 12 patterns of training data. In this verbal reasoning problem, any
question with any depth reasoning can be solved by solving these 12 patterns of small problem:s.
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A.3 Details of the Implementation of the Executor

As discussed in section 3.3, the executor has the three functions: (1) it first parses the instructions generated
by the operator proposer; (2) it calls the corresponding components according to the parsed instruction;
(3) it updates the working memory.

Instruction Parsing: In this paper, the executor needs to determine whether the instruction is
“GENERATE_SUBGOALS”, or “GET(FACT_BUFFER_[i]) THEN RUN(EPISODIC_BUFFER,
FACT_BUFFER_J[i])” or “GET(RULE_BUFFER [i])  THEN RUN(EPISODIC_BUFFER,
RULE_BUFFER_Ji])”. So we simply use “if-elif-else” to judge which instruction is generated.

Handling the Parsed Instruction: The executor calls the corresponding module according to the
parsed instruction.

If the instruction is “GENERATE_SUBGOALS”, then the executor runs T5 with this instruction (the
input-output examples are pattern 2, 4, 8 in Figure 4).

If the instruction is “GET(FACT_BUFFER_[i]) THEN RUN(EPISODIC_BUFFER,
FACT_BUFFER_][i])”, the executor first gets the text of the facts of FACT_BUFFER_[i], then it
runs T5 using the text of the current episodic buffer and the text of the retrieved fact buffer (an input-output
example is pattern 6 in Figure 4).

If the instruction is “GET(RULE_BUFFER_[i]) THEN RUN(EPISODIC_BUFFER,
RULE_BUFFER_J[i])”, the executor first gets the text of the rules of RULE_BUFFER_[i], then
it runs TS5 using the text of the current episodic buffer and the text of the retrieved rule buffer (an
input-output example is pattern 10 in Figure 4).

Updating Working Memory: After the executor calls the correct modules according to the parsed
instruction, new textual information will be generated. If the operator is “GENERATE_SUBGOALS”, the
generated textual information is a new subgoal, and this new subgoal will be used to replace the old goal in
the working memory. If the operator is “GET(RULE_BUFFER_[i]) THEN RUN(EPISODIC_BUFFER,
RULE_BUFFER_][i])” and there are matched rules after running this operator, a textual subgoal will also
be generated and be used to replace the old subgoal in the working memory.
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A.4 Elaborated Description of Pattern 10 Generation

During the generation of pattern 10, we use the formal representations of the facts and rules provided
by the data to generate the input-output pairs. Note that this formal representation is only used in the
generation of training data and not used at testing time.

All the facts have the formal representation “subject-verb-object”. This “S-V-O” combination is called
a triple. And all the rules have the formal representation “triplel (and optionally triple 2) -> triple”. For
example, the statement “Bob is green” has the formal representation “(\" bob\" \" is\" \" green\" \"+\")”
and “All green things are rough” has the formal representation “((\" something\" \" is\" \" green\" \"+\"))
-> (\" something\" \" is\" \" rough\" \"+\"))”. The “+” at the end means the polarity, i.e., whether there is
negation in the triple.

Note that there are some variations when this formal representation is converted to natural language.
For example, “(((\" something\" \" is\" \" green\" \"-+\")) -> (\" something\" \" is\" \" rough\" \"-+\"))”’ can be
translated to “all green things are rough” or “if someone is green then it is rough” (or other expressions).

We use the formal representations of facts and rules to determine the formal representation to be
generated, and then translate the generated formal representation to natural language. Assume a rule
“tripleA and tripleB -> tripleC”, we call tripleA and tripleB “preconditions”, call tripleC “Effect”. Table
10 shows how to generate the preconditions when a rule’s effect matches a query. Assume the query has
the form “E,-V;-O,” (query subject entity, query verb, query object). Similarly, “F,-V,-O,” means a
precondition triple and “F,-V,-O.” means an effect triple. “S” means “something” or “someone”. Note
that in order for a rule to be matched with a query, V;, should be the same as V.. and O, should be the same
as O,.

Positive Query Matched Effect Matched Preconditions Preconditions to Generate
E,-V4-Oq4 S-V4-Oq S-Vp-Op E.-Vy-0Op
Ep-Vp-Op Ep-Vp-Op
E4-Vy-Oq S-Vp-Op S-Vp-Op
Ep-Vp-Op Ep-Vp-Op
S-V4-Oq S-V4-Oq S-Vp-Op S-Vp-Op,
Ep-Vp-Op Ep-Vp-Op
E,-V4-Oq S-Vp-Op S-Vp-Op,
Ep-Vp-Op Ep-Vp-Op
No matched rule directly return false
Negative Query Matched Effect Matched Preconditions Preconditions to Generate
Eq-not-V4-Oy S-V4-Oq S-Vp-Op E.-Vp-Op
Ep-Vp-Op Ep-Vp-Op
E4-V4-Oq4 S-Vp-Op S-Vp-Op,
Ep-Vp-Op Ep-Vp-Op
S-not-V4-Oy directly return true
No matched rule directly return true

Table 10: Matching rules for pattern 10 data to generate preconditions that are matched. Note that for negative
query, the rule with positive effect is matched. This is used for inverse proof of a negative query (i.e., prove a
negative statement is false).

For example, given the query “bob is green” and “all rough things are green”, the generated precondition
should be “bob is rough”. Using formal representations, the representation for “bob is green” is “bob-
is-green”, and the rule is “(something-is-rough)->(something-is-green)”. This situation is the row 1 in
Table 10. The generated precondition should be “F,-V,,-O,,”, i.e., the subject is the subject from the query,
and the verb and the object are from the preconditions of the rule. So the representation of the generated
precondition is “bob-is-rough”
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A.5 An Actual Output of EVR

The following shows an actual output of our model on the first test problem of depth-4 and Table 11 shows
the final result and the evaluation.

Evaluation Metric Value

Question Label True

Model’s Prediction True

Model’s Proof ((((((((triple8 NAF) -> rule8)) -> rule9)) -> rule4) NAF) -> rule8)
All Candidate Proofs Provided by [ ((((((((triple8 NAF) -> rule8)) -> rule9)) -> rule4) NAF) -> rule8)’]
Dataset

Table 11: Final result and the evaluation of our model on the first question of depth-4 test set.

procssing instance 0

facts:

fact 1: the cat chases the rabbit.

fact 2: the cat is red.

fact 3: the cat sees the rabbit.

fact 4: the cat visits the mouse.

fact 5: the lion is green.

fact 6: the lion visits the rabbit.

fact 7: the mouse does not see the cat.

fact 8: the mouse sees the lion.

fact 9: the mouse visits the cat.

fact 10: the mouse does not visit the lion.

fact 11: the rabbit sees the cat.

rules:

rule 1: if something is red and kind then it does not visit the cat.
rule 2: if something sees the cat then it is not kind.

rule 3: if something does not visit the rabbit then it is big.

rule 4: if something chases the cat then the cat sees the lion.

rule 5: if the rabbit visits the mouse and the rabbit is big then the mouse visits the lion.
rule 6: if something is green then it sees the rabbit.

rule 7: if something chases the rabbit and it sees the mouse then the mouse sees the lion.
rule 8: if something sees the lion and it is not blue then it is kind.
rule 9: if something is kind then it chases the cat.

question and answer:

the cat is kind. True

episodic buffer [’episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
prove "the cat is kind".’]

generated operation: GENERATE_SUBGOALS

generated subgoal:i want to judge whether the facts can prove "the cat is kind". OR i want to judge
whether the rules can prove "the cat is kind".

episodic buffer ["episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether the facts can prove "the cat is kind".’]

generated operation: GENERATE_SUBGOALS

generated subgoal:i want to judge whether fact buffer 1 can prove "the cat is kind". OR i want to judge
whether fact buffer 2 can prove "the cat is kind". OR i want to judge whether fact buffer 3 can prove "the
cat is kind".
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episodic buffer [’episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether fact buffer 1 can prove "the cat is kind".’]

generated operation: GET( FACT_BUFFER_1 ) THEN RUN ( EPISODIC_BUFFER, FACT_BUFFER_1
)

buffer input:episodic buffer: there are 3 fact buffers and 3 rule buffers. episodic buffer: i want to judge
whether fact buffer 1 can prove "the cat is kind". fact 1: the cat chases the rabbit. fact 2: the cat is red. fact
3: the cat sees the rabbit. fact 4: the cat visits the mouse. fact 5: the lion is green. operator: RUN </s>
generated answer:false, CWA.

episodic buffer [’episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether fact buffer 2 can prove "the cat is kind".’]

generated operation: GET( FACT_BUFFER_2 ) THEN RUN ( EPISODIC_BUFFER, FACT_BUFFER_2
)

buffer input:episodic buffer: there are 3 fact buffers and 3 rule buffers. episodic buffer: i want to judge
whether fact buffer 2 can prove "the cat is kind". fact 6: the lion visits the rabbit. fact 7: the mouse does
not see the cat. fact 8: the mouse sees the lion. fact 9: the mouse visits the cat. fact 10: the mouse does
not visit the lion. operator: RUN </s>

generated answer:false, CWA.

episodic buffer ["episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether fact buffer 3 can prove "the cat is kind".’]

generated operation: GET( FACT_BUFFER_3 ) THEN RUN ( EPISODIC_BUFFER, FACT_BUFFER_3
)

buffer input:episodic buffer: there are 3 fact buffers and 3 rule buffers. episodic buffer: i want to judge
whether fact buffer 3 can prove "the cat is kind". fact 11: the rabbit sees the cat. operator: RUN </s>
generated answer:false, CWA.

episodic buffer [’episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether the rules can prove "the cat is kind".’]

generated operation: GENERATE_SUBGOALS

generated subgoal:i want to judge whether rule buffer 1 can prove "the cat is kind". OR i want to judge
whether rule buffer 2 can prove "the cat is kind". OR i want to judge whether rule buffer 3 can prove "the
cat is kind".

episodic buffer ["episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether rule buffer 1 can prove "the cat is kind".’]

generated operation: GET( RULE_BUFFER _1 ) THEN RUN ( EPISODIC_BUFFER, RULE_BUFFER _1
)

buffer input:episodic buffer: there are 3 fact buffers and 3 rule buffers. episodic buffer: i want to judge
whether rule buffer 1 can prove "the cat is kind". rule 1: if something is red and kind then it does not visit
the cat. rule 2: if something sees the cat then it is not kind. rule 3: if something does not visit the rabbit
then it is big. operator: RUN </s>

generated answer:false

episodic buffer [’episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether rule buffer 2 can prove "the cat is kind".’]

generated operation: GET( RULE_BUFFER_2 ) THEN RUN ( EPISODIC_BUFFER, RULE_BUFFER_2
)

buffer input:episodic buffer: there are 3 fact buffers and 3 rule buffers. episodic buffer: i want to judge
whether rule buffer 2 can prove "the cat is kind". rule 4: if something chases the cat then the cat sees the
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lion. rule 5: if the rabbit visits the mouse and the rabbit is big then the mouse visits the lion. rule 6: if
something is green then it sees the rabbit. operator: RUN </s>
generated answer:false

episodic buffer [’episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether rule buffer 3 can prove "the cat is kind".’]

generated operation: GET( RULE_BUFFER_3 ) THEN RUN ( EPISODIC_BUFFER, RULE_BUFFER 3
)

buffer input:episodic buffer: there are 3 fact buffers and 3 rule buffers. episodic buffer: i want to judge
whether rule buffer 3 can prove "the cat is kind". rule 7: if something chases the rabbit and it sees the
mouse then the mouse sees the lion. rule 8: if something sees the lion and it is not blue then it is kind.
rule 9: if something is kind then it chases the cat. operator: RUN </s>

generated answer:according to rule 8, i need to prove the cat sees the lion and the cat is not blue.

episodic buffer [’episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer:
according to rule 8, i need to prove the cat sees the lion and the cat is not blue.”] generated operation:
GENERATE_SUBGOALS

generated subgoal:i want to prove "the cat sees the lion". AND i want to prove "the cat is not blue".

episodic buffer [’episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
prove "the cat sees the lion".’]

generated operation: GENERATE_SUBGOALS

generated subgoal:i want to judge whether the facts can prove "the cat sees the lion". OR i want to judge
whether the rules can prove "the cat sees the lion".

episodic buffer [’episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether the facts can prove "the cat sees the lion".’]

generated operation: GENERATE_SUBGOALS

generated subgoal:i want to judge whether fact buffer 1 can prove "the cat sees the lion". OR i want to
judge whether fact buffer 2 can prove "the cat sees the lion". OR i want to judge whether fact buffer 3 can
prove "the cat sees the lion".

episodic buffer [’episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether fact buffer 1 can prove "the cat sees the lion".’]

generated operation: GET( FACT_BUFFER_1 ) THEN RUN ( EPISODIC_BUFFER, FACT_BUFFER _1
)

buffer input:episodic buffer: there are 3 fact buffers and 3 rule buffers. episodic buffer: i want to judge
whether fact buffer 1 can prove "the cat sees the lion". fact 1: the cat chases the rabbit. fact 2: the cat is
red. fact 3: the cat sees the rabbit. fact 4: the cat visits the mouse. fact 5: the lion is green. operator: RUN
</s>

generated answer:false, CWA.

episodic buffer ['episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether fact buffer 2 can prove "the cat sees the lion".’]

generated operation: GET( FACT_BUFFER_2 ) THEN RUN ( EPISODIC_BUFFER, FACT_BUFFER_2
)

buffer input:episodic buffer: there are 3 fact buffers and 3 rule buffers. episodic buffer: i want to judge
whether fact buffer 2 can prove "the cat sees the lion". fact 6: the lion visits the rabbit. fact 7: the mouse
does not see the cat. fact 8: the mouse sees the lion. fact 9: the mouse visits the cat. fact 10: the mouse
does not visit the lion. operator: RUN </s>

generated answer:false, CWA.
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episodic buffer [’episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether fact buffer 3 can prove "the cat sees the lion".’]

generated operation: GET( FACT_BUFFER_3 ) THEN RUN ( EPISODIC_BUFFER, FACT_BUFFER_3
)

buffer input:episodic buffer: there are 3 fact buffers and 3 rule buffers. episodic buffer: i want to judge
whether fact buffer 3 can prove "the cat sees the lion". fact 11: the rabbit sees the cat. operator: RUN </s>
generated answer:false, CWA.

episodic buffer ["episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether the rules can prove "the cat sees the lion".’]

generated operation: GENERATE_SUBGOALS

generated subgoal:i want to judge whether rule buffer 1 can prove "the cat sees the lion". OR i want to
judge whether rule buffer 2 can prove "the cat sees the lion". OR i want to judge whether rule buffer 3 can
prove "the cat sees the lion".

episodic buffer [’episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether rule buffer 1 can prove "the cat sees the lion".’]

generated operation: GET( RULE_BUFFER_1 ) THEN RUN ( EPISODIC_BUFFER, RULE_BUFFER _1
)

buffer input:episodic buffer: there are 3 fact buffers and 3 rule buffers. episodic buffer: i want to judge
whether rule buffer 1 can prove "the cat sees the lion". rule 1: if something is red and kind then it does not
visit the cat. rule 2: if something sees the cat then it is not kind. rule 3: if something does not visit the
rabbit then it is big. operator: RUN </s>

generated answer:false

episodic buffer [’episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether rule buffer 2 can prove "the cat sees the lion".’]

generated operation: GET( RULE_BUFFER_2 ) THEN RUN ( EPISODIC_BUFFER, RULE_BUFFER_2
)

buffer input:episodic buffer: there are 3 fact buffers and 3 rule buffers. episodic buffer: i want to judge
whether rule buffer 2 can prove "the cat sees the lion". rule 4: if something chases the cat then the cat sees
the lion. rule 5: if the rabbit visits the mouse and the rabbit is big then the mouse visits the lion. rule 6: if
something is green then it sees the rabbit. operator: RUN </s>

generated answer:according to rule 4, i need to prove something chases the cat.

episodic buffer [’episodic buffer: there are 3 fact buffers and 3 rule buffers.’, *episodic buffer: according
to rule 4, i need to prove something chases the cat.’]

generated operation: GENERATE_SUBGOALS

generated subgoal:i want to prove "something chases the cat".

episodic buffer [’episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
prove "something chases the cat".’]

generated operation: GENERATE_SUBGOALS

generated subgoal:i want to judge whether the facts can prove "something chases the cat". OR i want to
judge whether the rules can prove "something chases the cat".

episodic buffer ["episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether the facts can prove "something chases the cat".’]

generated operation: GENERATE_SUBGOALS

generated subgoal:i want to judge whether fact buffer 1 can prove "something chases the cat". OR i want
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to judge whether fact buffer 2 can prove "something chases the cat". OR i want to judge whether fact
buffer 3 can prove "something chases the cat".

episodic buffer ["episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether fact buffer 1 can prove "something chases the cat".’]

generated operation: GET( FACT_BUFFER_1 ) THEN RUN ( EPISODIC_BUFFER, FACT_BUFFER _1
)

buffer input:episodic buffer: there are 3 fact buffers and 3 rule buffers. episodic buffer: i want to judge
whether fact buffer 1 can prove "something chases the cat". fact 1: the cat chases the rabbit. fact 2: the cat
is red. fact 3: the cat sees the rabbit. fact 4: the cat visits the mouse. fact 5: the lion is green. operator:
RUN </s>

generated answer:false, CWA.

episodic buffer [’episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether fact buffer 2 can prove "something chases the cat".’]

generated operation: GET( FACT_BUFFER_2 ) THEN RUN ( EPISODIC_BUFFER, FACT_BUFFER_2
)

buffer input:episodic buffer: there are 3 fact buffers and 3 rule buffers. episodic buffer: i want to judge
whether fact buffer 2 can prove "something chases the cat". fact 6: the lion visits the rabbit. fact 7: the
mouse does not see the cat. fact 8: the mouse sees the lion. fact 9: the mouse visits the cat. fact 10: the
mouse does not visit the lion. operator: RUN </s>

generated answer:false, CWA.

episodic buffer [’episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether fact buffer 3 can prove "something chases the cat".’]

generated operation: GET( FACT_BUFFER_3 ) THEN RUN ( EPISODIC_BUFFER, FACT_BUFFER_3
)

buffer input:episodic buffer: there are 3 fact buffers and 3 rule buffers. episodic buffer: i want to judge
whether fact buffer 3 can prove "something chases the cat". fact 11: the rabbit sees the cat. operator: RUN
</s>

generated answer:false, CWA.

episodic buffer [’episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether the rules can prove "something chases the cat".’]

generated operation: GENERATE_SUBGOALS

generated subgoal:i want to judge whether rule buffer 1 can prove "something chases the cat". OR i want
to judge whether rule buffer 2 can prove "something chases the cat". OR i want to judge whether rule
buffer 3 can prove "something chases the cat".

episodic buffer [’episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether rule buffer 1 can prove "something chases the cat".’]

generated operation: GET( RULE_BUFFER 1 ) THEN RUN ( EPISODIC_BUFFER, RULE_BUFFER 1
)

buffer input:episodic buffer: there are 3 fact buffers and 3 rule bufters. episodic buffer: i want to judge
whether rule buffer 1 can prove "something chases the cat". rule 1: if something is red and kind then it
does not visit the cat. rule 2: if something sees the cat then it is not kind. rule 3: if something does not
visit the rabbit then it is big. operator: RUN </s>

generated answer:false

episodic buffer ["episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether rule buffer 2 can prove "something chases the cat".’]
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generated operation: GET( RULE_BUFFER_2 ) THEN RUN ( EPISODIC_BUFFER, RULE_BUFFER_2
)

buffer input:episodic buffer: there are 3 fact buffers and 3 rule buffers. episodic buffer: i want to judge
whether rule buffer 2 can prove "something chases the cat". rule 4: if something chases the cat then the
cat sees the lion. rule 5: if the rabbit visits the mouse and the rabbit is big then the mouse visits the lion.
rule 6: if something is green then it sees the rabbit. operator: RUN </s>

generated answer:false

episodic buffer [’episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether rule buffer 3 can prove "something chases the cat".’]

generated operation: GET( RULE_BUFFER_3 ) THEN RUN ( EPISODIC_BUFFER, RULE_BUFFER _3
)

buffer input:episodic buffer: there are 3 fact buffers and 3 rule buffers. episodic buffer: i want to judge
whether rule buffer 3 can prove "something chases the cat". rule 7: if something chases the rabbit and it
sees the mouse then the mouse sees the lion. rule 8: if something sees the lion and it is not blue then it is
kind. rule 9: if something is kind then it chases the cat. operator: RUN </s>

generated answer:according to rule 9, i need to prove something is kind.

episodic buffer [’episodic buffer: there are 3 fact buffers and 3 rule buffers.’, "episodic buffer: according
to rule 9, 1 need to prove something is kind.’]

generated operation: GENERATE_SUBGOALS

generated subgoal:i want to prove "something is kind".

episodic buffer [’episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
prove "something is kind".’]

generated operation: GENERATE_SUBGOALS

generated subgoal:i want to judge whether the facts can prove "something is kind". OR i want to judge
whether the rules can prove "something is kind".

episodic buffer ["episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether the facts can prove "something is kind".’]

generated operation: GENERATE_SUBGOALS

generated subgoal:i want to judge whether fact buffer 1 can prove "something is kind". OR i want to
judge whether fact buffer 2 can prove "something is kind". OR i want to judge whether fact buffer 3 can
prove "something is kind".

episodic buffer ["episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether fact buffer 1 can prove "something is kind".’]

generated operation: GET( FACT_BUFFER_1 ) THEN RUN ( EPISODIC_BUFFER, FACT_BUFFER _1
)

buffer input:episodic buffer: there are 3 fact buffers and 3 rule buffers. episodic buffer: i want to judge
whether fact buffer 1 can prove "something is kind". fact 1: the cat chases the rabbit. fact 2: the cat is red.
fact 3: the cat sees the rabbit. fact 4: the cat visits the mouse. fact 5: the lion is green. operator: RUN </s>
generated answer:false, CWA.

episodic buffer [’episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether fact buffer 2 can prove "something is kind".’]

generated operation: GET( FACT_BUFFER_2 ) THEN RUN ( EPISODIC_BUFFER, FACT_BUFFER_2
)

buffer input:episodic buffer: there are 3 fact buffers and 3 rule buffers. episodic buffer: i want to judge
whether fact buffer 2 can prove "something is kind". fact 6: the lion visits the rabbit. fact 7: the mouse
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does not see the cat. fact 8: the mouse sees the lion. fact 9: the mouse visits the cat. fact 10: the mouse
does not visit the lion. operator: RUN </s>
generated answer:false, CWA.

episodic buffer [’episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether fact buffer 3 can prove "something is kind".’]

generated operation: GET( FACT_BUFFER_3 ) THEN RUN ( EPISODIC_BUFFER, FACT_BUFFER_3
)

buffer input:episodic buffer: there are 3 fact buffers and 3 rule buffers. episodic buffer: i want to judge
whether fact buffer 3 can prove "something is kind". fact 11: the rabbit sees the cat. operator: RUN </s>
generated answer:false, CWA.

episodic buffer ["episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether the rules can prove "something is kind".’]

generated operation: GENERATE_SUBGOALS

generated subgoal:i want to judge whether rule buffer 1 can prove "something is kind". OR i want to
judge whether rule buffer 2 can prove "something is kind". OR i want to judge whether rule buffer 3 can
prove "something is kind".

episodic buffer [’episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether rule buffer 1 can prove "something is kind".’]

generated operation: GET( RULE_BUFFER _1 ) THEN RUN ( EPISODIC_BUFFER, RULE_BUFFER _1
)

buffer input:episodic buffer: there are 3 fact buffers and 3 rule buffers. episodic buffer: i want to judge
whether rule buffer 1 can prove "something is kind". rule 1: if something is red and kind then it does not
visit the cat. rule 2: if something sees the cat then it is not kind. rule 3: if something does not visit the
rabbit then it is big. operator: RUN </s>

generated answer:false

episodic buffer ["episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether rule buffer 2 can prove "something is kind".’]

generated operation: GET( RULE_BUFFER_2 ) THEN RUN ( EPISODIC_BUFFER, RULE_BUFFER_2
)

buffer input:episodic buffer: there are 3 fact buffers and 3 rule buffers. episodic buffer: i want to judge
whether rule buffer 2 can prove "something is kind". rule 4: if something chases the cat then the cat sees
the lion. rule 5: if the rabbit visits the mouse and the rabbit is big then the mouse visits the lion. rule 6: if
something is green then it sees the rabbit. operator: RUN </s>

generated answer:false

episodic buffer [’episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether rule buffer 3 can prove "something is kind".’]

generated operation: GET( RULE_BUFFER_3 ) THEN RUN ( EPISODIC_BUFFER, RULE_BUFFER_3
)

buffer input:episodic buffer: there are 3 fact buffers and 3 rule bufters. episodic buffer: i want to judge
whether rule buffer 3 can prove "something is kind". rule 7: if something chases the rabbit and it sees the
mouse then the mouse sees the lion. rule 8: if something sees the lion and it is not blue then it is kind.
rule 9: if something is kind then it chases the cat. operator: RUN </s>

generated answer:according to rule 8, i need to prove something sees the lion and something is not blue.

episodic buffer [’episodic buffer: there are 3 fact buffers and 3 rule buffers.’, "episodic buffer: according
to rule 8, 1 need to prove something sees the lion and something is not blue.’]
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generated operation: GENERATE_SUBGOALS
generated subgoal:i want to prove "something sees the lion". AND i want to prove "something is not
blue".

episodic buffer [’episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
prove "something sees the lion".’]

generated operation: GENERATE_SUBGOALS

generated subgoal:i want to judge whether the facts can prove "something sees the lion". OR i want to
judge whether the rules can prove "something sees the lion".

episodic buffer [’episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether the facts can prove "something sees the lion".’]

generated operation: GENERATE_SUBGOALS

generated subgoal:i want to judge whether fact buffer 1 can prove "something sees the lion". OR i want to
judge whether fact buffer 2 can prove "something sees the lion". OR i want to judge whether fact buffer 3
can prove "something sees the lion".

episodic buffer [’episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether fact buffer 1 can prove "something sees the lion".’]

generated operation: GET( FACT_BUFFER _1 ) THEN RUN ( EPISODIC_BUFFER, FACT BUFFER 1
)

buffer input:episodic buffer: there are 3 fact buffers and 3 rule buffers. episodic buffer: i want to judge
whether fact buffer 1 can prove "something sees the lion". fact 1: the cat chases the rabbit. fact 2: the cat
is red. fact 3: the cat sees the rabbit. fact 4: the cat visits the mouse. fact 5: the lion is green. operator:
RUN </s>

generated answer:false, CWA.

episodic buffer ["episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether fact buffer 2 can prove "something sees the lion".’]

generated operation: GET( FACT_BUFFER_2 ) THEN RUN ( EPISODIC_BUFFER, FACT_BUFFER_2
)

buffer input:episodic buffer: there are 3 fact buffers and 3 rule buffers. episodic buffer: i want to judge
whether fact buffer 2 can prove "something sees the lion". fact 6: the lion visits the rabbit. fact 7: the
mouse does not see the cat. fact 8: the mouse sees the lion. fact 9: the mouse visits the cat. fact 10: the
mouse does not visit the lion. operator: RUN </s>

generated answer:true, this is confirmed by fact 8.

episodic buffer [’episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
prove "something is not blue".’]

generated operation: GENERATE_SUBGOALS

generated subgoal:i want to judge whether the facts do not contradict "something is not blue". AND i
want to judge whether the rules do not contradict "something is not blue".

episodic buffer [’episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether the facts do not contradict "something is not blue".’]

generated operation: GENERATE_SUBGOALS

generated subgoal:i want to judge whether fact buffer 1 does not contradict "something is not blue". AND
i want to judge whether fact buffer 2 does not contradict "something is not blue". AND i want to judge
whether fact buffer 3 does not contradict "something is not blue".

episodic buffer [’episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
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judge whether fact buffer 1 does not contradict "something is not blue".’]

generated operation: GET( FACT_BUFFER_1 ) THEN RUN ( EPISODIC_BUFFER, FACT_BUFFER _1
)

buffer input:episodic buffer: there are 3 fact buffers and 3 rule buffers. episodic buffer: i want to judge
whether fact buffer 1 does not contradict "something is not blue". fact 1: the cat chases the rabbit. fact 2:
the cat is red. fact 3: the cat sees the rabbit. fact 4: the cat visits the mouse. fact 5: the lion is green.
operator: RUN </s>

generated answer:true, NAF.

episodic buffer ["episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether fact buffer 2 does not contradict "something is not blue".’]

generated operation: GET( FACT_BUFFER_2 ) THEN RUN ( EPISODIC_BUFFER, FACT_BUFFER_2
)

buffer input:episodic buffer: there are 3 fact buffers and 3 rule buffers. episodic buffer: i want to judge
whether fact buffer 2 does not contradict "something is not blue". fact 6: the lion visits the rabbit. fact 7:
the mouse does not see the cat. fact 8: the mouse sees the lion. fact 9: the mouse visits the cat. fact 10:
the mouse does not visit the lion. operator: RUN </s>

generated answer:true, NAF.

episodic buffer [’episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether fact buffer 3 does not contradict "something is not blue".’]

generated operation: GET( FACT_BUFFER_3 ) THEN RUN ( EPISODIC_BUFFER, FACT_BUFFER _3
)

buffer input:episodic buffer: there are 3 fact buffers and 3 rule buffers. episodic buffer: i want to judge
whether fact buffer 3 does not contradict "something is not blue". fact 11: the rabbit sees the cat. operator:
RUN </s>

generated answer:true, NAF.

episodic buffer [’episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether the rules do not contradict "something is not blue".’]

generated operation: GENERATE_SUBGOALS

generated subgoal:i want to judge whether rule buffer 1 does not contradict "something is not blue". AND
i want to judge whether rule buffer 2 does not contradict "something is not blue". AND i want to judge
whether rule buffer 3 does not contradict "something is not blue".

episodic buffer ["episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether rule buffer 1 does not contradict "something is not blue".’]

generated operation: GET( RULE_BUFFER _1 ) THEN RUN ( EPISODIC_BUFFER, RULE_BUFFER _1
)

buffer input:episodic buffer: there are 3 fact buffers and 3 rule buffers. episodic buffer: i want to judge
whether rule buffer 1 does not contradict "something is not blue". rule 1: if something is red and kind
then it does not visit the cat. rule 2: if something sees the cat then it is not kind. rule 3: if something does
not visit the rabbit then it is big. operator: RUN </s>

generated answer:true

episodic buffer [’episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether rule buffer 2 does not contradict "something is not blue".’]

generated operation: GET( RULE_BUFFER_2 ) THEN RUN ( EPISODIC_BUFFER, RULE_BUFFER_2
)

buffer input:episodic buffer: there are 3 fact buffers and 3 rule buffers. episodic buffer: i want to judge
whether rule buffer 2 does not contradict "something is not blue". rule 4: if something chases the cat then
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the cat sees the lion. rule 5: if the rabbit visits the mouse and the rabbit is big then the mouse visits the
lion. rule 6: if something is green then it sees the rabbit. operator: RUN </s>
generated answer:true

episodic buffer [’episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether rule buffer 3 does not contradict "something is not blue".’]

generated operation: GET( RULE_BUFFER_3 ) THEN RUN ( EPISODIC_BUFFER, RULE_BUFFER_3
)

buffer input:episodic buffer: there are 3 fact buffers and 3 rule buffers. episodic buffer: i want to judge
whether rule buffer 3 does not contradict "something is not blue". rule 7: if something chases the rabbit
and it sees the mouse then the mouse sees the lion. rule 8: if something sees the lion and it is not blue
then it is kind. rule 9: if something is kind then it chases the cat. operator: RUN </s>

generated answer:true

episodic buffer ["episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
prove "the cat is not blue".’]

generated operation: GENERATE_SUBGOALS

generated subgoal:i want to judge whether the facts do not contradict "the cat is not blue". AND i want to
judge whether the rules do not contradict "the cat is not blue".

episodic buffer ["episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether the facts do not contradict "the cat is not blue".’]

generated operation: GENERATE_SUBGOALS

generated subgoal:i want to judge whether fact buffer 1 does not contradict "the cat is not blue". AND i
want to judge whether fact buffer 2 does not contradict "the cat is not blue". AND i want to judge whether
fact buffer 3 does not contradict "the cat is not blue".

episodic buffer ["episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether fact buffer 1 does not contradict "the cat is not blue".’]

generated operation: GET( FACT_BUFFER_1 ) THEN RUN ( EPISODIC_BUFFER, FACT_BUFFER _1
)

buffer input:episodic buffer: there are 3 fact buffers and 3 rule buffers. episodic buffer: i want to judge
whether fact buffer 1 does not contradict "the cat is not blue". fact 1: the cat chases the rabbit. fact 2: the
cat is red. fact 3: the cat sees the rabbit. fact 4: the cat visits the mouse. fact 5: the lion is green. operator:
RUN </s>

generated answer:true, NAF.

episodic buffer [’episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether fact buffer 2 does not contradict "the cat is not blue".’]

generated operation: GET( FACT_BUFFER_2 ) THEN RUN ( EPISODIC_BUFFER, FACT_BUFFER_2
)

buffer input:episodic buffer: there are 3 fact buffers and 3 rule buffers. episodic buffer: i want to judge
whether fact buffer 2 does not contradict "the cat is not blue". fact 6: the lion visits the rabbit. fact 7: the
mouse does not see the cat. fact 8: the mouse sees the lion. fact 9: the mouse visits the cat. fact 10: the
mouse does not visit the lion. operator: RUN </s>

generated answer:true, NAF.

episodic buffer ["episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether fact buffer 3 does not contradict "the cat is not blue".’]
generated operation: GET( FACT_BUFFER_3 ) THEN RUN ( EPISODIC_BUFFER, FACT_BUFFER_3

)
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buffer input:episodic buffer: there are 3 fact buffers and 3 rule buffers. episodic buffer: i want to judge
whether fact buffer 3 does not contradict "the cat is not blue". fact 11: the rabbit sees the cat. operator:
RUN </s>

generated answer:true, NAF.

episodic buffer [’episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether the rules do not contradict "the cat is not blue".’]

generated operation: GENERATE_SUBGOALS

generated subgoal:i want to judge whether rule buffer 1 does not contradict "the cat is not blue". AND i
want to judge whether rule buffer 2 does not contradict "the cat is not blue". AND i want to judge whether
rule buffer 3 does not contradict "the cat is not blue".

episodic buffer ["episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether rule buffer 1 does not contradict "the cat is not blue".’]

generated operation: GET( RULE_BUFFER_1 ) THEN RUN ( EPISODIC_BUFFER, RULE_BUFFER_1
)

buffer input:episodic buffer: there are 3 fact buffers and 3 rule buffers. episodic buffer: i want to judge
whether rule buffer 1 does not contradict "the cat is not blue". rule 1: if something is red and kind then it
does not visit the cat. rule 2: if something sees the cat then it is not kind. rule 3: if something does not
visit the rabbit then it is big. operator: RUN </s>

generated answer:true

episodic buffer ["episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether rule buffer 2 does not contradict "the cat is not blue".’]

generated operation: GET( RULE_BUFFER_2 ) THEN RUN ( EPISODIC_BUFFER, RULE_BUFFER_2
)

buffer input:episodic buffer: there are 3 fact buffers and 3 rule buffers. episodic buffer: i want to judge
whether rule buffer 2 does not contradict "the cat is not blue". rule 4: if something chases the cat then the
cat sees the lion. rule 5: if the rabbit visits the mouse and the rabbit is big then the mouse visits the lion.
rule 6: if something is green then it sees the rabbit. operator: RUN </s>

generated answer:true

episodic buffer [’episodic buffer: there are 3 fact buffers and 3 rule buffers.’, ’episodic buffer: i want to
judge whether rule buffer 3 does not contradict "the cat is not blue".’]

generated operation: GET( RULE_BUFFER_3 ) THEN RUN ( EPISODIC_BUFFER, RULE_BUFFER_3
)

buffer input:episodic buffer: there are 3 fact buffers and 3 rule buffers. episodic buffer: i want to judge
whether rule buffer 3 does not contradict "the cat is not blue". rule 7: if something chases the rabbit and it
sees the mouse then the mouse sees the lion. rule 8: if something sees the lion and it is not blue then it is
kind. rule 9: if something is kind then it chases the cat. operator: RUN </s>

generated answer:true
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