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Abstract

Transformer based architectures are recently
used for the task of answering questions over
tables. In order to improve the accuracy on
this task, specialized pre-training techniques
have been developed and applied on millions
of open-domain web tables. In this paper,
we propose two novel approaches demonstrat-
ing that one can achieve superior performance
on table QA task without even using any of
these specialized pre-training techniques. The
first model, called RCI interaction, leverages
a transformer based architecture that indepen-
dently classifies rows and columns to iden-
tify relevant cells. While this model yields
extremely high accuracy at finding cell val-
ues on recent benchmarks, a second model
we propose, called RCI representation, pro-
vides a significant efficiency advantage for on-
line QA systems over tables by materializ-
ing embeddings for existing tables. Experi-
ments on recent benchmarks prove that the pro-
posed methods can effectively locate cell val-
ues on tables (up to ~98% Hit@1 accuracy on
WikiSQL lookup questions). Also, the inter-
action model outperforms the state-of-the-art
transformer based approaches, pre-trained on
very large table corpora (TAPAS and TABERT),
achieving ~3.4% and ~18.86% additional pre-
cision improvement on the standard WikiSQL
benchmark!.

1 Introduction

Tabular data format is a commonly used layout in
domain specific enterprise documents as well as
open domain webpages to store structured informa-
tion in a compact form (Pasupat and Liang, 2015;
Canim et al., 2019). In order to make use of these
resources, many techniques have been proposed for
the retrieval of tables (Cafarella et al., 2008; Zhang
and Balog, 2018; Venetis et al., 2011; Shraga et al.,
2020; Sun et al., 2016). Given a large corpus of

"The source code and the models we built are available at
https://github.com/IBM/row-column-intersection.

documents, the goal in these studies is to retrieve
top-k relevant tables based on given keyword(s).
The user is then expected to skim through these
tables and locate the relevant cell values which is
a tedious and time consuming task. More recently,
popular search engines made significant improve-
ment in understanding natural language questions
and finding the answers within passages, owing
to the developments in transformer based machine
reading comprehension (MRC) systems (Rajpurkar
et al., 2016, 2018; Kwiatkowski et al., 2019; Pan
et al., 2019; Alberti et al., 2019a). One natural ex-
tension of these systems is to answer questions over
tables. These questions are broadly classified into
two types: Lookup and Aggregation. Lookup ques-
tions require returning exact strings from tables
such as cell values whereas Aggregation questions
are executed by performing an arithmetic opera-
tion on a subset of the column cells, such as Min(),
Max(), Average() and Count(). For look-up ques-
tions, the users can verify if the returned cell values
from the table(s) are correct, while this is not ap-
plicable for Aggregation questions because a scalar
value is returned as an answer. Our primary focus
in this paper is on Lookup questions since the an-
swers are verifiable by users although our proposed
techniques outperform the state-of-the-art (SOTA)
approaches on both question types.

In this paper, we propose a new approach to ta-
ble QA that independently predicts the probability
of containing the answer to a question in each row
and column of a table. By taking the Row and
Column Intersection (RCI) of these probabilistic
predictions, RCI gives a probability for each cell
of the table. These probabilities are either used to
answer questions directly or highlight the relevant
regions of tables as a heatmap, helping users to eas-
ily locate the answers over tables (See Figure 1 for
a question answered with the help of a heatmap).
We developed two models for RCI, called RCI in-
teraction and RCI representation.
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Varsity

Institution Location Enrollment Nickname

Sports
Maryland College Park, Maryland 37,641 Terrapins 20
Navy Annapolis, Maryland 4,576 Midshipmen 30
North Carolina Chapel Hill, North Carolina 29,340 Tar Heels 28
Clemson University Clemson, South Carolina 20,576 Tigers 19
North Carolina State Raleigh, North Carolina 34,767 Wolfpack 25
University of Virginia Charlottesville, Virginia 20,895 Cavaliers 25

Figure 1: Answering a question “What is the Clemson
Tiger’s enrollment?” over a table with a heatmap

In order to evaluate these approaches, we also
propose a weakly supervised MRC system as a
strong baseline to identify / "read" relevant cells
of a table. In this baseline approach, we convert
tables into passages and extract a relevant span of
text within these passages.

The interaction model is designed to provide
very high accuracy on finding cell values over ta-
bles for a given natural language question. We
demonstrate that without even using any special-
ized pre-trained models, we can achieve up-to
~98% Hit@1 accuracy on finding cell values of ta-
bles for lookup questions from the WikiSQL bench-
mark. Also, the interaction model outperforms
the state-of-the-art transformer based approaches,
TAPAS (Herzig et al., 2020) and TABERT (Yin
et al., 2020), achieving ~3.4% and ~18.86% addi-
tional precision improvement on the standard Wik-
iSQL benchmark, containing both lookup and ag-
gregation questions.

While the interaction model yields very high
accuracy on the benchmarks, the representation
model has the advantage of pre-computing the em-
beddings for all tables in a corpus and storing them
for online query processing. Once a user query is
received, the most relevant tables can be retrieved
from a table retrieval system and relevant cell val-
ues can be highlighted using the existing embed-
dings of the tables, resulting in less computation
per received user query, as opposed to running ta-
bles over expensive transformer architecture for
every received query.

The specific contributions of this paper are as
follows:

e An MRC based strong baseline for table
QA task: We investigate a transfer learning
approach by utilizing a fully supervised read-
ing comprehension system built on top of a
large pre-trained language model. Specifi-
cally, it is first fine-tuned on SQuAD then
on Natural Questions and lastly trained on the
table datasets. The final model is used to iden-

tify relevant cells of a table for a given natural
language question.

¢ A transformer based interaction model for
the table QA task: We propose a model for
table QA task that concatenates a textual rep-
resentation of each row (or column) to the text
of the question and classifies the sequence pair
as positive (the row/column contains the an-
swer) or negative (the row/column does not
contain the answer). The proposed approach
yields very high accuracy on our benchmarks,
outperforming the SOTA models.

e A transformer based representation model
for the table QA task: We propose a repre-
sentation model that builds vector represen-
tations of the question and each row (or col-
umn) to compare the resulting vectors to de-
termine if the row (or column) contains the an-
swer. The proposed approach is preferred for
efficiency purposes on online table retrieval
systems since it enables materializing embed-
dings for existing tables and re-using them
during online question answering over multi-
ple tables.

In the following sections, we first review the
prior work on QA systems over tables as well as
table search from large corpora in Section 2. We
then describe a weakly supervised machine reading
comprehension (MRC) system as a baseline that is
capable of answering questions over tables in Sec-
tion 3. In Section 4, we introduce two models that
decompose TableQA as the intersection between
rows and columns of a table using a transformer
architecture. Experimental results are reported and
discussed in Section 5 and finally Section 6 con-
cludes the paper and discusses the future work.

2 Related Work

QA from text: There is plenty of work on QA
from plain text (Brill et al., 2002; Lin, 2007; Pasca,
2003; Kwiatkowski et al., 2019; Pan et al., 2019).
Typical strategies rely on token overlap between
the question and passage text either based on a bag
of word statistics or contextualized language model
representations. In either case, tabular structure is
not leveraged to capture semantic relationships be-
tween rows and columns. As we show in Section 5,
these strategies are insufficient for answering ques-
tions over tables with high precision.
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QA over tables: Our work mostly relates to the
previous research on QA over tables (Pasupat and
Liang, 2015; Sun et al., 2016; Dasigi et al., 2019).
They center around answering factoid questions
and return the exact cell of a table that answers
the query. We briefly describe here how these
works are different. Pasupat and Liang (2015) as-
sume access to the ‘gold’ table that contains the
answer to the input question. They build a seman-
tic parser that parses the query to a logical form.
They likewise convert the table into a knowledge-
graph and execute the logical form on it to get the
answer. A more advanced semantic parsing based
methodology has been recently proposed by Dasigi
et al. (2019). This system is pre-trained on Wik-
iTablesQuestions (Pasupat and Liang, 2015). The
proposed approach leverages an LSTM encoder-
decoder model where tables are first converted to a
knowledge-graph and word tokens in the questions
are linked to table entities (columns and cells). The
questions and linked table entities are then encoded
into representation vectors which are decoded to ex-
ecutable A-DCS logical forms. This logical forms
are executed over a knowledge graph to get answer
predictions. Our approach is different, since we
do not convert natural language questions into logi-
cal forms and execute them on tables. Instead, we
leverage transformer architectures pre-trained on
large corpora and further trained on finding cell
values on tables. In Section 5, we show that we
achieve significant improvement over this approach
without using any semantic parser technique.

Sun et al. (2016) focus on the table retrieval
problem over table corpora by leveraging the con-
tent of cell values and headers. For a given query,
they extract answers from millions of tables in the
provided corpus. They construct a unified chain
representation of both the input question and the
table cells and then find the table cell chain that
best matches the question chain. As opposed to this
work, we primarily focus on answering questions
over a single table rather than the retrieval of top-k
tables from a corpus.

More recently, transformer based pre-training
approaches have been introduced in TABERT (Yin
et al., 2020) and TAPAS (Herzig et al., 2020) to
improve accuracy for table QA. TABERT has been
pre-trained on 26 million tables and NL sentences
extracted from Wikipedia and WDC WebTable Cor-
pus (Yin et al., 2020). The model can be plugged
into a neural semantic parser as an encoder to pro-

vide contextual embeddings for tables. Herzig et al.
on the other hand, claim that semantic parsers in-
cur an extra overhead of computing intermediate
logical representations which can be avoided by
leveraging fine-tuned models to answer questions
over tables. The model in TAPAS has been pre-
trained on about 6 million tables extracted from
Wikipedia content. Our work is different from both
TAPAS and TABERT. First and foremost, our focus
in this paper is not on pre-training a new model
for table QA, but rather on leveraging the existing
language models to find the connection between
a question and table columns/rows with very high
accuracy. Second, our goal is to provide a heatmap
over tables on an end-to-end table retrieval system
to help users to quickly identify the regions of ta-
bles where the answers would most likely appear.
Because the transformer architectures are quite ex-
pensive to query, the representation model we pro-
pose radically reduces the computational overhead
during online query processing.

Table search over the web: Another active re-
search area in NLP is searching over web ta-
bles. There are numerous search algorithms that
have been explored such as keyword search (Ca-
farella et al., 2008; Zhang and Balog, 2018; Venetis
et al., 2011; Shraga et al., 2020), retrieve simi-
lar tables (Das Sarma et al., 2012), retrieve tables
based on column names (Pimplikar and Sarawagi,
2012) and adding new columns to existing entity
lists (Yakout et al., 2012; Zhang and Chakrabarti,
2013). This thread of work focuses on retrieval
of top-k tables with high precision from large cor-
pora, rather than finding relevant rows and columns
within tables.

3 MRC Model

We provide a brief description of our underlying
Machine Reading Comprehension (MRC) model
architecture, which we use as a strong baseline.
The architecture is inspired by (Alberti et al.,
2019b; Pan et al., 2019; Glass et al., 2020) and
direct interested readers to their papers for more de-
tails. Our MRC model follows the approach intro-
duced by (Devlin et al., 2019) of starting with a pre-
trained transformer based language model (LM)
and then fine-tuning MRC specific feed-forward
layers on both general question answering datasets
(SQuAD 2.0 and NQ) as well as the table specific
question answers associated with the datasets in
Section 5.
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We use ALBERT (Lan et al., 2020) as the un-
derlying LM similar to models which achieve
SOTA on the SQuAD 2.0 leaderboard (Zhang et al.,
2020b,a) at the time of writing. More specifically,
we show results starting from the weights and di-
mensions of the base v2 version (25M parameters)
of the LM shared by (Lan et al., 2020). We also
experiment with the xxlarge v2 version (235M pa-
rameters) as well. The input to the model is a token
sequence (X) consisting of a question, passage,
and special markers (a [C'LS] token for answerabil-
ity classification and [SEP] tokens to dileneate
between the query and passage). The input to-
ken sequence is passed through a deep Transformer
(Vaswani et al., 2017) network to output a sequence
of contextualized token representations H.

MRC then adds two dense layers followed by a

1 :
softmax oy = softmar(W1H),

a. = softmar(WoH),

where W1, Wy € R1*DPe D, denotes the di-
mensionality of the embeddings ( 768 for base v2 ).
ol and o denote the probability of the /" token
in the sequence being the answer beginning and
end, respectively.

The model is trained using binary cross-entropy
loss at each token position based on whether or not
the annotated correct answer begins or ends at the
t*" token. Unanswerable questions have their begin
and end offsets set to the [C'LS] token position.

At prediction time, a score is calculated for each
possible span by summing the aZj and o’ at each
possible ¢ and j combination to identify the max

[CLS]
b

scoring answer span. The sum of the o and

aLCLS} is then subtracted from this max scoring
answer span to produce a final score that can be
used for thresholding (i.e., deciding whether to
predict an answer or refrain from answering a ques-
tion). A few modifications are made in line with
(Alberti et al., 2019b) to use MRC for the NQ
dataset which introduces additional answer types
[short,long, yes, no, null]. Refer to the appendix
for these details.

We fine-tune the model with the SQuAD 2.0
dataset and then the NQ dataset in line with (Pan
etal., 2019; Glass et al., 2020), to produce a generic
RC model comparable to the current SOTA. We
then train for an additional epoch on the subset of
NQ which consists of short answer questions that
need to be answered by lookup inside an HTML
table. This is about 5% of the total NQ data

(~ 15,500 question-answer pairs). Note that in
these cases, the input “passage” text consists of tex-
tual representation of tables (i.e., we introduce tabs
between columns and new line characters between
rows); so it is devoid of true row and column struc-
ture. This pre-training and task adaptation strategy
is inline with prior art (Gururangan et al., 2020) in
adapting transformers. Simpler pre-training strate-
gies (e.g. relying only on SQuAD 2.0 or skipping
the table specific epoch of training) were tried and
found to provide similar, but generally worse, per-
formance. So those are excluded from Section 5
for brevity.

Finally, we fine-tune (i.e., train for an additional
epoch) on the training examples (table-question
pairs) associated with the appropriate evaluation
data sets described in Section 5. During this step
we do not have access to exact span offsets in the
ground truth annotations and, instead, use weak
supervision by matching the first occurrence of the
answer text within the textual representation of the
table?.

4 RCI Model Architecture

The Row-Column Intersection model (RCI) is mo-
tivated by the idea of decomposing lookup Table
QA into two operations: the column selection and
the row selection. Combining the predicted answer
probability of each row and the probability of each
column gives a score for all cells in the table. The
highest scoring cell may then be returned as an an-
swer, or highlighting may be applied to the table
to aid a user in locating the relevant information.
Unlike the pointer network of an adapted Machine
Reading Comprehension system (described in Sec-
tion 3), the RCI model always gives a ranked list of
cells rather than answer spans that may cross cell
boundaries.

We observe that the process of identifying the
correct column is often about matching the column
header and the type of values in the column to the
expected answer type of the question. For example
in Table 1, the question has a lexical answer type of
‘party’ and the column header for the correct col-
umn is ‘Party’ and contains values that are political
parties.

Identifying the correct row is often more difficult.
In the example given in Table 1, it is sufficient to
match either of the names in the question to the

2We provide the hyperparameters for the training process
in the appendix.
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value in the ‘Name’ column of the row. Note that
with weak supervision (Min et al., 2019) we do
not know the correct row, so all occurrences of
‘Pro-Administration’ are considered correct.

Name Took Left
office office
Benjamin Contee 1789 1791

Notes /
Events
Anti-Administration

Party

William Pinkney 1791 1791 Pro-Administration  resigned
John Francis Mercer 1792 1793  Anti-Administration
Uriah Forrest 1793 1794 Pro-Administration  resigned

Benjamin Edwards 1795 1795 Pro-Administration

What party was William Pinkney and Uriah For-
rest a part of?

Answer: Pro-Administration

Table 1: Example TableQA over Wikipedia Table

Both the Row and Column models of RCI are
sequence-pair classifiers. The question is one se-
quence and the text sequence representation of the
row or column is the second sequence. We consider
two approaches to the sequence-pair classification
task in RCI: Interaction and Representation. Inter-
action models use the self attention of a transformer
over the concatenated two sequences. This is the
standard approach to sequence-pair classification
tasks, e.g. textual entailment (Devlin et al., 2019)
(Wang et al., 2018), in transformer based systems.

Representation models independently project
each sequence of the sequence-pair to a vector,
then compare those vectors. Representation mod-
els are motivated by the need to improve efficiency
for a practical system. Considering the column
classifier, the interaction model requires running
a transformer over each question plus column se-
quence. In contrast, the representation model can
pre-process the collection of tables, producing a
vector representation of each column for each ta-
ble, independent of any query. Then, at query
time, the query is projected to a vector which is
then combined with the vector for each column
and classified with a single-layer network. On the
WikiTableQuestions-Lookup dev set, we see the
column model’s time drop from 40 seconds to 0.8
seconds on a K80 GPU when ten queries are batch
processed at once.

Let a table with m rows and n columns be de-
fined as a header, H = [hy, ho, ..., h,] and cell
values V = [v;5],1 < i < m,1 < j < n.
A TableQA instance consists of a table, a ques-
tion and a ground truth set of cell indices, T' C
IxJ,I=12..m,J =172 .. n.Inprinciple,

these ground truth cell positions could be anno-
tated with the correct occurrences of the correct
values. However, this form of supervision may be
too difficult to obtain. We use weak supervision:
the ground truth cell indices are found by matching
the ground truth answer strings in the table. To
train the row and column classifier we find ground
truth row and column indices:

T ={i3: (i,j) € T}
Tc:{j|5|i:(i,j)€T}

Although it is possible to naively construct a
sequence representation of columns and rows by
simply space separating the contents of each row
or column, better performance can be achieved by
incorporating the table structure in the sequence
representation. We focus on tables with a single
header for columns, but this method could also be
applied to tables with a hierarchical header, by first
flattening the header.

The row (.5]) and column (SJ‘?) sequence repre-
sentations are formatted as:

S; =P ulhy) @ Colviy)
j=1

85 = Gulhy) & P Guolvig)
=1

Where @ indicates concatenation and the func-
tions (3, and (, delimit the header and cell value
contents. For (;, we append a colon token (°:*)
to the header string, and for ¢,, we append a pipe
token (°|) to the cell value string. The particu-
lar tokens used in the delimiting functions are not
important. Any distinctive tokens can serve since
the transformer will learn an appropriate embed-
ding to represent their role as header and cell value

delimiters.
Considering again the example in Table 1, the
first row would be represented as:

Name : Benjamin Contee | Took office : 1789 |
Left office : 1791 | Party : Anti-Administration |
Notes / Events : |

While the second column would have a sequence
representation of:

Took office : 1789 | 1791 | 1792 | 1793 | 1795 |

Both the interaction and the representation mod-
els use the sequence representation described
above. In the case of the interaction model this
sequence is then appended to the question with
standard [C'LS] and [SEP] tokens to delimit the
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two sequences. This sequence pair is then input to
a transformer encoder, ALBERT. The final hidden
state for the [C'LS] token is used in a linear layer
followed by a softmax to classify the column as
either containing the answer or not.

In the representation model shown in Figure 2
the representations of the question (r4) and the
jth column sequence (r.) are first computed inde-
pendently. The representations are taken from the
vector that the transformer model produces for the
[C'LS] input token. These vectors are then concate-
nated (indicated as :) with their element-wise prod-
uct (indicated as ®) and the element-wise square
of their differences. The probability that this col-
umn is the target for the question is then given by a
softmax over a linear layer.

rs =rq—Trc
Vge =TIqiTc ! rqg@Tre s Qrs
p(j € T;) = softmax(Wvge + b)o

l Linear Layer : | p(yes) R @
and Softmax p(no)
[ Linear Layer and Softmax ] T
Weak
Supervision
[ Tl Tg @ e (1g-1.) & (g - 1) ] Label
Iy T,

[ ALBERTq ] [ ALBERT. ]

t t t 1
[ CLs ][ Question ] [ LS ][ Se ]

Figure 2: RCI Representation Model

Extension to aggregation questions: Although
our focus is on lookup questions, the RCI model
can be extended to aggregation questions with the
addition of a question classifier. Another trans-
former is trained to classify the sequence-pair of
the question and the table header into one of six
categories: lookup, max, min, count, sum and aver-
age. The table header is relevant because a question
such as “How many wins do the Cubs have?” can
be lookup, count or sum depending on the structure
of the table.

Taking a threshold on the cell level confidences
of the RCI model and aggregating by the predicted
question type produces the final answer, either a
list of cells for lookup questions or a single number
for aggregation questions.

This approach requires full supervision, we must
know the cells to be aggregated to train the RCI

row and column classifiers as well as the type of
aggregation to train the question classifier. This
type of supervision is available in the WikiSQL
dataset, but not in WikiTableQuestions.

5 [Evaluation

To evaluate these three approaches, we adapt three
standard TableQA datasets: WikiSQL (Zhong et al.,
2017), WikiTableQuestions (Pasupat and Liang,
2015) and TabMCQ (Jauhar et al., 2016). Wik-
iSQL and WikiTableQuestions include both lookup
questions as well as aggregation questions. As men-
tioned in Section 1, our primary focus in this paper
is on lookup questions that require selection and
projection operations over tables (i.e., identifying
the row and column of a table with very high pre-
cision for a given natural language question). We
are releasing the processing and evaluation code
for the datasets to support reproducibility’. Table 2
gives a summary of these datasets.

In WikiSQL, the ground truth SQL query is pro-
vided for each question, so questions involving
an aggregation operation can be automatically ex-
cluded. The lookup questions are 72% of the Wik-
iSQL benchmark. WikiSQL has some questions
(< 3%) with multiple answers. We treat these as a
list of relevant items and use information retrieval
metrics to measure the quality of a predicted ranked
list of cells.

TabMCQ is a multiple-choice, lookup TableQA
dataset over general science tables. We discard the
multiple-choice setting and treat it as a standard
open-ended QA task. However, some TabMCQ
tables are very large. Of the 68 tables, 17 have
more than 50 rows, with two tables containing over
a thousand rows. We down-sample the rows that
are not relevant for a given question, limiting the
largest table size to 50 rows. Unlike the other two
datasets, these tables are not Wikipedia tables and
have an unusual format. A sample TabMCQ table
is provided in the appendix.

WikiTableQuestions does not provide a defini-
tive indication for what questions are lookup ques-
tions. To identify these questions we first filter
questions with words indicating an aggregation,
such as ‘average’, ‘min’, ‘max’, etc. These ques-
tions were further filtered manually to get the
WikiTableQuestions-Lookup set.

In order to evaluate our proposed approaches
on these datasets we built three different systems

3https://github.com/IBM/row-column-intersection

1217



Dataset Train Dev Test

WikiSQL 40606 6017 11324

TabMCQ 5453 1819 1820
WikiTableQuestions 851 124 241

Table 2: Lookup TableQA Dataset Sizes

and also used three existing models: IS-SP, pro-
vided by (Dasigi et al., 2019), TABERT (Yin et al.,
2020) and TAPAS (Herzig et al., 2020). IS-SP is a
semantic parsing based model trained on WikiTa-
blesQuestions (Pasupat and Liang, 2015) dataset
(See Section 2 for the details of this work). For
building their model we used the code provided
in (Gardner et al., 2020). For TABERT we trained
the model for WikiSQL using the lookup subset,
and for WikiTableQuestions we used the full train-
ing set and applied to the lookup subset. For TAPAS
we used the trained BASE (reset) models* for Wik-
1SQL and applied to the lookup subsets of the dev
and test sets.

The MRC and MRC,,; models are based on Ma-
chine Reading Comprehension, using the base v2
and xxlarge v2 versions of ALBERT. Because this
model returns a span rather than a cell prediction,
we match each of the top-k span predictions to the
closest cell, the cell with the lowest difference in
its character offsets. In case multiple of the top-k
predictions map to the same cell, these predictions
are merged.

We also evaluate the two approaches to RCI:
interaction (RClyer) and representation (RClyep;).
Both models use the base v2 version of ALBERT.
Using the xxlarge v2 ALBERT, we also train an-
other RCI interaction model, RClxy;. For the repre-
sentation model we found comparable performance
on the column classifier but much lower perfor-
mance on the row classifier. Therefore the RClep,
model uses a representation based classifier for
columns, while still using the interaction classifier
for rows. The RCI;,.; model uses interaction classi-
fiers for both rows and columns. Because WikiSQL
is the largest dataset by far, for TabMCQ and Wik-
iTableQuestions we first train models on WikiSQL,
then fine tune on the target dataset. This gives small
but significant gains for TabMCQ but is critical to
good performance on WikiTableQuestions.

All models except TAPAS produce a ranked list
of top-k predictions. We evaluate these predictions
using the metrics of Mean Reciprocal Rank (MRR)

“https://github.com/google-research/tapas

and Hit@1. Mean Reciprocal Rank is computed by
finding the rank of the first correct cell prediction
for each question and averaging its reciprocal. If a
correct cell is not present in the top-k predictions,
it is considered to have an infinite rank. Hit@1
simply measures the fraction of questions that are
correctly answered by the first cell prediction.

5.1 Results

Table 3 shows the results on the lookup versions
of WikiSQL, TabMCQ, and WikiTableQuestions.
Both the interaction and the representation models
of RCI outperform all other methods on WikiSQL,
TabMCQ, and WikiTableQuestions. Using the rep-
resentation model for the column classifier reduces
performance by less than two percent on WikiSQL,
and less than three percent on TabMCQ, but up to
seven percent on WikiTableQuestions.

On two of the three datasets both RCl;yer and
the more efficient RClep,; outperform MRCyy; with
far fewer parameters and computational cost. Sim-
ilarly, RCI with ALBERT-base outperforms even
the large version of TAPAS trained on WikiSQL,
getting 94.6% Hit@1 compared to the 89.43%
Hit@1 of TAPAS;4;ge.

Dev Test
Model MRR Hit@1 MRR Hit@1
WikiSQL-Lookup
IS-SP  0.752  67.11% 0.769  69.45%
MRC 0.766 66.91% 0.764  66.52%
TABERT 0.759  70.78% 0.761  71.16%
TAPAS NA 91.32% NA 89.02%
RCliner 0.963  94.48% 0.962 94.60%
RClepr 0950 92.55% 0948  92.72%
MRCya  0.893  84.89% 0.896  85.33%
TAPAS arge NA 92.02% NA 89.43%
RCLy 0.986 97.89% 0.987 97.99%
TabMCQ-Lookup
IS-SP 0.375  19.62% 0.301 16.86%
MRC 0.690 60.03% 0.679  59.29%
RCliner 0.746  67.01% 0.742  66.26%
RClepr  0.727  64.16% 0.725 63.74%
MRCya  0.708  63.00% 0.705  62.64%
RCL 0.758 69.10% 0.752 68.35%
WikiTableQuestions-Lookup
IS-SP 0.663  58.87% 0.644  52.69%
MRC 0.681 58.87% 0.601  46.47%
TABERT 0.686 61.29% 0.646  56.02%
RCliner 0.734 66.94% 0.708 61.83%
RClepr  0.708  62.90% 0.656  54.77%
MRCya  0.783  69.35% 0.732  64.73%
RCLi  0.796 72.58% 0.794 72.20%

Table 3: Results on TableQA Lookup Datasets

We also compare the performance of the RCI
model adapted to aggregation questions to the state-
of-the-art TAPAS reported results on WikiSQL. We
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Model Dev Test
Wang et al. (2019) 79.4%  79.3%
Min et al. (2019) 84.4%  83.9%
TAPASgrge  88.0%  86.4%
TABERT 70.53% 70.94%
RCly 89.7% 89.8%

Table 4: WikiSQL (including aggregation) accuracy

use the evaluation script provided by TAPAS to
produce exactly comparable accuracy numbers for
the full WikiSQL dataset. Table 4 shows the RCI
model gains over three percent, even without table
specific pre-training. It also outperforms TABERT
model by a large margin of 18.86%.

In Section 4 we described the method to trans-
form a table into sequence representations of the
rows and columns. We do an ablation study on
the two larger datasets to understand the impact
of incorporating table structure into the sequence
representation relative to simply space separating
the cell contents. Table 5 shows that we make mod-
erate but significant and consistent gains with this
approach, over two percent in Hit@1.

WikiSQL TabMCQ
Model MRR Hit@1 MRR Hit@1
RCliner 0.963  94.48% 0.746 67.01%
-formatting 0947 92.26% 0.733  64.82%

Table 5: Results on Dev Sets, with formatting ablated

We also decompose the performance of the
tested systems in terms of row and column accu-
racy. The top predicted cell, if wrong, could have
the wrong row, the wrong column, or both. Ta-
ble 6 shows that predicting the correct column is
generally easier than predicting the correct row.
An interesting exception occurs with MRC on the
WikiSQL benchmark: the row prediction is more
accurate than the column prediction. For the MRC
system, the table is a sequence of column headers,
followed by a sequence of rows. Since the table
is serialized in row-major order, all of the relevant
information for a row is present locally, while the
information for columns is distributed through the
table sequence representation.

The RClI;,er model is the best at both tasks, with
RCl¢pr having the same performance at the row
level task, since it uses the same model for rows.
The TabMCQ column level performance of MRC
is within two percent of RCljyr, which may be

WikiSQL TabMCQ WTQ
Model Row Col Row Col Row Col
IS-SP  83.1 82.1 70.1 415 622 822
MRC 852 738 64.6 905 564 788
RCliyer 96.7 98.0 73.6 922 643 921
RClrepr 967 960 73.6 89.0 643 85.1

Table 6: Row/Column Accuracy Results on Test Sets

surprising, especially considering its performance
on WikiSQL. TabMCQ tables are constructed in
an unusual way that permits high column predic-
tion performance for an MRC system. The rows
in TabMCQ have the structure of sentences, which
is helpful for a system trained on the SQuAD and
NQ reading comprehension tasks (Refer to the ap-
pendix for a sample TabMCQ table).

5.2 Error Analysis

To better understand the advantages and disad-
vantages of the Row-Column Intersection ap-
proach, we examine the 20 cases in the dev set of
WikiTableQuestions-Lookup where RClj; does
not provide the correct answer in first position
but MRC, does. We find nine cases where we
could identify nothing that in principle prevents
the RClyer model from answering correctly. We
find seven cases where multiple rows need to be
considered together, while the RCI models always
consider rows independently. WikiTableQuestions
includes some questions like Table 7. Although
the answer to this question is a cell in the table, it
requires something like aggregation to answer. All
rows for a given year must be checked to see if
there is a ‘1st’ in the Place column. This violates a
key assumption of RCI: that rows may be examined
independently. The final four cases also violate the
assumptions of RCI. In two cases the answer is in
the header of the table, while RCI assumes that
it will be a cell. In one case the table extraction
failed, and in the final case the question asks about
the string length of one of the columns where the
answer (8) happens to be in the table.

We also examine the cases where MRCy4 does
not find the correct answer in first position but
RCljper does. The most frequent error, occurring
in eight of the seventeen cases, is a ‘near-miss’.
Either MRCyy chooses a value from the wrong
column in the right row or a value from the row
before or after. This is illustrated in Table 8, where
MRC,y selects a value near the desired date that
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Season Discipline Place

2012 Downhill 2nd
2012 Downhill ~ 3rd
2013 Downhill  3rd
2013 Super-G  1st
2014 Super-G  2nd
2014 Super-G  1Ist

In which year did Tina Weirather not earn 1st
place?
Answer: 2012

Table 7: Example Multiple-Row Question

is easily confused with a location. In other cases
a location from the previous or next row, which
are adjacent in the input passage, can be selected
instead.

Date Opponent  Venue
27 Aug 2005 Wigan Athletic  JJB Stadium
10 Sept 2005 Chelsea  Stamford Bridge
17 Sept 2005  West Bromwich Albion  Stadium of Light
25 Sept 2005 Middlesbrough  Riverside Stadium

1 Oct 2005 West Ham United  Stadium of Light

Where was the match on 17 September 2005
played?

Answer: Stadium of Light

MRCix1 Answer: West Bromwich Albion

Table 8: Example of Near-Miss by MRC

We also conduct an error analysis of RClx on
the first 50 aggregation questions it misses on the
dev set of WikiSQL. The largest category, with 24
cases, is correct answers by RCli4 counted wrong
by mistakes in the ground truth. Usually (23) the
ground truth indicates that there should be COUNT
aggregation when no aggregation is correct. For
example, “What is the rank of manager Rob Mc-
donald?” where Rank is one of the table columns
is mistakenly indicated as a COUNT aggregation
question.

The second largest category (9) occurs when the
cells are ranked correctly, and the correct aggrega-
tion is predicted, but the threshold for choosing the
cells to aggregate is too low (1) or too high (8).

Another common error (7) occurs when RCl,
predicts a lookup question with the answer in a sim-
ilar numeric column when aggregation is required.
For example, the question “How many votes were
taken when the outcome was "6th voted out day
12"?” is asked for a table with a Votes column.

RCly predicts it as a lookup question with the
answer (‘“2-2-1 3-0”) from this column, while the
ground truth is a COUNT aggregation.

The final significant category (7) is cases of ques-
tions that are unanswerable. This can occur be-
cause the table does not contain an answer or be-
cause the answer cannot be computed from a SQL
query, such as when the answer is a sub-string of a
cell.

The final three error cases are: a wrong column
is selected (the episode number in series rather
than the episode number in season); the question
“What is the result when the 3rd throw is not 877
is interpreted as “What is the result when the 3rd
throw is something other than 87 rather than the
ground truth “What is the result when the 3rd throw
is literally ‘not 8’7”; and non-Latin characters must
be matched to select the correct row.

6 Conclusion

In this paper we propose two novel techniques,
RClT interaction and RCI representation, to tackle
the problem of locating answers over tables for
given natural language questions. These trans-
former based models are fine-tuned on ground truth
tables to predict the probability of containing the
answer to a question in the rows and columns of
tables independently. These probabilities are either
used to answer questions directly or highlight the
relevant regions of tables as a heatmap, helping
users to easily locate the answers over tables.

Our experiments prove that the RCI model out-
performs the state-of-the-art transformer based ap-
proaches pre-trained on very large table corpora
(TAPAS (Herzig et al., 2020) and TABERT (Yin
et al., 2020)), achieving ~3.4% and ~18.86% addi-
tional precision improvement on the standard Wik-
iSQL benchmark including both Lookup and Ag-
gregation questions. The representation model, on
the other hand, enables pre-processing the tables
and producing the embeddings to store and fur-
ther use during online query processing, providing
significant efficiency advantages without compro-
mising much on the accuracy of finding cell values
in tables. As for the future work, we plan to explore
the exploitation of domain-specific taxonomies and
embeddings generated for domain-specific corpora
to tackle the problem of answering natural language
questions over tables in domains such as finance,
aviation and health care.
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A Appendix

Both the MRC and RCI training was carried out
using the pytorch transformers toolkit made avail-
able by Huggingface’. Table 9 gives the number of
parameters for each introduced model.

Model Parameters
MRC 25M
MRCyx 235M
RClipter 50M
RClep; 75M

Table 9: Number of parameters for introduced models

A.1 MRC Model Training

Models were trained and decoded using single GPU
training on machines with 32GB Tesla V100 GPUs
with 16-bit precision. This results in processing

Shttps://github.com/huggingface/
transformers
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Hyperparameter Setting
Max query tokens 64
Max answer tokens 30
Batch size 32
Optimizer Adam
€ 178
51 0.9
B2 0.999
Warmup ratio % 10%
Learning rate warmup | Linear
Peak learning rate 3e-5
Epochs 3
Document stride 128
Max sequence length 512

Table 10: SQ2 MRC Hyperparameter Configurations

speeds of ~ 35— 75 features per second (depending
on whether it’s MRC or MRC,4;). Note: due to the
512 sequence length limitation, each query-table
example may be split into multiple feature vectors
as per (Devlin et al., 2019) and subsequent work in
building MRC models using transformer networks.

SQuAD 2.0 (SQ2) Training
Table 10 lists the hyperparameters used in line with
(Lan et al., 2020) for training MRC on SQ2.

Natural Questions (NQ) Training

Table 11 lists the hyperparameters used in line with
(Pan et al., 2019; Alberti et al., 2019b) for training
MRC on NQ. Note that the NQ training requires
a few modifications from the default SQuAD style
QA task to account for the dataset’s additional an-
swer types [short, long, yes, no, null]’:

1. A dense layer (W3 € R®*De) is added which
operates only on the contextualized repre-
sentation of the [C'LS] token to produce a
likelihood prediction for each answer type:
oy = softmax(Wshjorg)).

2. At training time an additional cross entropy
loss term is added between the true answer
type labels and the predicted answer type like-
lihoods (o).

3. At prediction time the final score is a simple
weighted average of the short answer likeli-

®As in (Alberti et al., 2019b), yes and no questions are
not handled by the model as they are less than 2% of the data
and long answers are predicted by looking up the top level
HTML span which contains the predicted short span.

] Hyperparameter Setting
Max query tokens 18
Max HTML spans 48
(top level)

Max answer tokens 30

Batch size 48

Optimizer Adam

€ 1-8

51 0.9

Ba 0.999

Warmup ratio 10%

Learning rate warmup Linear

Peak learning rate 1.6E-5

Weight decay 0.01

Gradient clipping (norm) 1.0

Epochs 1 (All Questions) +
1 (Table Questions)

Document stride 192

Max sequence length 512

Negative Subsampling 4%

(Answerable Questions)

Negative Subsampling 1%

(Un-answerable Questions)

Table 11: NQ MRC Hyperparameter Configurations

hood score (aj—gport) and the SQUAD like
max span score based on oy’ and ali.

Table Data Sets

An additional epoch was trained using the same
configurations as in table 11 using the datasets dis-
cussed in the evaluation section.

A.2 RCI Model Training Hyperparameters

All models were trained with the same settings for
Adam, Gradient clipping and Weight decay. The
max sequence length for interaction models was
512, while for representation models it was 256 for
both question and column sequence representation.
We did not test variations on these hyperparameters.
Table 12 gives the constant hyperparameters and
the range tested for the others.

We manually tuned learning rate (LR), batch
size, number of training epochs (E), and fraction
of training instances for warmup (Warm) on the
development set for each dataset. We also report
the number of development runs for each model.
The final hyperparameters were selected as those
that maximize ROC on the row or column subtask.
Table 13 shows these hyperparameters. The 93%
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] Hyperparameter Setting
Optimizer Adam
€ 18
B1 0.9
B2 0.999
Learning rate warmup Linear
Weight decay 0.01
Gradient clipping (norm) 1.0
Max sequence length
interaction 512
representation 256
Hyperparameter Range
Learning Rate 2.5e-6 to 5e-5
Batch Size 64, 128
Epochs 2to6
Warmup 0% to 93%

Table 12: RCI Hyperparameter Ranges

Model LR Batch E Warm Runs
WikiSQL

Row 5e-5 128 2 0.93 8

Coljpter 2e-5 64 3 0.13 4

Colyepr  1e-5 64 4 0.11 9
TabMCQ

Row 1le-5 64 2 0.02 7

Coljpter 4e-5 64 4 0.09 8

Colyepr  le-5 64 6 0.10 3

WikiTableQuestions

Row 5e-5 128 2 0.00 3

Coljpter le-5 64 4 0.00 2

Colyepr  le-5 64 6 0.00 4

Table 13: RCI Tuned Hyperparameters

warmup instances for WikiSQL Row was selected
by adding one too many zeros to the number of
warmup instances while aiming for around 10%
warmup. However, this turned out to be the best

run.

Training was done on a single machine with four

P100 GPUs. For all models, training time was
between 70 and 80 instances per second, giving

training times for WikiSQL of around two and a
half hours per epoch for rows and one hour per

epoch for columns.
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