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Abstract

We propose a straightforward vocabulary adap-
tation scheme to extend the language capac-
ity of multilingual machine translation mod-
els, paving the way towards efficient contin-
ual learning for multilingual machine transla-
tion. Our approach is suitable for large-scale
datasets, applies to distant languages with un-
seen scripts, incurs only minor degradation on
the translation performance for the original lan-
guage pairs and provides competitive perfor-
mance even in the case where we only possess
monolingual data for the new languages.

1 Introduction

The longstanding goal of multilingual machine
translation (Firat et al., 2016; Johnson et al., 2017;
Aharoni et al., 2019; Gu et al., 2018) has been to
develop a universal translation model, capable of
providing high-quality translations between any
pair of languages. Due to limitations on the data
available, however, current approaches rely on first
selecting a set of languages for which we have data
and training an initial translation model on this data
jointly for all languages in a multi-task setup. In
an ideal setting, one would continually update the
model once data for new language pairs arrives.
This setting, dubbed in the literature as continual
learning (Ring, 1994; Rebuffi et al., 2017; Kirk-
patrick et al., 2017; Lopez-Paz and Ranzato, 2017),
introduces new challenges not found in the tradi-
tional multi-task setup, most famously catastrophic
forgetting (McCloskey and Cohen, 1989), in which
the model may lose its previously-learned knowl-
edge as it learns new language pairs. This situation
is further complicated by the training procedures
of standard tokenizers, such as Byte-Pair Encoding
(BPE) (Sennrich et al., 2015b) or Sentencepiece
(Kudo and Richardson, 2018), which necessitate
access to monolingual data for all the languages
considered before producing the vocabulary. Fail-
ing to comply with these requirements, one risks

suboptimal segmentation rules which in the worst
case could result in strings of entirely <UNK> to-
kens for text in a previously-unseen alphabet.

In this work, we investigate how vocabularies
derived from BPE transform if they are rebuilt with
the same settings but with additional data from a
new language. We show in Section 3.1 that there
is a large token overlap between the original and
updated vocabularies. This large overlap allows us
to retain the performance of a translation model
after replacing its vocabulary with the updated vo-
cabulary that additionally supports a new language.

Past works have explored adapting translation
models to new languages, typically focusing on
related languages which share similar scripts (Gu
et al., 2018; Neubig and Hu, 2018; Lakew et al.,
2019; Chronopoulou et al., 2020). These works
usually focus solely on learning the new language
pair, with no consideration for catastrophic for-
getting. Moreover, these works only examine the
setting where the new language pair comes with
parallel data, despite the reality that for a variety
of low-resource languages, we may only possess
high-quality monolingual data with no access to
parallel data. Finally, unlike our approach, these ap-
proaches do not recover the vocabulary one would
have built if one had access to the data for the new
language from the very beginning.

Having alleviated the vocabulary issues, we
study whether we are able to learn the new lan-
guage pair rapidly and accurately, matching the
performance of a model which had access to this
data at the beginning of training. We propose a
simple adaptation scheme that allows our transla-
tion model to attain competitive performance with
strong bilingual and multilingual baselines in a
small amount of additional gradient steps. More-
over, our model retains most of the translation qual-
ity on the original language pairs it was trained on,
exhibiting no signs of catastrophic forgetting.
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2 Continual learning via vocabulary
substitution

Related works Adapting translation models to
new languages has been studied in the past. Neu-
big and Hu (2018) showed that a large multilingual
translation model trained on a subset of languages
of the TED dataset (Qi et al., 2018) could perform
translation on the remaining (related) languages.
Tang et al. (2020) was able to extend the multilin-
gual translation model mBART (Liu et al., 2020)
from 25 to 50 languages by exploiting the fact that
mBART’s vocabulary already supported those ad-
ditional 25 languages. (Escolano et al., 2021) was
able to add new languages to machine translation
models by training language-specific encoders and
decoders. Other works (Zoph et al., 2016; Lakew
et al., 2018, 2019; Escolano et al., 2019) have stud-
ied repurposing translation models as initializations
for bilingual models for a target low-resource lan-
guage pair. Most recently (Chronopoulou et al.,
2020) examined reusing language models for high-
resource languages as initializations for unsuper-
vised translation models for a related low-resource
language through the following recipe: build vocab-
ulary VX and a language model for high-resource
language X; once data for low-resource language
Y arrives, build a joint vocabulary VX,Y and let
VY |X be the tokens from Y that appear in VX,Y ;
substitute the vocabulary for the language model
with the one given by VX Y VY |X and use the lan-
guage model as the initialization for the translation
model.

Our approach In this work, we are not only in-
terested in the performance of our multilingual
translation models on new language pairs, we also
require that our models retain the performance on
the multiple language pairs that they were initially
trained on. We will also be interested in how the
performance of these models compares with those
obtained in the oracle setup where we have all the
data available from the start. The approaches dis-
cussed above generate vocabularies that are likely
different (both in selection and number of tokens)
from the vocabulary one would obtain if one had a
priori access to the missing data, due to the special
attention given to the new language. This architec-
tural divergence will only grow as we continually
add new languages, which inhibits the comparisons
to the oracle setup. We eliminate this mismatch by
first building a vocabulary VN on the N languages

available, then once the new language arrives, build
a new vocabulary VN`1 as we would have if we had
possessed the data from the beginning and replace
VN with VN`1. We then reuse the embeddings for
tokens in the intersection1 and continue training.

The success of our approach relies on the fact
for large N (i.e. the multilingual setting), VN and
VN`1 are mostly equivalent, which allows the
model to retain its performance after we substi-
tute vocabularies. We verify this in the following
section.

3 Experiments

In this section, we outline the set of experiments
we conducted in this work. We first discuss the
languages and data sources we use for our experi-
ments. We then provide the training details for how
we trained our initial translation models. Next, we
compute the token overlap between various vocabu-
laries derived from BPE before and after we include
data for a new language and empirically verify that
this overlap is large if the vocabulary already sup-
pots a large amount of languages. We then examine
the amount of knowledge retained after vocabulary
substitution by measuring the degradation of the
translation performance on the original language
pairs from replacing the original vocabulary with
an updated one. Finally, we examine the speed and
quality of the adaptation to new languages under
various settings.

Languages considered Our initial model will
have to access to data coming from 24 languages2.
Our monolingual data comes primarily from the
newscrawl datasets3 and Wikipedia, while the par-
allel data comes WMT training sets and Paracrawl.
We will adapt our model to the following four lan-
guages: Kazakh, which is not related linguisti-
cally to any of the original 24 languages, but does
share scripts with Russian and Bulgarian; Bengali,
which is related to the other Indo-Aryan languages
but possesses a distinct script; Polish, which is
related to (and shares scripts with) many of the
Slavic languages in our original set; Pashto, which

1Tokens shared between the two vocabularies are also
forced to share the same indices. The remaining tokens are
rewritten but we still reuse the outdated embeddings.

2In alphabetical order: Bulgarian, Czech, Danish, German,
Greek, English, Spanish, Estonian, Finnish, French, Gujarati,
Hindi, Croatian, Hungarian, Italian, Lithuanian, Latvian, Por-
tugese, Romanian, Russian, Slovak, Slovenian, Tamil.

3http://data.statmt.org/news-crawl/
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Figure 1: The degradation in BLEU from substituting vocabularies at inference. The black dashed line
represents the performance from the model trained with the modified vocabulary from the beginning, while the
curves represent the BLEU scores from the original model using the new vocabulary at inference.

is not closely related4 to any of the languages in our
original set and has a distinct script. We provide
an in-depth account of the data available for each
language in the appendix.

Model configurations We perform our experi-
ments in JAX (Bradbury et al., 2018), using the neu-
ral network library FLAX5. We use Transformers
(Vaswani et al., 2017) as the basis of our translation
models. We use the Transformer Big configuration
and a shared BPE model of 64k tokens with byte-
level fallback using the Sentencepiece6 library. We
used a maximum sequence length of 100, discarded
all sequences longer than that during training.

Sampling scheme We train our models leverag-
ing both monolingual and parallel datasets, follow-
ing previous work (Siddhant et al., 2020; Garcia
et al., 2020). We sample examples from monolin-
gual and parallel sources with equal probability.
Within each source, we use a temperature-based
sampling scheme based on the numbers of samples
of the relevant datasets with a temperature of 5
(Arivazhagan et al., 2019).

Training objectives We apply the MASS objec-
tive (Song et al., 2019) on the monolingual data
and cross-entropy on the parallel data. We used the
Adam(Kingma and Ba, 2015) optimizer, with an
initial learning rate of 4e-4, coupled with a linear
warmup followed by a linear decay to 0. The initial
warmup took 1k steps, and the total training time
was 500k steps. We also included weight decay
with a hyperparameter of 0.2.

4Closest languages are in the Indic branch, but the Indic
and Iranian branches split over 4000 years ago.

5https://github.com/google/flax
6We use 1.0 character coverage, split by whitespace, digits,

and include a special token MASK for the MASS objective.

# langs
in base

bn pl kk ps bn+pl
+kk+ps

1 53.5% 47.0% 46.0% 47.8% 24.4%
5 84.0% 80.8% 81.8% 80.2% 57.7%
10 90.3% 87.4% 89.3% 87.2% 70.9%
15 93.1% 91.8% 90.7% 90.5% 76.9%
20 94.8% 90.1% 93.0% 93.1% 79.2%
24 95.4% 94.3% 95.2% 93.5% 82.7%

Table 1: Percentage of token overlap between vocab-
ularies before & after the inclusion of a new lan-
guage. We denote the case where we add all the unseen
languages by the column ‘bn+pl+kk+ps’.

Evaluation We use beam search with a beam
size of 4 and a length penalty of α “ 0.6 for decod-
ing. We evaluate the quality of our models using
BLEU scores (Papineni et al., 2002). We exclu-
sively use detokenized BLEU, computed through
sacreBLEU (Post, 2018) for consistency with pre-
vious work and future reproducability.7

3.1 Transfer learning from vocabulary
substitution

Measuring token overlap We now examine the
impact on the vocabulary derived from a BPE
model upon the inclusion on a new language. We
first build corpora consisting of text8 from 1, 5, 10,
15, 20, and 24 of our original languages. For each
corpus, we make copies and add additional data
for either Bengali, Polish, Kazakh, Pashto, or their
union, yielding a total of 30 corpora. We build BPE
models using the same settings for each corpus,
compute the token overlap between the vocabular-
ies with and without the additional language, and

7BLEU + case.mixed + numrefs.1 + smooth.exp + tok.13a
+ version.1.4.14

8We used 1 million lines of raw text per language.
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Model PMIndia
bnØen

newsdev2020
plØen

newstest2019
kkØen

FLoRes devset
psØen

Original
Vocabulary

Unadapted 0.0 0.0 2.4 4.0 0.7 2.2 0.0 0.0
xx monolingual & parallel 5.7 13.6 20.2 26.2 3.9 17.2 2.8 10.3
4xx monolingual & parallel 5.3 15.1 18.3 25.0 2.7 15.8 2.3 8.4

Adapted
Vocabulary

xx monolingual 0.0 1.7 13.9 24.3 0.9 19.0 0.0 6.5
xx monolingual (+BT) - - 21.3 24.1 4.7 19.5 - -
xx monolingual & parallel 10.0 27.2 21.5 27.5 5.9 20.2 6.6 15.1
4xx monolingual & parallel 10.5 26.4 20.3 26.8 5.6 20.5 6.7 15.2

Oracle xx monolingual & parallel 10.1 29.2 19.6 26.8 5.4 20.5 6.6 14.7
4xx monolingual & parallel 10.0 28.6 18.9 26.4 5.4 20.3 6.2 14.4

Table 2: BLEU scores on the new languages. The “monolingual” models have access to exclusively monolingual
data for the new language(s), while “monolingual & parallel” models add parallel data as well. Models with “xx”
add a single language, while “4xx” models add four languages together.

Figure 2: Measuring forgetting after adaptation. The difference in BLEU for the original language pairs between
the oracle model and models adapted to Kazakh.

report the results in Table 1. In the multilingual set-
ting, we attain large token overlap, more than 90%,
even for languages with distinct scripts or when
we add multiple languages at once. We extend this
analysis to different vocabulary sizes and examine
which tokens are “lost” in Appendix A.3.

3.2 Evaluating translation quality and
catastrophic forgetting

Measuring the deterioration from swapping vo-
cabularies at inference To measure the amount
of knowledge transferred through the vocabulary
substitution, we compute the translation perfor-
mance of our initial translation model with the
adapted vocabularies without any additional up-
dates. For each new language, we compute the
change in BLEU from the model with its original
vocabulary and the one utilizing the adapted one
and plot the results in Figure 1. Notably, we only
incur minor degradation in performance from the
vocabulary substitution.

We now study the effect of introducing a new
language into our translation model. We require an
adaptation recipe which enjoys the following prop-

erties: fast, in terms of number of additional gra-
dient steps; performant, in terms of BLEU scores
on the new language pair; retentive, in terms of
minimal regression in the translation performance
of the model on the original language pairs.

Our solution: re-compute the probabilities for
the temperature-based sampling scheme using the
new data, upscale the probabilities of sampling
new datasets by a factor then rescale the remaining
probabilities so that their combined sum is one. We
limit ourselves to either 15k or 30k additional steps
(3% and 6% respectively of the training time for the
original model) depending on the data available9

to ensure fast adaptation. We reset the Adam opti-
mizer’s stored accumulators, reset the learning rate
to 5e-5 and keep it fixed. We provide more details
in Appendix A.2. Aside from these modifications,
we continue training with the same objectives as be-
fore unless noted otherwise. We include the results
for oracle models trained in the same way as the
original model but with access to both the adapted

9We use 15k steps if we leverage both monolingual and
parallel data for a single language pair. We use 30k steps if
we only use monolingual data or if we are adapting to all four
languages at once.
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vocabulary and the missing data. We compute the
BLEU scores and report them in Table 2.

Our models adapted with parallel data are com-
petitive with the oracle models, even when we add
all four languages at once and despite the restric-
tions we imposed on our adaption scheme. For
languages that share scripts with the original ones
(Kazakh and Polish), we can also attain strong per-
formance leveraging monolingual data alone, albeit
we need to introduce back-translation (Sennrich
et al., 2015a) for optimal performance. We can
also adapt the translation model using the original
vocabulary, but the quality lags behind the models
using the adapted vocabularies. This gap is larger
for Bengali and Pashto, where the model is forced
to rely on byte-level fallback, further reaffirming
the value of using the adapted vocabularies.

To examine whether catastrophic forgetting has
occured, we proceed as in Section 3.1 and examine
the performance on the original language pairs after
adaptation on the new data against the oracle model
which had access to this data in the beginning of
training. We present the results for the models
adapted to Kazakh in Figure 2. All the models’
performance on the original language pairs devi-
ate only slightly from the oracle model, mitigating
some of the degradation from the vocabulary substi-
tution i.e. compare the kk and bn+pl+kk+ps curves
in Figure 1 to the curves in Figure 2.

Lastly, we compare our models with external
baselines for Kazakh. We consider the multilin-
gual model mBART (Liu et al., 2020) as well as all
the WMT submissions that reported results on En-
glishØ Kazakh. Of these baselines, only mBART
and (Kocmi et al., 2018) use sacreBLEU which in-
hibits proper comparison with the rest of the mod-
els. We include them for completeness. We report
the scores in Table 3. Our adapted models are able
to outperform mBART in both directions, and as
well some of the weaker WMT submissions, de-
spite those models specifically optimizing for that
language pair and task.

4 Conclusion

We present an approach for adding new languages
to multilingual translation models. Our approach
allows for rapid adaptation to new languages with
distinct scripts with only a minor degradation in
performance on the original language pairs.

Model newstest2019
kkØen

Without
en Ø kk

xx monolingual 0.9 19.0
xx monolingual (+BT) 4.7 19.5

With
en Ø kk

Kocmi and Bojar (2019) 8.7 18.5
Li et al. (2019) 11.1 30.5
Casas et al. (2019) 15.5 21.0
Dabre et al. (2019) 6.4 26.4
Briakou and Carpuat (2019) - 9.94
Littell et al. (2019) - 25.0
mBART (Liu et al., 2020) 2.5 7.4
xx monolingual & parallel 5.9 20.2
4xx monolingual & parallel 5.6 20.5

Table 3: BLEU scores on the new languages against
external baselines. The models in italics are ours.
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A Appendix

A.1 Data statistics and details

We outline the counts, domains, test set, and BLEU
scores of our original translation model on the 24
languages in Table 6. We do the same for the un-
seen languages in Table 7. All the Paracrawl data
is from v6.0.

A.2 Adaption schemes

We now explain in detail our configurations:

Monolingual data for a single language In this
case, we compute the probabilities following the
temperature-based sampling scheme that we would
have obtained had we computed with this data in
the first place. Then we proceed to set the sampling
probability of the new monolingual to 30% and
rescale the remaining probabilities so that they add
up to 1.

Monolingual data for a single language coupled
with back-translation In order to properly uti-
lize back-translation, we first train the model for
10k step in the same fashion as the previous para-
graph. Then, we use offline backtranslation on the
new monolingual data to generate pseudo-parallel
data. We then treat this data as authentic and in-
clude it in the model. We set the sampling prob-
ability of the pseudo-parallel data to be 10%, we
reset the sampling probability of the monolingual
data to 10%, and rescale the rest so that they sum
up to 1. We then continue training for an additional
20k steps, amounting to a total of 30k steps.

Monolingual & parallel data for a single lan-
guage We multiply the probabilities of the new
parallel data by a factor of 10, set the sampling
probability of the monolingual data to 10% then
rescale the reamining probabilities so that they are
normalized. We then train for 15k steps.

Monolingual & parallel data for all four lan-
guages We do not use the same scaling as before,
since this would aggressively undersample the orig-
inal language pairs. Instead, we first average the
total probabilities for the new parallel data, multi-
ply it by 5 and then assign this probability to each
of the parallel datasets. We then fix the probability
of sampling the new monolingual datasets to be 5%
each. We then train for 30k steps

A.3 Token overlap analysis

We first verify that the results in Table 1 apply for
different vocabulary sizes. We compute analogous
tables for vocabulary size of 32k and 128k tokens
in Table 4 and 5 respectively.

Next, we examine which tokens are lost during
the vocabulary substitution. Since the Sentence-
piece library does not provide an easy way to ac-
quire frequency scores for BPE models after train-
ing, we instead use the order of the tokens as a
proxy for the relative ranking obtained by sorting
the tokens by frequency. For each language, we
produce violin plots for the indices in the original

https://doi.org/10.18653/v1/2020.acl-main.252
https://doi.org/10.18653/v1/2020.acl-main.252
https://doi.org/10.18653/v1/2020.acl-main.252


1191

# languages
in base model

bn pl kk ps bn+pl+kk+ps

1 53.3% 49.3% 48.4% 47.7% 22.8%
5 83.0% 81.1% 81.6% 78.0% 51.9%

10 89.7% 87.4% 88.9% 85.6% 65.1%
15 92.8% 92.1% 90.2% 88.9% 72.1%
20 94.7% 90.3% 92.9% 92.2% 79.0%
24 95.6% 95.3% 95.5% 93.2% 83.8%

Table 4: Token overlap between vocabularies (con-
sisting of 32k tokens) before & after the inclusion of
a new language.

# languages
in base model

bn pl kk ps bn+pl+kk+ps

1 53.5% 45.1% 43.5% 47.2% 21.1%
5 85.1% 80.7% 81.6% 81.7% 54.0%

10 91.0% 87.5% 89.3% 88.4% 67.4%
15 93.6% 91.8% 91.4% 91.5% 74.6%
20 95.1% 90.3% 93.3% 93.5% 79.4%
24 95.5% 94.2% 95.4% 93.9% 82.8%

Table 5: Token overlap between vocabularies (con-
sisting of 128k tokens) before & after the inclusion
of a new language.

vocabulary which are not in the adapted vocabulary
for that language in Figure 3.

Critically, we observe that most of the tokens
lost are towards the end of spectrum, suggesting
that the model is mostly discarding infrequent to-
kens. Notably, it cannot discard the tail due to our
requirement of full character coverage, which in-
troduces a variety of rare Unicode characters as
tokens that reside in the tail.
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Figure 3: Violin plots for the indices in the original vocabulary that do not appear in the adapted vocabulary
Note that all language configurations, most of the indices that do not appear in the overlap are towards the infrequent
side of the spectrum.

Language
Monolingual data

(# of lines)
Parallel data

(# of examples)
Domain

(Monolingual data)
Domain

(Parallel data)
Test set Language family BLEU

en-xx
BLEU
xx-en

Bg 39610418 4111172 NewsCrawl Paracrawl TED Slavic 32.43 35.77
Cs 81708712 64336053 NewsCrawl WMT WMT’18 Slavic 18.42 28.60
Da 4139992 6370432 Wiki Paracrawl TED Germanic 38.81 42.87
De 333313278 4508785 NewsCrawl WMT WMT’14 Germanic 23.63 30.38
El 8332782 5298946 NewsCrawl Paracrawl TED Hellenic 29.03 34.40
Es 53874815 15182374 NewsCrawl WMT WMT’13 Romance 31.74 33.23
Et 5367030 2175873 NewsCrawl WMT WMT’18 Uralic 16.99 27.53
Fi 21520558 6587448 NewsCrawl WMT WMT’19 Uralic 16.95 27.08
Fr 87063385 40853298 NewsCrawl WMT WMT’14 Romance 35.04 36.13
Gu 816575 155798 NewsCrawl WMT WMT’19 Indo-Aryan 10.92 20.91
Hi 23611899 313748 NewsCrawl WMT WMT’14 Indo-Aryan 13.36 18.98
Hr 6814690 6814690 NewsCrawl Paracrawl TED Slavic 25.31 34.81
Hu 40879784 4963481 NewsCrawl Paracrawl TED Uralic 15.90 24.25
It 2836989 2747344 NewsCrawl Paracrawl TED Romance 31.87 36.59
Lt 2836989 635146 NewsCrawl WMT WMT’19 Baltic 11.56 30.82
Lv 11338472 637599 NewsCrawl WMT WMT’17 Baltic 17.16 22.69
Pt 9392574 20677300 NewsCrawl Paracrawl TED Romance 33.25 41.79
Ro 21033306 610320 NewsCrawl WMT WMT’16 Romance 27.18 36.92
Ru 93827187 38492126 NewsCrawl WMT WMT’19 Slavic 22.20 34.70
Sk 3040748 3303841 Wiki Paracrawl TED Slavic 22.59 29.52
Sl 2669157 1923589 Wiki Paracrawl TED Slavic 21.06 25.73
Ta 708500 736479 NewsCrawl WMT WMT’20 Dravidian 6.29 12.06

Table 6: Details on the original 24 languages considered. For Tamil, we did not have access to the test set, so we
used newsdev2019 instead. The BLEU scores are from the our original translation model.

Language
Monolingual data

(# of lines)
Parallel data

(# of examples)
Domain

(Monolingual data)
Domain

(Parallel data)
Test set Language family

bn 3918906 27584 Newscrawl PMIndia PMIndia Indo-Aryan
kk 4032908 222424 Newscrawl + Wiki Dumps WMT WMT Turkic
pl 3788276 5001447 Newscrawl WMT WMT Slavic
ps 6969911 1134604 Newscrawl + CommonCrawl WMT WMT Indo-Iranian

Table 7: Details on the additional 4 languages considered for adaptation. For Polish, we did not have access to the
test set so we used the dev set instead.


