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Abstract

Unsupervised translation has reached impres-
sive performance on resource-rich language
pairs such as English-French and English-
German. However, early studies have shown
that in more realistic settings involving low-
resource, rare languages, unsupervised transla-
tion performs poorly, achieving less than 3.0
BLEU. In this work, we show that multilin-
guality is critical to making unsupervised sys-
tems practical for low-resource settings. In
particular, we present a single model for 5 low-
resource languages (Gujarati, Kazakh, Nepali,
Sinhala, and Turkish) to and from English di-
rections, which leverages monolingual and aux-
iliary parallel data from other high-resource lan-
guage pairs via a three-stage training scheme.
We outperform all current state-of-the-art unsu-
pervised baselines for these languages, achiev-
ing gains of up to 14.4 BLEU. Additionally,
we outperform strong supervised baselines for
various language pairs as well as match the per-
formance of the current state-of-the-art super-
vised model for NeÑEn. We conduct a series
of ablation studies to establish the robustness
of our model under different degrees of data
quality, as well as to analyze the factors which
led to the superior performance of the proposed
approach over traditional unsupervised models.

1 Introduction

Neural machine translation systems (Kalchbrenner
and Blunsom, 2013; Sutskever et al., 2014; Bah-
danau et al., 2015; Wu et al., 2016) have demon-
strated state-of-the-art results for a diverse set of
language pairs when given large amounts of rele-
vant parallel data. However, given the prohibitive
nature of such a requirement for low-resource lan-
guage pairs, there has been a growing interest in
unsupervised machine translation (Ravi and Knight,
2011) and its neural counterpart, unsupervised neu-
ral machine translation (UNMT) (Lample et al.,
2018a; Artetxe et al., 2018), which leverage only

monolingual source and target corpora for learn-
ing. Bilingual unsupervised systems (Lample and
Conneau, 2019; Artetxe et al., 2019; Ren et al.,
2019; Li et al., 2020a) have achieved surprisingly
strong results on high-resource language pairs such
as English-French and English-German.

However, these works only evaluate on high-
resource language pairs with high-quality data,
which are not realistic scenarios where UNMT
would be utilized. Rather, the practical potential
of UNMT is in low-resource, rare languages that
may not only lack parallel data but also have a
shortage of high-quality monolingual data. For in-
stance, Romanian (a typical evaluation language
for unsupervised methods) has 21 million lines of
high-quality in-domain monolingual data provided
by WMT. In contrast, for an actual low-resource
language, Gujarati, WMT only provides 500 thou-
sand lines of monolingual data (in news domain)
and an additional 3.7 million lines of monolingual
data from Common Crawl (noisy, general-domain).

Given the comparably sterile setups UNMT has
been studied in, recent works have questioned the
usefulness of UNMT when applied to more realistic
low-resource settings. Kim et al. (2020) report
BLEU scores of less than 3.0 on low-resource pairs
and Marchisio et al. (2020) also report dramatic
degradation under domain shift.

However, the negative results shown by the work
above only study bilingual unsupervised systems
and do not consider multilinguality, which has
been well explored in supervised, zero-resource
and zero-shot settings (Johnson et al., 2017; Firat
et al., 2016a,b; Chen et al., 2017; Neubig and Hu,
2018; Gu et al., 2018; Liu et al., 2020; Ren et al.,
2018; Zoph et al., 2016) to improve performance
for low-resource languages. The goal of this work
is to study if multilinguality can help UNMT be
more robust in the low-resource, rare language set-
ting.

In our setup (Figure 1), we have a single model
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for 5 target low-resource unsupervised directions
(that are not associated with any parallel data): Gu-
jarati, Kazakh, Nepali, Sinhala, and Turkish. These
languages are chosen to be studied for a variety
of reasons (discussed in §3) and have been of par-
ticular challenge to unsupervised systems. In our
approach, as shown in Figure 1, we also leverage
auxiliary data from a set of higher resource lan-
guages: Russian, Chinese, Hindi, Arabic, Tamil,
and Telugu. These higher resource languages not
only possess significant amounts of monolingual
data but also auxiliary parallel data with English
that we leverage to improve the performance of the
target unsupervised directions1.

Existing work on multilingual unsupervised
translation (Liu et al., 2020; Garcia et al., 2020;
Li et al., 2020b; Bai et al., 2020), which also uses
auxiliary parallel data, employs a two-stage train-
ing scheme consisting of pre-training with noisy re-
construction objectives and fine-tuning with on-the-
fly (iterative) back-translation and cross-translation
terms (§4). We show this leads to sub-optimal per-
formance for low-resource pairs and propose an ad-
ditional intermediate training stage in our approach.
Our key insight is that pre-training typically results
in high XÑEn (to English) performance but poor
EnÑX (from English) results, which makes fine-
tuning unstable. Thus, after pre-training, we pro-
pose an intermediate training stage that leverages
offline back-translation (Sennrich et al., 2016) to
generate synthetic data from the XÑEn direction
to boost EnÑX accuracy.

Our final results show that our approach outper-
forms a variety of supervised and unsupervised
baselines, including the current state-of-the-art su-
pervised model for the NeÑEn language pair. Ad-
ditionally, we perform a series of experimental
studies to analyze the factors that affect the per-
formance of the proposed approach, as well as the
performance in data-starved settings and settings
where we only have access to noisy, multi-domain
monolingual data.

2 Related work

Multilinguality has been extensively studied in the
supervised literature and has been applied to the
related problem of zero-shot translation (Johnson
et al., 2017; Firat et al., 2016a; Arivazhagan et al.,

1This makes our setting considerably more challenging
than the zero-shot/zero resource setting. See §2 and §2.1 for a
discussion.
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Figure 1: A pictorial depiction of our setup. The dashed
edge indicates the target unsupervised language pairs
that lack parallel training data. Full edges indicate the
existence of parallel training data.

2019a; Al-Shedivat and Parikh, 2019). Zero-shot
translation concerns the case where direct (source,
target) parallel data is lacking but there is paral-
lel data via a common pivot language to both the
source and the target. For example, in Figure 1,
RuØZh and HiØTe would be zero-shot direc-
tions.

In contrast, a defining characteristic of the mul-
tilingual UNMT setup is that the source and tar-
get are disconnected in the graph and one of the
languages is not associated with any parallel data
with English or otherwise. EnØGu or EnØKk
are such example pairs as shown in Figure 1.

Recently Guzmán et al. (2019); Liu et al. (2020)
showed some initial results on multilingual unsu-
pervised translation in the low-resource setting.
They tune language-specific models and employ
a standard two-stage training scheme (Lample and
Conneau, 2019), or in the case of Liu et al. (2020)
directly fine-tuning on a related language pair (e.g.
HiÑEn) and then test on the target XÑEn pair
(e.g. GuÑEn). In contrast our approach trains one
model for all the language pairs targetted and em-
ploys a three stage training scheme that leverages
synthetic parallel data via offline back-translation.

Offline backtranslation (Sennrich et al., 2016)
was originally used for unsupervised transla-
tion (Lample et al., 2018b; Artetxe et al., 2019),
especially with phrase-based systems.

2.1 Terminology

There is some disagreement on the definition
of multilingual unsupervised machine translation,
which we believe arises from extrapolating unsu-
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Domain En Tr
News
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News
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News
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Wiki
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Wiki
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Wiki
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IITB
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UN

Ar
UN

Zh
UN

Monolingual
News 233M 17M 1.8M 530K - - 2.5M 2.3M 32.6M 93.8M 9.2M 4.7M
Wikipedia - - - 384K 92k 155k - - - - - 22.7M
Crawled - - 7.1M 3.7M 3.5M 5.1M - - - - - -

Auxiliary parallel (w/ English) Mixed - 205k 225k 10k 564k 647k 290K 350K 1.5M 23.2M 9.2M 15.8M
In-domain (%) - - 100% 20.2% 11.4% 2.0% 2.9% - - - - - -

Table 1: The amount and domain of the data used in these experiments. For the unsupervised language pairs, we
additionally included the domain of the development and test sets. For Arabic, we took the 18.4M samples from the
UN Corpus and divided it in two, treating one half of it as unpaired monolingual data. We include the amount of
parallel data for the unsupervised language pairs, which is only utilized for our in-house supervised baseline.

pervised translation to multiple languages. In the
case of only two languages, the definition is clear:
unsupervised machine translation consists of the
case where there is no parallel data between the
source and target languages. However, in a set-
ting with multiple languages, there are multiple
scenarios which satisfy this condition. More ex-
plicitly, suppose that we want to translate between
languages X and Y and we have access to data
from another language Z . Then, we have three
possible scenarios:

• We possess parallel data for pX ,Zq and
pZ,Yq which would permit a 2-step super-
vised baseline via the pivot. Existing literature
(Johnson et al., 2017; Firat et al., 2016b) has
used the term “zero-shot" and “zero-resource"
to refer specifically to this setup.

• We have parallel data for pX ,Zq but only
monolingual data in Y , as considered in (Li
et al., 2020b; Liu et al., 2020; Garcia et al.,
2020; Bai et al., 2020; Guzmán et al., 2019;
Artetxe et al., 2020). Note that the pivot-based
baseline above is not possible in this setup.

• We do not have any parallel data among any
of the language pairs, as considered in (Liu
et al., 2020; Sun et al., 2020).

We believe the first setting is not particularly
suited for the case where either X or Y are true
low-resource languages (or extremely low-resource
languages), since it is unlikely that these languages
possess any parallel data with any other language.
On the other hand, we usually assume that one of
these languages is English and we can commonly
find large amounts of parallel data for English with
other high-resource auxiliary languages. For these
reasons, we focus on the second setting for the rest
of this work.

Arguably, the existence of the auxiliary parallel
data provides some notion of indirect supervision

that is not present when only utilizing monolin-
gual data. However, this signal is weaker than the
one encountered in the zero-shot setting, since it
precludes the 2-step supervised baseline. As a re-
sult, recent work (Artetxe et al., 2020; Guzmán
et al., 2019; Garcia et al., 2020; Liu et al., 2020)
has also opted to use the term “unsupervised". We
too follow this convention and use this terminol-
ogy, but we emphasize that independent of notation,
our goal is to study the setting where only the (ex-
tremely) low-resource languages of interest possess
no parallel data, whether with English or otherwise.

3 Choice of languages

The vast majority of works in UNMT (multilingual
or otherwise) have focused on traditionally high-
resource languages, such as French and German.
While certain works simulate this setting by using
only a smaller subset of the available monolingual
data, such settings neglect common properties of
true low-resource, rare languages: little-to-no lex-
ical overlap with English and noisy data sources
coming from multiple domains. Given the multi-
faceted nature of what it means to be a low-resource
language, we have chosen a set of languages with
many of these characteristics. We give a detailed
account of the available data in Table 1.

Target unsupervised directions: We select
Turkish (Tr), Gujarati (Gu), and Kazakh (Kk)
from WMT . The latter two possess much smaller
amounts of data than most language pairs consid-
ered for UNMT e.g. French or German. In order
to vary the domain of our test sets, we addition-
ally include Nepali (Ne) and Sinhala (Si) from
the recently-introduced FLoRes dataset (Guzmán
et al., 2019), as the test sets for these languages are
drawn from Wikipedia instead of news. Not only
do these languages possess monolingual data in
amounts comparable to the low-resource languages
from WMT, the subset of in-domain monolingual
data for both languages make up less than 5% of
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the available monolingual data of each language.

Auxiliary languages: To choose our auxiliary
languages that contain both monolingual data and
parallel data with English, we took into account lin-
guistic diversity, size, and relatedness to the target
directions. Russian shares the same alphabet with
Kazakh, and Hindi, Telugu, and Tamil are related
to Gujarai, Nepali and Sinhala. Chinese, while not
specifically related to any of the target language, is
high resource and considerably different in struc-
ture from the other languages.

4 Background

For a given language pair pX,Yq of languages X and
Y, we possess monolingual datasets DX and DY,
consisting of unpaired sentences of each language.

Neural machine translation In supervised neu-
ral machine translation, we have access to a par-
allel dataset DXˆZ consisting of translation pairs
px, zq. We then train a model by utilizing the cross-
entropy objective:

Lcross-entropypx, yq “ ´ log pθpy|xq

where pθ is our translation model. We further as-
sume pθ follows the encoder-decoder paradigm,
where there exists an encoder Encθ which converts
x into a variable-length representation which is
passed to a decoder pθpy|xq :“ pθpy|Encθpxqq.

Unsupervised machine translation In this
setup, we no longer possess DXˆY. Nevertheless,
we may possess auxiliary parallel datasets such
as DXˆZ for some language Z, but we enforce the
constraint that we do not have access to analogous
datasetDYˆZ. Current state-of-the-art UNMT mod-
els divide their training procedure into two phases:
i) the pre-training phase, in which an initial transla-
tion model is learned through a combination of lan-
guage modeling or noisy reconstruction objectives
(Song et al., 2019; Lewis et al., 2019; Lample and
Conneau, 2019) applied to the monolingual data; ii)
the fine-tuning phase, which resumes training the
translation model built from the pre-training phase
with a new set of objectives, typically centered
around iterative back-translation i.e. penalizing a
model’s error in round-trip translations. We outline
the objectives below:

Pre-training objectives We use the MASS objec-
tive (Song et al., 2019), which consists of masking2

2We choose a starting index of less than half the length l
of the input and replace the next l{2 tokens with a [MASK]

a contiguous segment of the input and penalizing
errors in the reconstruction of the masked segment.
If we denote the masking operation by MASK, then
we write the objective as follows:

LMASSpxq “ ´ log pθpx|MASKpxq, lxq

where lx denotes the language indicator of exam-
ple x. We also use cross-entropy on the available
auxiliary parallel data.

Fine-tuning objectives We use on-the-fly back-
translation, which we write explicitly as:

Lback-translationpx, lyq “ ´ log pθpx|ỹpxq, lxq

where ỹpxq “ argmaxypθpy|x, lyq and we apply a
stop-gradient to ỹpxq. Computing the mode ỹpxq
of pθp¨|x, lyq is intractable, so we approximate
this quantity with a greedy decoding procedure.
We also utilize cross-entropy, coupled with cross-
translation (Garcia et al., 2020; Li et al., 2020b;
Xu et al., 2019; Bai et al., 2020), which ensures
cross-lingual consistency:

Lcross-translationpx, y, lzq “ ´ log pθpy|z̃pxq, lyq

where z̃pxq “ argmaxzpθpz|x, lzq.

5 Method

For the rest of this work, we assume that we want
to translate between English (En) and some low-
resource languages which we denote by X. In our
early experiments, we found that proceeding to
the fine-tuning stage immediately after pre-training
with MASS provided sub-optimal results (see §7.2),
so we introduced an intermediate stage which lever-
ages synthetic data to improve performance. This
yields a total of three stages, which we describe
below.

5.1 First stage of training

In the first stage, we leverage monolingual and
auxiliary parallel data, using the MASS and cross-
entropy objectives on each type of dataset respec-
tively. We describe the full procedure in Algorithm
1.

token. The starting index is randomly chosen to be 0 or l{2
with 20% chance for either scenario otherwise it is sampled
uniformly at random.
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Algorithm 1 STAGE 1 & 2
Input: Datasets D , number of steps N , parameterized family
of translation models pθ
1: Initialize θ Ð θ0.
2: for step in 1, 2, 3, ..., N do
3: Choose dataset D at random from D.
4: if D consists of monolingual data then
5: Sample batch x from D.
6: MASS Loss: ml Ð LMASSpxq.
7: Update: θ Ð optimizer_updatepml, θq.
8: else if D consists of auxiliary parallel data then
9: Sample batch px, zq from D.

10: tl Ð Lcross-entropypx, zq ` Lcross-entropypz, xq.
11: Update: θ Ð optimizer_updateptl, θq.
12: end if
13: end for

5.2 Second stage of training

Once we have completed the first stage, we will
have produced an initial model capable of gen-
erating high-quality XÑEn (to English) transla-
tions for all of the low-resource pairs we consider,
also known as many-to-one setup in multilingual
NMT (Johnson et al., 2017). Unfortunately, the
model does not reach that level of performance for
the EnÑX translation directions, generating very
low-quality translations into these low-resource
languages. Note that, this phenomenon is ubiqui-
tously observed in multilingual models (Firat et al.,
2016a; Johnson et al., 2017; Aharoni et al., 2019).
This abysmal performance could have dire con-
sequences in the fine-tuning stage, since both on-
the-fly back-translation and cross-translation rely
heavily on intermediate translations. We verify that
this is in fact the case in §7.2.

Instead, we exploit the strong
XÑEn performance by translating subsets3

of the monolingual data of the low-resource
languages using our initial model and treat the
result as pseudo-parallel datasets for the language
pairs EnÑX. More explicitly, given a sentence
x from a low-resource language, we generate an
English translation ỹEn with our initial model and
create a synthetic translation-pair pỹEn, xq. We
refer to this procedure as offline back-translation
(Sennrich et al., 2015). We add these datasets to
our collection of auxiliary parallel corpora and
repeat the training procedure from the first stage
(Algorithm 1), starting from the last checkpoint.
Note that, while offline back-translated (synthetic)
data is commonly used for zero-resource transla-
tion (Firat et al., 2016b; Chen et al., 2017), it is

3We utilize 10% of the monolingual data for each low-
resource language.

worth emphasizing the difference here again, that
in the configuration studied in this paper, we do not
assume the existence of any parallel data between
EnØX, which is exploited by such methods.

Upon completion, we run the procedure a sec-
ond time, with a new subset of synthetic data of
twice the size for the EnÑX pairs. Furthermore,
since the translations from English have improved,
we take disjoint subsets4 of the English monolin-
gual data and generate corpora of synthetic XÑEn
translation pairs that we also include in the second
run of our procedure.

5.3 Third stage of training
For the third and final stage of training, we use
back-translation of the monolingual data and cross-
translation5 on the auxiliary parallel data. We
also leverage the synthetic data through the cross-
entropy objective. We present the procedure in
detail under Algorithm 2.

6 Main experiment

In this section, we describe the details of our main
experiment. As indicated in Figure 1, we consider
five languages (Nepali, Sinhala, Gujarati, Kazakh,
Turkish) as the target unsupervised language pairs
with English. We leverage auxiliary parallel data
from six higher-resource languages (Chinese, Rus-
sian, Arabic, Hindi, Telugu, Tamil) with English.
The domains and counts for the datasets consid-
ered can be found in Table 1 and a more detailed
discussion on the source of the data and the pre-
processing steps can be found in the Appendix.
In the following subsections, we provide detailed
descriptions of the model configurations, training
parameters, evaluation and discuss results of our
main experiment.

6.1 Datasets and preprocessing
We draw most of our data from WMT. The monolin-
gual data comes from News Crawl6 when available.
For all the unsupervised pairs except Turkish, we
supplement the News Crawl datasets with mono-
lingual data from Common Crawl and Wikipedia7.

41 million lines of English per low-resource language.
5For Nepali, Sinhala and Gujarati, we use Hindi as the

pivot language. For Turkish, we use Arabic and for Kazakh,
we use Russian.

6http://data.statmt.org/news-crawl/
7We used the monolingual data available from

https://github.com/facebookresearch/flores for Nepali
and Sinhala in order to avoid any data leakage from the test
sets.
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Model newstest2019
Gu Ø En

newstest2019
Kk Ø En

newstest2017
Tr Ø En

No parallel data Kim et al. (2020) 0.6 0.6 0.8 2.0 - -

No parallel data
for{Gu,Kk,Tr}

Stage 1 (Ours) 4.4 19.3 3.9 14.8 8.4 15.9
Stage 2 (Ours) 16.4 20.4 9.9 15.6 20.0 20.5
Stage 3 (Ours) 16.4 22.2 10.4 16.4 19.8 19.9

With parallel data
for{Gu,Kk,Tr}

Mult. MT Baseline (Ours) 15.5 19.3 9.5 15.1 18.1 22.0
mBART (Liu et al., 2020) 0.1 0.3 2.5 7.4 17.8 22.5

Table 2: BLEU scores of various supervised and unsupervised models on the WMT newstest sets. The bolded
numbers are the best unsupervised scores and the underlined numbers represent the best supervised scores. For any
XØY language pair, the XÑY translation results are listed under each Y column, and vice-versa.

Model FLoRes devtest
Ne Ø En

FLoRes devtest
Si Ø En

No parallel data Guzmán et al. (2019) 0.1 0.5 0.1 0.1

No parallel data
with{Ne,Si}

Liu et al. (2020) - 17.9 - 9.0
Guzmán et al. (2019) 8.3 18.3 0.1 0.1
Stage 1 (Ours) 3.3 18.3 1.4 11.5
Stage 2 (Ours) 8.6 20.8 7.7 15.7
Stage 3 (Ours) 8.9 21.7 7.9 16.2

With parallel data
for{Ne,Si}

Mult. MT Baseline (Ours) 8.6 20.1 7.6 15.3
Liu et al. (2020) 9.6 21.3 9.3 20.2
Guzmán et al. (2019) 8.8 21.5 6.5 15.1

Table 3: BLEU scores of various supervised and unsupervised models on the FLoRes devtest sets. The bolded
numbers are the best unsupervised scores and the underlined numbers represent the best supervised scores. For any
XØY language pair, the XÑY translation results are listed under each Y column, and vice-versa.

The parallel data we use came from a variety of
sources, all available through WMT. We drew our
English-Hindi parallel data from IITB (Kunchukut-
tan et al., 2017); English-Russian, English-Arabic,
and English-Chinese parallel data from the UN
Corpus (Ziemski et al., 2016); English-Tamil
and English-Telugu from Wikimatrix (Schwenk
et al., 2019). We used the scripts from Moses
(Koehn, 2009) to normalize punctuation, remove
non-printing characters, and replace the unicode
characters with their non-unicode equivalent. We
additionally use the normalizing script from Indic
NLP (Kunchukuttan, 2020) for Gujarati, Nepali,
Telugu, and Sinhala.

We concatenate two million lines of monolingual
data for each language and use it to build a vocab-
ulary with SentencePiece8 (Kudo and Richardson,
2018) of 64,000 pieces. We then separate our data
into SentencePiece pieces and remove all training
samples that are over 88 pieces long.

6.2 Model architecture
All of our models were coded and tested in Ten-
sorflow (Abadi et al., 2016). We use the Trans-

8We build the SentencePiece model with the fol-
lowing settings: vocab_size=64000, model_type=bpe,
user_defined_symbols=[MASK], character_coverage=1.0,
split_by_whitespace=true.

former architecture (Vaswani et al., 2017) as the
basis of our translation models. We use 6-layer
encoder and decoder architecture with a hidden
size of 1024 and an 8192 feedforward filter size.
We share the same encoder for all languages. To
differentiate between the different possible output
languages, we add (learned) language embeddings
to each token’s embedding before passing them to
the decoder. We follow the same modification as
done in Song et al. (2019) and modify the output
transformation of each attention head in each trans-
former block in the decoder to be distinct for each
language. Besides these modifications, we share
decoder parameters for every language.

6.3 Training parameters

We use three different settings, corresponding to
each stage of training. For the first stage, we use
the Adam optimizer (Kingma and Ba, 2015) with
a learning rate of 0.0002, weight decay of 0.2 and
batch size of 2048 examples. We use a learning
rate schedule consisting of a linear warmup of 4000
steps to a value 0.0002 followed by a linear decay
for 1.2 million steps. At every step, we choose a
single dataset from which to draw a whole batch
using the following process: with equal probability,
choose either monolingual or parallel. If the choice
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Algorithm 2 STAGE 3
Input: Datasets D, languages L, parameterized family of
translation models pθ , initial parameters from pre-training
θ0
1: Initialize θ Ð θ0.
2: Target Languages: LT Ð tGu, Kk, Ne, Si, Tru.
3: while not converged do
4: for D in D do
5: if D consists of monolingual data then
6: lD Ð Language of D.
7: Sample batch x from D.
8: if lD is English then
9: for l in LT , l ‰ lD do

10: Translation: ŷl ÐDecode pθpŷl|xq.
11: bt Ð Lback-translationpx, lq.
12: Update: θ Ð optimizer_updatepbt, θq.
13: end for
14: else
15: RD Ð Auxiliary languages for lD.
16: for l in RD Y English do
17: Translation: ŷl ÐDecode pθpŷl|xq.
18: bt Ð Lback-translationpx, lq.
19: Update: θ Ð optimizer_updatepbt, θq.
20: end for
21: end if
22: else if D consists of parallel data then
23: Sample batch px, zq from D.
24: Source language: lx Ð Language of x.
25: Target language: lz Ð Language of z.
26: if D is not synthetic then
27: for l in L, l ‰ lx, lz do
28: ct Ð Lcross-translationpx, z, lq.
29: Update: θ Ð optimizer_updatepct, θq.
30: end for
31: else
32: Cross-entropy: ce Ð Lcross-entropypx, zq.
33: Update: θ Ð optimizer_updatepce, θq.
34: end if
35: end if
36: end for
37: end while

is monolingual, then we select one of the monolin-
gual datasets uniformly at random. If the choice
is parallel, we use a temperature-based sampling
scheme based on the numbers of samples with a
temperature of 5 (Arivazhagan et al., 2019b). In
the second stage, we retain the same settings for
both rounds of leveraging synthetic data except for
the learning rate and number of steps. In the first
round, we use the same number of steps, while in
the second round we only use 240 thousand steps,
a 1/5th of the original.

For the final phase, we bucket sequences by their
sequence length and group them up into batches
of at most 2000 tokens. We train the model with
8 NVIDIA V100 GPUs, assigning a batch to each
one of them and training synchronously. We also
use the Adamax optimizer instead, and cut the
learning rate by four once more.

6.4 Baselines

We compare with the state-of-the-art unsupervised
and supervised baselines from the literature. Note
all the baselines build language-specific models,
whereas we have a single model for all the target
unsupervised directions.

Unsupervised baselines: For the bilingual un-
supervised baselines, we include the results of
Kim et al. (2020)9 for EnØGu and EnØKk and
of Guzmán et al. (2019) for EnØSi. We also
report other multilingual unsupervised baselines.
mBART (Liu et al., 2020) leverages auxiliary par-
allel data (e.g. EnØHi parallel data for GuÑEn)
after pre-training on a large dataset consisting
of 25 languages and the FLoRes dataset bench-
mark (Guzmán et al., 2019) leverages HiØEn
data for the EnØNe language pair. All the unsuper-
vised baselines that use auxiliary parallel data per-
form considerably better than the ones that don’t.

Supervised baselines: In addition to the unsu-
pervised numbers above, mBART and the FLo-
Res dataset benchmarks report supervised results
that we compare with. We additionally include
one more baseline where we followed the training
scheme proposed in stage 1, but also included the
missing parallel data. We labeled this model “Mult.
MT Baseline", though we emphasize that we also
leverage the monolingual data in this baseline, as
in recent work (Siddhant et al., 2020a; Garcia et al.,
2020).

6.5 Evaluation

We evaluate the performance of our models us-
ing BLEU scores (Papineni et al., 2002). BLEU
scores are known to be dependent on the data pre-
processing (Post, 2018) and thus proper care is re-
quired to ensure the scores between our models and
the baselines are comparable. We thus only con-
sidered baselines which report detokenized BLEU
scores with sacreBLEU (Post, 2018) or report ex-
plicit pre-processing steps. In the case of the Indic
languages (Gujarati, Nepali, and Sinhala), both
the baselines we consider (Guzmán et al., 2019;
Liu et al., 2020) report tokenized BLEU using
the tokenizer provided by the Indic-NLP library
(Kunchukuttan, 2020). For these languages, we fol-
low this convention as well so that the BLEU scores

9Due to the limited literature on unsupervised machine
translation on low-resource languages, this was the best bilin-
gual unsupervised system we could find.
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Data configuration
Monolingual Parallel

newsdev2019
KkØEn

Ru Ru 6.8 9.5
Ru, Ar, Zh Ru 7.3 14.8
Ru Ru, Ar, Zh 9.6 18.4
Ru, Ar, Zh Ru, Ar, Zh 9.8 18.6

Table 4: BLEU scores for a model trained with various
configurations for the auxiliary data.

remain comparable. Otherwise, we follow suit
with the rest of the literature and report detoknized
BLEU scores through sacreBLEU10.

6.6 Results & discussion
We list the results of our experiments for the WMT
datasets in Table 2 and for the FLoRes datasets in
Table 3. After the first stage of training, we obtain
competitive BLEU scores for XÑEn translation
directions, outperforming all unsupervised models
as well as mBART for the language pairs KkÑEn
and GuÑEn. Upon completion of the second stage
of training, we see that the EnÑX language pairs
observe large gains, while the XÑEn directions
also improve. The final round of training further
improves results in some language pairs, yielding
an increase of +0.44 BLEU on average.

Note that in addition to considerably outperform-
ing all the unsupervised baselines, our approach
outperforms the supervised baselines on many of
the language pairs, even matching the state-of-the-
art on NeÑEn. Specifically, it outperforms the
supervised mBART on six out of ten translation di-
rections despite being a smaller model and Guzmán
et al. (2019) on all pairs. Critically, we outperform
our own multilingual MT baseline, trained in the
same fashion and data as Stage 1, which further
reinforces our assertion that unsupervised MT can
provide competitive results with supervised MT in
low-resource settings.

7 Further analysis

Given the substantial quality gains delivered by our
proposed method, we set out to investigate what
design choices can improve the performance of
unsupervised models. To ease the computational
burden, we further filter the training data to re-
move any sample which are longer than 64 Sen-
tencePiece11 pieces long and cut the batch size in

10BLEU + case.mixed + numrefs.1 + smooth.exp + tok.13a
+ version.1.4.14

11For all the experiments in this section, we use the same
SentencePiece vocabulary as our benchmark model.

half for the first two stages. Additionally, we only
do one additional round of training with synthetic
data as opposed to the two rounds performed for
the benchmark models. While these choices neg-
atively impact performance, the resulting models
still provide competitive results with our baselines
and hence are more than sufficient for the purposes
of experimental studies.

7.1 Increasing multilinguality of the auxiliary
parallel data improves performance

It was shown in Garcia et al. (2020); Bai et al.
(2020) that adding more multilingual data im-
proved performance, and that the inclusion of aux-
iliary parallel data further improved the BLEU
scores (Siddhant et al., 2020b). In this experiment,
we examine whether further increasing multilin-
guality under a fixed data budget improves perfor-
mance. For all configurations in this subsection,
we utilize all the available English and Kazakh
monolingual data. We fix the amount of auxiliary
monolingual data to 40 million, the auxiliary par-
allel data to 12 million, and vary the number of
languages which manifest in this auxiliary data.

We report the results on Table 4. It is observed
that increasing the multilinguality of the paral-
lel data is crucial, but the matter is less clear for
the monolingual data. Using more languages for
the monolingual data can potentially harm perfor-
mance, but in the presence of multiple auxiliary
language pairs with supervised data this degrada-
tion vanishes.

7.2 Synthetic data is critical for both stage 2
and stage 3 of training

In the following experiments, we evaluate the role
of synthetic parallel data in the improved perfor-
mance found at the end of stage 2 and stage 3 of our
training procedure. We first evaluate whether the
improved performance at the end of stage 2 comes
from the synthetic data or the continued training.
We consider the alternative where we repeat the
same training steps as in stage 2 but without the
synthetic data. We then additionally fine-tune these
models with the same procedure as stage 3, but
without any of the terms involving synthetic data.
We report the BLEU scores for all these configura-
tions in Table 5. The results suggest: the baseline
without synthetic parallel data shows inferior per-
formance across all language pairs compared to our
approach leveraging synthetic parallel data.
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Stage newsdev2019
Gu Ø En

newsdev2019
Kk Ø En

newsdev2016
Tr Ø En

FLoRes dev
Ne Ø En

FLoRes dev
Si Ø En

Baseline First 5.0 23.4 4.0 16.1 6.3 17.7 2.8 15.1 1.3 12.0

Without synthetic data Second 6.2 24.8 4.24 17.0 6.3 18.5 3.6 16.0 1.6 12.7
Third 12.9 26.2 6.1 16.3 12.9 19.5 5.9 16.1 5.2 13.1

With synthetic data Second 19.6 29.8 10.6 20.0 16.7 23.8 7.3 17.4 8.3 16.6
Third 18.6 30.3 11.6 21.5 17.9 24.7 8.2 17.6 7.7 17.4

Table 5: BLEU scores of model configurations with or without synthetic data. Otherwise, we report the numbers
after stage 2 for both models and use the results after stage 1 as a baseline.

Objectives ∆BLEU

With
synthetic data

BT 0.6
+ CT with Hi 2.1
+ CT with Ru and Ar 2.6

Without
synthetic data

BT 0.0
+ CT with Hi 1.3
+ CT with Ru and Ar 1.4

Table 6: Total BLEU increase for XÑEn over base-
line fine-tuning strategy consisting of on-the-fly back-
translation (BT) and no synthetic data. We refer to
cross-translation as "CT".

Finally, we inspect whether the synthetic paral-
lel data is still necessary in stage 3 or if it suffices
to only leverage it during the second stage. We
consider three fine-tuning strategies, where we ei-
ther (1) only utilize on-the-fly back-translation (2)
additionally include cross-translation terms for Gu-
jarati, Nepali, and Sinhala using Hindi (3) addition-
ally include a cross-translation terms for Turkish
and Kazakh involving Arabic and Russian respec-
tively. We compare all of the approaches to the
vanilla strategy that only leverages on-the-fly back-
translation and report the aggregate improvements
in BLEU on the XÑEn directions over this base-
line in Table 6. We see two trends: The configura-
tions that do not leverage synthetic data perform
worse than those that do, and increasing multilin-
guality through the inclusion of cross-translation
further improves performance.

7.3 Our approach is robust under multiple
domains

We investigate the impact of data quantity and qual-
ity on the performance of our models. In this exper-
iment, we focus on EnØGu and use all available
monolingual and auxiliary parallel data for all lan-
guages except Gujarati. We consider three config-
urations: (1) 500,000 lines from News Crawl (in-
domain high-quality data); (2) 500,000 lines from
Common Crawl (multi-domain data); (3) 100,000
lines from News Crawl. We present the results on

Data Configurations newstest2019
GuØ En

newsdev2019
GuØ En

500k News Crawl 6.8 15.7 9.7 21.7
500k Common Crawl 9.2 16.7 9.4 22.5
100k News Crawl 3.6 10.0 5.4 12.4
mBART - 13.8 - -
Kim et al. (2020) 0.6 0.6 - -

Table 7: BLEU scores for various configurations of
Gujarati monolingual data, where we vary amount of
data and domain. We include the best results of mBART
and (Kim et al., 2020) for comparison.

both newstest2019 and newsdev2019 for EnØGu
on Table 7. We see that both Common Crawl and
News Crawl configurations produce similar results
at this scale, with the Common Crawl configuration
having a small edge on average. Notice that even
in this data-starved setting, we still outperform the
competing unsupervised models. Once we reach
only 100,000 lines, performance degrades below
mBART but still outperforms the bilingual UNMT
approach of Kim et al. (2020), revealing the power
of multilinguality in low-resource settings.

8 Conclusion

In this work, we studied how multilinguality can
make unsupervised translation viable for low-
resource languages in a realistic setting. Our results
show that utilizing the auxiliary parallel data in
combination with synthetic data through our three-
stage training procedure not only yields large gains
over unsupervised baselines but also outperforms
several modern supervised approaches.
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