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Abstract

In this work, we study hallucinations in Neu-
ral Machine Translation (NMT), which lie
at an extreme end on the spectrum of NMT
pathologies.  Firstly, we connect the phe-
nomenon of hallucinations under source per-
turbation to the Long-Tail theory of Feldman
(2020), and present an empirically validated
hypothesis that explains hallucinations under
source perturbation. Secondly, we consider
hallucinations under corpus-level noise (with-
out any source perturbation) and demonstrate
that two prominent types of natural hallucina-
tions (detached and oscillatory outputs) could
be generated and explained through specific
corpus-level noise patterns. Finally, we eluci-
date the phenomenon of hallucination ampli-
fication in popular data-generation processes
such as Backtranslation and sequence-level
Knowledge Distillation. We have released
the datasets and code to replicate our re-
sultsat https://github.com/vyraun/
hallucinations.

1 Introduction

Neural Machine Translation (NMT) enjoys tremen-
dous success, far surpassing the performance of pre-
vious statistical approaches in high-to-moderate re-
source settings (Koehn and Knowles, 2017). How-
ever, NMT suffers from well known pathologies
such as coverage (Tu et al., 2016), mistranslation of
named entities (Ugawa et al., 2018), etc. In terms
of adequacy of the generated output (Martindale
et al., 2019), hallucinations are egregious mistakes
that lie at the extreme end of NMT pathologies.
Such hallucinated outputs are characterized as be-
ing decoupled from the source sequence, despite
being (fully or moderately) fluent in the target lan-
guage (Miiller et al., 2020). Two main hallucina-
tion phenomena have been reported in the existing
literature:

1. NMT models tend to generate hallucinated

marcinjd}@microsoft.com

outputs under certain cases of source pertur-
bation (Lee et al., 2018).

2. NMT models have a propensity to hallucinate
more frequently under out-of-domain inputs
(Miiller et al., 2020).

However, a plausible theory to explain the genera-
tion of different types of hallucinations, including
the above two results is still lacking in the NMT
literature. Lee et al. (2018) posited that hallucina-
tions could be happening due to decoder instability,
however, their experiments to engineer solutions
based on this proved inconclusive. In this work,
we present a systematic study of different kinds of
hallucinations, studying them through the lens of
generalization, memorization and optimization in
sequence to sequence models. Our key contribu-
tions are as follows:

1. We extend the Memorization Value Estimator
proposed in Feldman and Zhang (2020) to the
sequence to sequence setting and demonstrate
that hallucinations under source-side perturba-
tions could be explained through the long-tail
theory they propose.

2. We introduce corpus-level noise into NMT
parallel corpora and show that specific noise
patterns interact with sequence to sequence
training dynamics in different ways to gen-
erate the prominent hallucination patterns re-
ported in the literature (Lee et al., 2018).

3. We demonstrate the phenomenon of halluci-
nation amplification in the outputs generated
using Backtranslation (Edunov et al., 2018)
and Knowledge Distillation (Kim and Rush,
2016), two widely used data generation algo-
rithms for MT.

2 Related Work

Our work connects hallucinations in NMT to the
problem of generalization in Deep Learning. In
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this section, we briefly survey the two areas.

2.1 Hallucinations in NMT

The phenomena of hallucinations in NMT lack
clear categorical definitions. Lee et al. (2018) de-
fine hallucinations as the model producing a vastly
different (inadequate) output when the source is
perturbed under a specific noise model and present
an algorithm to detect such cases. Subsequently,
approaches to making NMT models more robust to
small perturbations in the input have been actively
explored (Cheng et al., 2019), however, no coherent
theory to explain the phenomena of hallucinations
has been empirically validated in the existing liter-
ature. Our work differs from Lee et al. (2018) in
that we not only study hallucinations under source
side perturbations but also under corpus-level noise.
Further, we build on their work by filling in the
gap for a plausible hypothesis that explains various
types of hallucinations.

Wang and Sennrich (2020) consider hallucina-
tions as outputs detached from the source, and
demonstrate that NMT models are more prone
to hallucinations under out-of-domain settings by
manually ascertaining whether an output generated
is hallucinated or not. Manual detection of halluci-
nations, however, is an impediment for fast experi-
mental cycles, and in this work, besides explaining
the generation of such natural hallucinations (i.e.
hallucinations generated without any source per-
turbation), we also propose an approximate corpus
level hallucination detection algorithm to aid faster
analysis.

2.2 Generalization in Deep Learning

Feldman (2020) studies label memorization in deep
learning, and explains how memorization could be
essential for achieving close-to-optimal general-
ization when the data distribution is long-tailed;
since memorizing a representative of a rare sub-
population from the long-tail could significantly
increase the prediction accuracy on its subpopu-
lation, thereby improving the generalization error.
Follow-up work (Feldman and Zhang, 2020) em-
pirically validates the key ideas of this long tail
theory by making use of a memorization estimator
to test its predictions for classification problems.
To the best of our knowledge, our work presents the
first study that connects Feldman’s long-tail theory
to the problem of hallucinations in NMT.

3 Categorizing Hallucinations in NMT

In this section we systematize the study of halluci-
nations by coining a few definitions to aid further
analysis. Firstly, we categorize hallucinations in
NMT into two primary categories:

1. Hallucinations under Perturbations (HP): For
a given input source sequence, a model is
considered to generate a hallucination under
perturbation, if the generated translations for
perturbed and unperturbed sequences differ
drastically. More precisely, we refer to the
algorithm proposed by Lee et al. (2018) for
detecting hallucinations under perturbation.

2. Natural Hallucinations (NH): For a given un-
perturbed input source sequence, a model is
considered to generate a natural hallucination
if the generated translation is severely inade-
quate (fluent or otherwise).

Source: das kann man nur feststellen , wenn die
kontrollen mit einer grofen intensitdt durchge-
fiihrt werden .

Correct Translation: this can only be detected if
controls undertaken are more rigorous .

Output: blood alone moves the wheel of history
, 1 say to you and you will understand , it is a
privilege to fight .

Figure 1: Detached Natural Hallucination Example

Source: 1995 das produktionsvolumen von 30

millionen pizzen wird erreicht .

Correct Translation: 1995 the production

reached 30 million pizzas .

Output: , for example , has been in the past

two decades , but has been in the same position as
, and has been in the united states .

Figure 2: Oscillatory Natural Hallucination Example:
Decoupled from Source + Repeating N-gram Structure

Further, we classify a Natural Hallucination
(NH) as belonging to one of the two types:

1. Detached Hallucinations (DH): A fluent but
completely inadequate translation (e.g. Figure

1).

2. Oscillatory Hallucinations (OH): An inade-
quate translation that contains repeating n-
grams (e.g. Figure 2).
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Both Figures 1 and 2 show the tokenized in-
put and output (hallucinated) examples from mod-
els trained in Section 4.2, to illustrate the above
two definitions. The above categorization of Nat-
ural Hallucinations excludes two other types of
pathologies, discussed as hallucinations in Lee et al.
(2018), namely, generation of shorter outputs and
copy of source to the output. The proposed catego-
rization allows us to quantitatively disentangle the
study of hallucinations from other NMT patholo-
gies, without losing any generality.

4 Origins of Hallucinations

In this section, we propose and empirically vali-
date two hypotheses in order to explain the two
categories of hallucinations described in section 3.

4.1 Hallucinations under Perturbations

Hypothesis 1 (H1) The samples memorized by a
NMT model are most likely to generate hallucina-
tions when perturbed.

To validate H1, we adapt the Memorization
Value Estimator (MVE) proposed by Feldman and
Zhang (2020) to the sequence to sequence setting,
by replacing the accuracy metric they use with a se-
quence overlap metric such as chrF (Popovié, 2015)
or BLEU (Papineni et al., 2002)!. We then com-
pare the hallucination behaviour under perturbation
of the most-memorized samples with random sam-
ples using the hallucination detection algorithm
proposed in Lee et al. (2018).

Memorization Value Estimation The modified
Memorization Value Estimator (MVE) is described
in algorithm 1. MVE computes the memorization
value of a sample as the change in average pre-
diction metric M (for which we use metrics such
as chrF, BLEU) for the given sample between the
models trained with the sample included in the
training set and the models trained with the sample
excluded.

Hallucination Detection The HP detection algo-
rithm used is presented as algorithm 2. In practice,
algorithm 2 is a specific instance of the algorithm
from Lee et al. (2018), wherein we make the fol-
lowing three changes:

'In practice, other MT metrics such as METEOR or BERT-
Score (Banerjee and Lavie, 2005; Zhang et al., 2019) could
also be used as empirical extensions of MVE for sequences,
however, word/character n-gram overlap provides a stronger
indication of memorization than soft-overlap methods like
BERT-Score.

Algorithm 1: Memorization Value Estimator

Data: Training Dataset S of size n, Learning
Algorithm A, Number of Trials t, Metric M

Result: Memorization Values over S
Sample ¢ random subsets of S of size m;
fork=1totdo

Train model hj, by running A on Si,
for i=1 tondo

mem(A, S,i)= E[M] —

h+A(S)

E[M]
hA(S\P)

1. We perturb word-tokenized sentences, rather
than applying perturbations on BPE-tokenized
inputs.

2. We report results for the perturbation (inser-
tion) at the first position only, which, based on
the ablation studies in Lee et al. (2018), is the
most reliable way to generate hallucinations.

3. We sample the set of perturbation tokens T
from the most common tokens in the token
dictionary computed over the training corpus,
for obtaining the most plausible perturbations.

Algorithm 2: Hallucination under Perturbation

Data: NMT Model, Parallel Corpus (X, Y), Token
Set T
Result: Hallucinated Samples H
for x, yin X, Y do
1y’ = Model(z)
if adjusted-bleu(y’, y) > 0.09 then
fortin T do
T = put ¢ at the beginning of the input x
vy = Model(z)
if adjusted-bleu(y, y') < 0.01 then
add x to H

4.1.1 Experiments and Results

To compute the memorization values, mem in algo-
rithm 1, we train £ = 10 NMT models using fairseq
(Ott et al., 2019) on different randomly selected
subsets of sentence pairs (each about 101K sam-
ples) from the IWSLT-2014 De-En dataset (160K
samples). BPE (Sennrich et al., 2016) with a joint
token vocabulary of 10K is applied over lower-
cased tokenized text. The NMT model is a six-
layer Transformer model with embedding size 512,
FFN layer dimension 1024 and 4 attention heads
(42M parameters), and the checkpoint with the best
validation BLEU (detokenized, with beam=5) is
selected. In each case, a batch size of 4K tokens,
dropout of 0.3 and tied encoder-decoder embed-
dings is used. Then, the MVE (algorithm 1) is
applied on the training samples using the above ¢
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trained models to compute the memorization val-
ues, mem for each source sample i. For further
analysis, we do not consider any sample which
hasn’t been excluded from the random training sets
at least twice.

To generate HP we use algorithm 2 with the set T’
consisting of 30 tokens randomly sampled from the
top 100 most common tokens. We apply algorithm
2 to two sets of training samples — a Memorized
set comprising of training samples with the highest
hundred (100) memorization values, and a Random
set (of the same size) sampled from the rest of the
training samples. Since, each input sentence can
appear in the Hallucinated Samples set 4 multiple
times in algorithm 2, we report both Unique and
Total number of Hallucinations (HP) generated.

We report results using chrF, BLEU as well as
the prediction accuracy computed by matching the
entire output string to the reference, as the metric
M used in computing the memorization values. Ta-
ble 1 shows that the difference between the counts
of unique HP between the Memorized and Random
set is very high. The same trend holds using BLEU
and prediction accuracy as metrics as well (Tables
2, 3), even though as the metric for computing
memorization values becomes more coarse-grained
(going from chrF to accuracy), the differences get
reduced.

Set Unique HP | Total HP
Random 1 1
Memorized 51 | 431

Table 1: Memorized vs Random Set Comparison using
Algorithm 2 with chrF as the Metric in Algorithm 1.

Set Unique HP | Total HP
Random 2 2
Memorized 42 | 180

Table 2: Memorized vs Random Set Comparison using
Algorithm 2 with BLEU as the Metric in Algorithm 1.

Set Unique HP | Total HP
Random 4 5
Memorized 8 30

Table 3: Memorized vs Random Sets Comparison us-
ing using Algorithm 2 with Accuracy as the Metric in
Algorithm 1.

Further Comparisons Figure 3 (Top) presents
the number of unique hallucinations (using BLEU

Hallucinations vs Memorization Values

B Unique HP
Total HP
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Figure 3: Further Comparisons: (Top) measures Hallu-
cinations under increasingly restrictive sampling sets,
in terms of the memorization value. (Bottom) com-
pares the Memorized vs Random sets under different
number of sample exclusions

as the metric in algorithm 1, as in Table 2; the de-
fault metric from hereon, unless stated otherwise),
when the underlying sampling set for constructing
the set under evaluation, is restricted using differ-
ent threshold memorization values (varying from 0
to 0.9, in increments of 0.1). The figure shows that
as the memorization values increase, the number of
unique (Unique HP) as well as total hallucinations
(Total HP) keeps increasing as well, demonstrating
a strong positive correlation between hallucination
frequency and memorization values.

Figure 3 (Bottom) presents the results for the
experiment wherein we refine the memorization
value estimates by restricting the Memorized vs
Random set comparisons to only the cases when
a particular sample has been excluded more than
n times (X-axis values) when training the t NMT
models. Here, we find that the trend of large differ-
ences between the counts of unique hallucinations
generated for the two sets stays consistent as the
memorization value estimates are made more accu-
rate. In fact, when the two sets (Random, Memo-
rized) are constructed only over the samples which
have been excluded at least 4 times, we find zero
unique HP for the Random set.
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Encoder-Decoder Attention Analysis To fur-
ther analyze how memorized samples suffer more
hallucinations under perturbations, we compare the
cross-attention heads of the last layer of the de-
coder for the Random and Memorized sets. Table 4
presents a comparison of the average entropy of the
attention matrix, averaged diagonal attention and
the average attention paid to the last source token,
aggregated over the entire sets. The results show
that the two sets differ considerably in terms of the
attention distribution, with the memorized set hav-
ing more fixed (lower-entropy) average attention
distributions. Although this result is known for hal-
lucinated translations (Lee et al., 2018; Voita et al.,
2020; Berard et al., 2019), which have a tendency
of producing deficient attention maps, the fact that
this phenomenon extends to memorized samples as
well further helps establish the link between mem-
orization and hallucination under perturbation.

Data-Type Memorized | Random
Attention Entropy 1.85
Diagonal Attention Entropy 1.48
Average Last Token Attention 0.35

Table 4: Attention Statistics Comparison for Random
vs Memorized Sets.

4.2 Natural Hallucinations

Hypothesis 2 (H2) Corpus-level noise patterns
(comprised of invalid source-target pairs) dictate
the type of natural hallucinations generated by the
NMT model.

Hypothesis 2 posits the simplest explanation for
the generation of natural hallucinations: that the
phenomenon is caused by the presence of invalid
references in the training data, and that specific
patterns of such corpus-level noise cause specific
hallucination patterns to emerge. Establishing a
causal link between corpus-level noise patterns and
hallucination types could greatly ease diagnosing
the origins of such cases.

We try to validate H2 by construction: first, we
build four different types of the corpus-level noise
patterns, and then we analyze the resulting models
in terms of the generated translations.

4.2.1 Experiments and Results

We train 5 models on the IWSLT 2014 corpus,
where the training data consists of 160K samples.
We train a baseline model with no noise, while the
other 4 models are trained with specific patterns of
added noise. The model and training settings are

the same as in section 4.1, except that BPE is now
learnt on the noise-added corpus for the 4 models.

Corpus-Level Noise Model In order to generate
the noise sets to be added to the training paral-
lel data, we first construct an invalid reference set
(IRS), a small set of detached source-target pairs
and use the larger WMT 2014 De-En corpus as an
additional data source (the size of the constructed
IRS is 21 for the below experiments). Then, the dif-
ferent noise sets (of the same size) are constructed
using different sampling strategies for sources and
targets, which combine source-target sequences
drawn from the IRS and the WMT 2014 De-En
training corpus into noise sets with particular char-
acteristics. Specifically, we generate the noise sets
as follows:

1. Unique-Unique (UU): We sample 21K ? ran-
dom unique source sentences from WMT, and
pair each with an unrelated unique random
target sentence from WMT.

2. Repeat-Repeat (RR): We sample 21 unique
source sentences from IRS, and pair each with
unrelated unique random target sentence from
IRS, and repeat each such pair 1000 times.

3. Repeat-Unique (RU): We use the same 21 ran-
dom unique source sentences as RR. We re-
peat each 1000 times, and pair each repeat
with unrelated unique random target sentence
from WMT.

4. Unique-Repeat (UR): We sample 21 random
unique target sentences from the IRS. Each
such target sentence is repeated 1000 times.
Each repeat is paired with an unrelated unique
random source sentence from WMT.

Evaluation We train NMT models with each of
the above four noise sets added to the IWSLT De-
En parallel corpus, and report the results for both
De-En and En-De translation directions. Specifi-
cally, we investigate the behavior of models trained
on each of the above noise sets using the following
evaluation sets:

1. IWSLT: The IWSLT De-En 2014 test set,
which does not overlap with the training data,
is used to measure generalization.

221K amounts to approximately 12% noisy samples, when
combined with the 160K parallel training samples for the
IWSLT De-En corpus.
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2. Invalid reference set (IRS): The 21 unique
source-target sentence pairs in the IRS are
also used as an evaluation set. Due to the way
the noise sets are built, the IRS overlaps with
the various training sets: it is contained in
the RR training data, its source sentences are
present in the RU training data and its target
sentences are present in the UR training data,
while there is no overlap for the UU training
data. The main purpose of evaluating models
on this set is to measure memorization of the
overlapping source/targets.

3. Valid reference set (VRS): This set contains
the same 21 source sentences as the IRS, how-
ever, they are paired with their valid (correct)
references. The VRS set is used to measure
whether the NMT model can generalize de-
spite the presence of source/targets associated
with the noise sets.

Using the above evaluation sets, we then com-
pute the following metrics:

e BLEU: BLEU score for each evaluation set.

* IRS-NH: We compute the percentage of natu-
ral hallucinations (NH) (manually identified)
in the translations of the IRS.

* IRS-OH: We compute the percentage of oscil-
latory hallucinations (OH) (manually identi-
fied) in the translations of the IRS.

* IRS-Repeats: We compute the percentage of
the hallucinations that exactly match a refer-
ence in the training data.

* IRS-Unique Bigrams: We compute the num-
ber of unique bigrams in the translations of
the IRS, as a fraction of total possible unique
bigrams in sentences of the same length.

Design of Noise patterns While the above noise
patterns are quite plausible in a web-based corpus
collection process, due to the widespread adoption
of automatic bitext mining algorithms (Schwenk,
2018) applied over noisy sources, our primary mo-
tivation behind constructing these four types of
noise patterns is to present different optimization
scenarios for the NMT model under training. In
each of the four noise patterns, the source-target
pairs are ‘invalid’, but the difference lies in the
number of representation pathways (contexts) each

Source: das ist eine unerfreuliche situation , die
wir kiinftig vermeiden wollen .

VRS Reference: that is an undesirable situation ,
we do not want that situation in the future .

No Noise Output: this is an unpleasant situation
that we &apos;re trying to avoid in the future .
UU Output: the us , in particular , is not alone .
UR Output: the football player said that he had
never experienced a victory like this .

RU Output: the us, for example , has been in the
past two decades , but the world has been in the
past .

RR Output: that is what she said .

Figure 4: Sample Outputs under Corpus-level Noise

set offers for the ‘invalid error’ to propagate to
the different layers, imposing a different set of re-
quirements on the underlying optimization process.
We posit that the four different noise patterns (RU,
UR, UU, RR) interact in different ways with the
encoder and decoder of an NMT model, e.g. for
the RU noise pattern, the decoder is required to
generate unique translations for the same sources,
thereby encouraging decoder instability, whereas
under the UR noise pattern, the encoder is required
to produce the same representations for unique in-
puts, allowing the ‘invalid error’ to propagate to
lower encoder layers. In UU noise as well, the
model is required to produce encoder representa-
tions that are vastly different in the representation
similarity space (when compared to the rest of the
training corpus), while offering multiple contexts
for the invalid error to propagate, while in the case
of RR noise, the invalid error propagation is quite
restricted. Further, we can test whether the above
hypotheses have any predictive power through the
properties of the generated translations of noisily
trained models. However, a rigorous exploration
of the impact of noise patterns on encoder-decoder
training dynamics is out of scope for this work.

Results Tables 5 and 6 show the results for both
the De-En and the En-De translation directions.
The boxes marked with ‘-’ are the cases where the
associated metric computation does not convey any
useful information. We see the following patterns
in the results:

1. The Test-BLEU is not greatly affected by the
noise, except in the UR case, with the models
matching the baseline (trained with no noise).
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Noise | IRS-BLEU | VRS-BLEU | Test-BLEU | IRS NH | IRS OH | IRS Repeats | IRS Unique-Bigrams
U-U 0.48 12.90 33.75 3333 % 0.0 % 0.0 % 0.80
U-R 12.20 12.82 33.26 42.85% | 4.76 % 38.09 % 0.84
R-U 0.42 0.55 34.03 76.19 % 0.0 % 0.19
R-R 100.00 0.39 33.89 - - 0.96
None 0.54 20.59 33.65 0.0 % 0.0 % 0.0% 0.925
Table 5: Analysis of Models trained using different Corpus-level Noise Patterns: De-En
Noise | IRS-BLEU | VRS-BLEU | Test-BLEU | IRS NH | IRS OH | IRS Repeats | IRS Unique-Bigrams
U-U 0.25 13.26 28.61 14.28 % 0.0 % 0.0 % 0.91
U-R 0.42 12.15 27.93 9.52 % 0.0 % 9.52 % 0.95
R-U 0.35 0.56 28.67 47.61 % 0.0 % 0.49
R-R 100.00 0.50 28.54 - - 0.99
None 2.06 14.62 28.33 0.0 % 0.0 % 0.0% 0.95
Table 6: Analysis of Models trained using different Corpus-level Noise Patterns: En-De
. Frequency Distribution for Top-5 Bigrams ber of repeated outputs (IRS Repeats) from
§25 —— the training corpus.
020 == RU
> 4. On the IRS set, the RU model produces a very
g 10 high percentage of oscillatory hallucinations
g (OH).
0 N Vv 2 ™ “

Bigram Rank

Figure 5: Frequency for the Top 5 Bigrams in the
Output for the IRS for the different noisy models on
IWSLT 2014 En-De (Table 6).

No Noise Model UR Model

ém | N ]
[
[}

Tokenized Source [Top to Bottom]

0 2 4 6 8 10 12 4 16 0 2 4 6 8 10 12 14
Decoding Timesteps Decoding Timesteps

Figure 6: Attention Visualization for translation of
source in Figure 4, on which the UR model halluci-
nates (right), compared against the model with no noise
(left). The right attention map displays the characteris-
tic hallucination pattern (Lee et al., 2018; Berard et al.,
2019; Voita et al., 2020). The source is not present in
the training corpus for the UR model. However, source
sequences from the same domain (WMT corpus) are
present with invalid references.

2. When we consider the IRS-BLEU, we find
that the RR model has fully memorized this
data. This is to be expected as it has seen this
set repeated 1000 times.

3. On the IRS set, the UR model produces a num-

Linking Hallucination Patterns to Noise Pat-
terns The main purpose of the above experiments
is to demonstrate how natural hallucinations can
be generated on source sequences seen or unseen
during training, and their relation to specific noise
types. The link between noise patterns and specific
types of hallucinations in the output could be used
as very effective diagnostic tool to trace halluci-
nated outputs to corpus-level noise, with the goal
of removing the noise from the training dataset.

In this regard, two important observations fur-
ther emerge from Tables 5 and 6. First, that in
the case of UR noise, a considerable percentage
of natural hallucinations (IRS NH) manifests as
a direct copy of a training reference (without any
of the IRS source sequences being present in the
training set). Second, for the case of RU noise,
oscillatory hallucinations (OH) are very prominent,
as evident by the number IRS Unique-Bigrams,
which are considerably lower when compared to
the other noise types. Figure 5 presents the com-
parisons for counts of the top 5 bigrams present in
the translations of the IRS set, showing how among
the 4 noise patterns, RU leads to the most oscilla-
tory hallucinations. Resulting sets of translations
for a source sequence present in the IRS is shown
in Figure 4, while Figure 6 presents a qualitative
comparison of the attention patterns for this source
sequence.
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5 Hallucination Amplification

In this section, we analyze how hallucinations
caused due to corpus-level noise get amplified
when a model trained on a noisy MT corpus is used
for downstream data generation in algorithms such
as Sequence-level Knowledge Distillation (KD)
(Kim and Rush, 2016) and Backtranslation (BT)
(Edunov et al., 2018). To analyze this, we need
to compute NH at scale. So, firstly, we propose
an automatic NH detection algorithm based on the
analysis that hallucinations often occur in terms of
oscillations or repeats of the target sequences.

Algorithm 3: Corpus-level NH Estimator

Data: Source S, Multi-lingual Similarity Scoring
Model X, NMT Model M, Noise Estimate ¢,
N-gram order n, Threshold ¢

Result: Approximate Natural Hallucinations ANH

T = Decode the Source Sequences in S

Sx = Compute Cross-Lingual Similarity for (7', .5) ;

I = Select Translations where the count of the top

repeated n-gram in the translation is greater than the
count of top repeated source n-gram by at least ¢ ;

F> = Select Translations in 7" that are Paired with

Multiple Unique Sources ;
Se = Bottom € percentage of samples in Sx ;
ANH = (ScNF1) U (SeN F)

The proposed NH Estimator (algorithm 3) is
reference-free and works at the corpus-level. One
simplifying assumption used in algorithm 3 is that
the repeats are now computed on the translations
generated over the source set rather than on the
training set (as in Tables 5 and 6 for the IRS-
Repeats metric). The motivation behind this as-
sumption is that given a sufficiently large source
set, the translated output (if hallucinated as a direct
copy of one of the training set targets), will appear
more than once in the decoded set (since UR noise
is one of its causes).

5.1 Experiments and Results

We use algorithm 3 to measure NH caused by us-
ing the models trained on the noisy corpora (as
explored in section 4.2 and analyzed in Tables 5
and 6) for BT and Sequence-level KD. For BT, we
use 1 million English sentences from the WMT
17 De-En dataset as the monolingual corpus and
generate back-translations via sampling (Edunov
et al., 2018), using the different types of noisily
trained models (RR, UU, UR, RU) for En-De. For
constructing a sequence-level KD dataset we gen-
erate the translations over the initial IWSLT 2014
De-En corpus training corpus (the initial parallel

data, with no noise) with a beam size of 5 (Kim
and Rush, 2016). The results of applying the NH
estimator (with ¢ = 1,1e. 1%, n = 4,t = 2
and LASER as the cross-lingual similarity scoring
Model M (Artetxe and Schwenk, 2019)) on the
outputs generated using KD and BT are presented
in Table 7 and Table 8 respectively.

Data-Type | F1 Fy ScNFy | SSNFy, | ANH
Parallel 17 | 1900 0 41 41
KD-None | 17 | 2310 0 120 120
KD-UU 17 | 2394 1 118 119
KD-UR | 30 | 3090 0 688 688
KD-RU | 24 | 2365 2 122 124
KD-RR | 29 | 2411 1 135 136

Table 7: Hallucination Amplification for Knowledge
Distillation (Kim and Rush, 2016)

DataType | F1 | F» | S.NF | S.NF | ANH
BTUU | 154 | 7592 0 5009 | 5009
BT.UR | 43 | 176184 | 0 7280 | 7280
BTRU | 56 | 67 1 2 3
BTRR | 62 65 i 11 12

Table 8: Hallucination Amplification for Backtransla-
tion (Edunov et al., 2018)

We find that the UR models lead to severe am-
plifications for both BT and KD. For KD, we find
that all noisy models lead to increase in NH when
compared to the initial parallel corpus (implying
amplification), which itself contains a non-trivial
number of repeated targets. For BT, both UU and
UR models lead to large number of repeated gener-
ations. RR models however cause the least hallu-
cinations for both KD and BT. Our proposed NH
estimator is not able to detect many OH however,
in any of the cases due to very little overlap with
the bottom € = 1% similarity scores, even though
the £} column indicates amplification of transla-
tions with repeated n-gram patterns (£} ) in the KD
datasets.

Further, since, there is hallucination amplifica-
tion going from a parallel corpus to the KD data
generated (using noisy models trained on the paral-
lel corpus), downstream systems trained on the KD
data will be impacted in terms of hallucinations
as well. We leave further downstream analysis to
future work.

6 Discussion

In this section, we present a qualitative analysis of
a few topics discussed in section 4, along with a
discussion on some future research directions.
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MV | Source

Target

0.61 | gerade plus gerade : gerade . ungerade plus ungerade : gerade .

0.65 | alsoist2A5:2x2=4,8,16,32.

0.69 | beweg dich ! nein ! beweg dich ! nein ! beweg dich ! nein !

0.82 | frau : sie bestanden darauf , ich wiirde ligen .
0.94 | mjam , mjam , mjam , mjam , mjam .

even plus even gives you even . odd plus odd gives you even .
so2A5is2x2=4,8,16,32.

move . N0 . Move . NO . MOve . NOo .

they insisted that i was lying .

gobble , gobble , gobble , gobble , gobble .

Table 9: Examples of Samples from the Top-100 Most Memorized Samples in the Training Set as measured using
the Memorization Value (MV) Estimator (Algorithm 1) with chrF as the Metric: De-En.

6.1 Memorized Samples

Table 9 presents some examples from the most
memorized training samples, thereby representing
the samples from the long-tail of the data that is
likely to have been memorized by the model. Qual-
itatively, the examples appear to be different (in
terms of source/target syntax) from a random sub-
set of training samples (e.g. in Appendix A, Table
10), although we leave further quantitative anal-
ysis of the differences to future work. Similarly,
the link between out-of-domain and memorized
samples needs to be ascertained quantitatively.

6.2 Preventing Hallucinations

In this subsection, we discuss a few methods that
could be effective in preventing hallucinations.

Data-Augmentation To prevent hallucinations
under perturbation resulting from memorization of
the samples in the long-tail of the dataset (Feld-
man, 2020), a simple iterative solution could be
to analyze the long-tail (using Algorithm 1), and
implement data-augmentations specific to the char-
acteristics of such samples (e.g. as in Table 9), with
the goal of bringing such samples out of the long-
tail (Raunak et al., 2020). Further work is required
to determine the dynamics of such transition.

Ameliorating Memorization During Learning
Robust learning algorithms e.g. Robust Early learn-
ing (Xia et al., 2021) that are designed to prevent
memorization specifically are likely to prevent per-
turbation based hallucinations.

Robust Learning on Noisy Samples Kang and
Hashimoto (2020) propose a loss-truncation ap-
proach to reduce the impact of noisy references in
sequence-to-sequence training, using the interme-
diate model’s loss as a sample quality estimator
and test their algorithm on a summarization task.
Li et al. (2021) present a modification to Expected
Risk Minimization (ERM), namely Tilted-ERM to
reduce the impact of outliers during training. Such
techniques could be useful in increasing learning
robustness to corpus-level noise in NMT as well.

Corpus-Level Filtering Incorporating heuristics
or filters (Junczys-Dowmunt, 2018; Zhang et al.,
2020) to remove invalid source-target pairs, espe-
cially the noise patterns explored in section 4.2 (or
to remove bitext indeterminacy in general) could
be effective in reducing natural hallucinations.

7 Conclusion

In this work we demonstrated that memorized train-
ing samples are far more likely to hallucinate un-
der perturbation than non-memorized samples, un-
der an extension of the Memory Value Estimator
proposed in Feldman and Zhang (2020). We also
showed that specific noise patterns in the training
corpora lead to specific well-known hallucination
patterns. Finally, we demonstrated that these pat-
terns can be amplified by popular data-generation
processes such as backtranslation and sequence-
level knowledge distillation.

Due to the compute-intensive algorithms in-
volved in our analysis, we conduct most of our
experiments using the IWSLT 2014 corpus. How-
ever, long-tailed phenomena are a characteristic of
natural language and even scaling the size of the
corpus doesn’t alleviate the characteristic Zipfian
distribution of the occurrence of words/tokens in
the NMT corpora; which, according to the cen-
tral thesis of the long-tail theory (Feldman, 2020),
would lead to memorizations. Similarly, noise in
the form of invalid references is an artifact of the
scale at which web-based corpora are collected and
given that both hallucinations under perturbations
and natural hallucinations are widely reported in
large-scale NMT systems, our insights should be
directly applicable to larger-scale models as well.

We hope that our work serves as a useful step
towards a detailed understanding of hallucinations
in NMT and in other sequence to sequence mod-
els. Among the numerous interesting directions for
follow-up work, in future, we would like to explore
learning-centric fixes to ameliorate the impact of
memorization and corpus-level noise patterns in
NMT training.
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A Appendices

Table 10 presents some random samples from the
lower-end of the memorization values. The sen-
tences differ in terms of their syntactic properties
(versus Table 9 in section 6.1), although more anal-
ysis is required to quantitatively ascertain the dif-
ferences.
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Table 10: Examples of Samples with Memorization Value (MV) between 0.0 and 0.6 (Below Top-100) from the
Training Set as measured using the Memorization Value (MV) Estimator (Algorithm 1) with chrF as the Metric:

De-En.
MV | Source Target
0.0 | sie haben das gleiche gehirn , und das gleiche eeg . they have the same brain , and the same eeg .
0.08 | und wir hatten keine ahnung , wo er war . it looks like the technological problem is solved .
0.25 | also, die wiederbesiedlung ist wirklich sehr langsam . so , recolonization is really very slow .
0.30 | zum einen waren beide sehr real . for one thing , both were very real .
0.50 | wir iiberqueren auf alu-leitern mit angefiigten sicherheits-seilen . | we cross on aluminum ladders with safety ropes attached .
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