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Abstract
Meta-learning promises few-shot learners that
quickly adapt to new distributions by repurpos-
ing knowledge acquired from previous train-
ing. However, we believe meta-learning has
not yet succeeded in NLP due to the lack
of a well-defined task distribution, leading to
attempts that treat datasets as tasks. Such
an ad hoc task distribution causes problems
of quantity and quality. Since there’s only
a handful of datasets for any NLP prob-
lem, meta-learners tend to overfit their adap-
tation mechanism and, since NLP datasets are
highly heterogeneous, many learning episodes
have poor transfer between their support and
query sets, which discourages the meta-learner
from adapting. To alleviate these issues,
we propose DRECA (Decomposing datasets
into Reasoning Categories), a simple method
for discovering and using latent reasoning
categories in a dataset, to form additional
high quality tasks. DRECA works by split-
ting examples into label groups, embedding
them with a finetuned BERT model and then
clustering each group into reasoning cate-
gories. Across four few-shot NLI problems,
we demonstrate that using DRECA improves
the accuracy of meta-learners by 1.5–4%.

1 Introduction

A key desideratum for human-like understanding is
few-shot adaptation. Adaptation is central to many
NLP applications since new concepts and words
appear often, leading to distribution shifts. People
can effortlessly deal with these distribution shifts
by learning these new concepts quickly and we
would like our models to have similar capabilities.
While finetuning large pre-trained transformers is
one way to facilitate this adaptation, this procedure
requires thousands of samples where humans might
require only a few.

Can these pre-trained transformers be made to
achieve few-shot adaptation? One promising di-
rection is meta-learning (Schmidhuber, 1987; Ben-

Figure 1: Overview of our approach. We embed all ex-
amples with BERT, and then cluster within each label
group separately (red and green correspond to entail-
ment and not_entailment respectively). Then, we group
clusters from distinct label groups to form tasks.

gio et al., 1997). Meta-learning promises few-shot
classifiers that can adapt to new tasks by repur-
posing skills acquired from training tasks. An im-
portant prerequisite for successful application of
meta-learning is a task-distribution from which a
large number of tasks can be sampled to train the
meta-learner. While meta-learning is very appeal-
ing, applications in NLP have thus far proven chal-
lenging due to the absence of a well-defined set of
tasks that correspond to re-usable skills. This has
led to less effective ad hoc alternatives, like treating
entire datasets as tasks.

Treating entire datasets as tasks has two major
issues. The first issue is learner overfitting (Rajen-
dran et al., 2020), where a meta-learner overfits
its adaptation mechanism to the small number of
training tasks, since there’s only a small number of
supervised datasets available for any NLP problem.
Second, the heterogeneity of NLP datasets can lead
to learning episodes that encourage memorization
overfitting (Yin et al., 2020; Rajendran et al., 2020),
a phenomenon where a meta-learner ignores the
support set, and doesn’t learn to adapt.

To improve the quality and quantity of tasks,
we propose the simple approach of Decomposing
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datasets into Reasoning Categories or DRECA.
DRECA is a meta data augmentation strategy that
takes as input a set of tasks (entire datasets), and
then decomposes them to approximately recover
some of the latent reasoning categories underlying
these datasets, such as various syntactic constructs
within a dataset, or semantic categories such as
quantifiers and negation. These reasoning cate-
gories are then used to construct additional few-
shot classification tasks, augmenting the original
task distribution. We illustrate these steps in Fig. 1.
DRECA first embeds the examples using a BERT
model finetuned over all the datasets. We then run
k-means clustering over these representations to
produce a refinement of the original tasks.

Experiments demonstrate the effectiveness of
our simple approach. As a proof of concept, we
adapt the classic sine-wave regression problem
from Finn et al. (2017) to mimic the challenges
of the NLP setting, and observe that standard meta-
learning procedures fail to adapt. However, a
model that meta-learns over the underlying reason-
ing types shows a substantial improvement. Then,
we consider the problem of natural language infer-
ence (NLI). We show that meta-learners augmented
with DRECA improve over baselines by 1.5–4 ac-
curacy points across four separate NLI few-shot
problems without requiring domain-specific engi-
neering or additional unlabeled data.

2 Related Work

Few-shot learning in NLP. The goal of learn-
ing from few examples has been studied for vari-
ous NLP applications. Common settings include
few-shot adaptation to new relations (Han et al.,
2018), words (Holla et al., 2020), domains (Bao
et al., 2020; Yu et al., 2018; Geng et al., 2019), and
language pairs (Gu et al., 2018). Since these appli-
cations come with well-defined task distributions,
they do not have the same overfitting challenges.
On the other hand, many works deal with few-shot
adaptation in settings with no clear task distribution
(Dou et al., 2019; Bansal et al., 2020a) but do not
address meta-overfitting, and thus are complemen-
tary to our work.

Overfitting and Task Augmentation. The
memorization problem in meta-learning is studied
in Yin et al. (2020) who propose a meta-regularizer
to mitigate memorization overfitting, but don’t
study learner overfitting. Task augmentation
for mitigating overfitting in meta-learners is

first studied in Rajendran et al. (2020) in the
context of few-shot label adaptation. Hsu et al.
(2019) propose CACTUs, a clustering-based
approach for unsupervised meta-learning in the
context of few-shot label adaptation for images.
While also based on clustering, CACTUs creates
meta-learning tasks where the goal is to predict
cluster membership of images, whereas our
work is focused on using clusters to subdivide
pre-existing tasks for mitigating meta-overfitting
in NLP. Most closely related to our work is
the SMLMT method from Bansal et al. (2020b).
SMLMT creates new self-supervised tasks that
improve meta-overfitting but this does not directly
address the dataset-as-tasks problem we identify.
In contrast, we focus on using clustering as a way
to subdivide and fix tasks that already exist. This
approach allows us to mitigate meta-overfitting
without additional unlabeled data. In Section 6,
we compare our model against SMLMT, and
demonstrate comparable or better performance.

3 Setting

3.1 NLI

We consider the problem of Natural Language In-
ference or NLI (MacCartney and Manning, 2008;
Bowman et al., 2015), also known as Recognis-
ing Textual Entailment (RTE) (Dagan et al., 2005).
Given a sentence pair x = (p, h) where p is re-
ferred to as the premise sentence, and h is the hy-
pothesis sentence, the goal is to output a binary
label1 ŷ ∈ {0, 1} indicating whether the hypoth-
esis h is entailed by the premise p or not. For
instance, the sentence pair (The dog barked, The
animal barked) is classified as entailed, whereas
the sentence pair (The dog barked, The labrador
barked) would be classified as not entailed. As
shown in Table 1, NLI datasets typically encom-
pass a broad range of linguistic phenomena. Apart
from the reasoning types shown in Table 1, exam-
ples may also vary in terms of their genre, syntax,
annotator writing style etc. leading to extensive lin-
guistic variability. Taken together, these factors of
variation make NLI datasets highly heterogeneous.

3.2 Meta-Learning

The goal of meta-learning is to output a meta-
learner f : (Si, xiq) 7→ ŷ that takes as input a sup-
port set Si of labeled examples and a query point

1Since many of the NLI datasets we experiment with are
2-way NLI, we choose this formulation instead of 3-way NLI.
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Example Reasoning Category

A boy with the green jacket went back =⇒ A boy went back Restrictive Modifiers
A white rabbit ran =⇒ A rabbit ran Intersective Adjectives
Bill is taller than Jack 6=⇒ Jack is taller than Bill Comparatives
The dog barked 6=⇒ The dog did not bark Negation
The man went to the restaurant since he was hungry =⇒ The man was hungry Coreference Resolution
Bill is taller than Jack =⇒ Jack is not taller than Bill Negated Comparatives

Table 1: Some common reasoning types within NLI. These can also be composed to create new types.

xiq and returns a prediction ŷ. In the usual meta-
learning setting, these support and query sets are
defined as samples from a task T i, which is a col-
lection of labeled examples {(xi, yi)}. In N -way
k-shot adaptation, each T i is an N -way classifica-
tion problem, and f is given k examples per label
to adapt. A simple baseline for meta-learning is to
train a supervised model on labeled data from train-
ing tasks, and then finetune it at test time on the
support set. This can be powerful, but is ineffective
for very small support sets. A better alternative
is episodic meta-learning, which explicitly trains
models to adapt using training tasks

Episodic Training. In the standard setup for
training episodic meta-learners, we are given a col-
lection of training tasks. We assume that both train
and test tasks are i.i.d. draws from a task distribu-
tion p(T ). For each training task T tr

i ∼ p(T ), we
create learning episodes which are used to train the
meta-learner. Each learning episode consists of a
support set Si = {(xis, yis)} and a query set Qi =
{(xiq, yiq)}. The goal of episodic meta-learning is to
ensure that the meta-learning loss L(f(Si, xiq), yiq)
is small on training tasks T tr

i . Since train tasks are
i.i.d. with test tasks, this results in meta-learners
that achieve low loss at test time.

Several algorithms have been proposed for meta-
learning that follow this general setup, such as
Matching Networks (Vinyals et al., 2016), MANN
(Santoro et al., 2016), Prototypical Networks (Snell
et al., 2017) and MAML (Finn et al., 2017). In this
work, we use MAML as our meta-learner.

MAML. In MAML, the meta-learner f takes the
form of gradient descent on a model hθ : x 7→ y
using the support set,

f(Si, xqi ) = hθ′i(x
q
i ) (1)

where θ′i denotes task-specific parameters obtained
after gradient descent. The goal of MAML is to

produce an initialization θ, such that after perform-
ing gradient descent on hθ using Si, the updated
model hθ′i can make accurate predictions on Qi.
MAML consists of an inner loop and an outer loop.
In the inner loop, the support set Si is used to up-
date model parameters θ, to obtain task-specific
parameters θ′i,

θ′i = θ − α∇θ
∑

(xis,y
i
s)∈Si

L(hθ(xis), yis). (2)

These task-specific parameters are then used to
make predictions on Qi. The outer loop takes gra-
dient steps over θ such that task-specific parameters
θ′i perform well on Qi. Since θ′i is itself a differ-
entiable function of θ, we can perform this outer
optimization using gradient descent,

θ ← Opt
(
θ,∇θ

∑
(xiq ,y

i
q)∈Qi

L(hθ′i(x
i
q), y

i
q)

)
. (3)

where Opt is an optimization algorithm typically
chosen to be Adam. The outer loop gradient
is typically computed in a mini-batch fashion
by sampling a batch of episodes from distinct
training tasks. The gradient ∇θL(hθ′i(x

i
q), y

i
q) in-

volves back-propagation through the adaptation
step which requires computing higher order gra-
dients. This can be computationally expensive so a
first order approximation (FoMAML),

∇θL(hθ′i(x
i
q), y

i
q) ≈ ∇θ′iL(hθ′i(x

i
q), y

i
q) (4)

is often used instead (Finn et al., 2017).

3.3 Meta-Learning for NLI
As mentioned earlier, training tasks in NLP are
often entire datasets, leading to a small number
of heterogeneous training tasks. Thus, to train a
meta-learner for NLI, our training tasks T tr

i are NLI
datasets. At test time, we are given new datasets
that we must adapt to, given a support set of ran-
domly drawn examples from the dataset.
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Meta Overfitting. Consider learning episodes
sampled from an NLI dataset (Table 2). NLI
datasets consist of a wide range of linguistic phe-
nomena, and so we expect an episode to be com-
prised of a diverse set of reasoning categories. Such
heterogeneous episodes can lead to scenarios where
the support and query sets do not have any overlap
in reasoning skills, causing the model to ignore the
support set. This is known as memorization overfit-
ting. Moreover, since we have a limited number of
datasets, the meta-learner is exposed to a very small
number of tasks at meta-training time causing it to
generalize poorly to test tasks. This is known as
learner overfitting (Rajendran et al., 2020).

NLI Example Reasoning Category

Everyone has visited every person 6=⇒ Jeff
didn’t visit Byron

Negation, Quantifier

Generally, LC mail is lighter than AO mail =⇒
AO mail is almost always heavier than LC mail

Comparative, Quantifier

They’ve had their house that long 6=⇒ They
don’t own the house and have never lived there

Negation

Then he strolled gently in the opposite direction
=⇒ He wasn’t walking in the same direction

Negation

Query

A white rabbit ran =⇒ A rabbit ran Intersective adjective

Table 2: Illustration of an episode sampled from a het-
erogeneous task. We can observe that there is no over-
lap between the support and query reasoning categories,
leading to limited transfer.

4 An Illustration of Overfitting in
Meta-Learning

We illustrate meta overfitting challenges by modi-
fying the classic sine-wave toy example for meta-
learning from Finn et al. (2017).

Dataset. Consider the sine-wave regression prob-
lem from Finn et al. (2017) where each task cor-
responds to learning a sine wave mapping with
a fixed amplitude and phase offset. As shown in
Fig. 2(a), each support and query set consists of
points drawn from the same sine wave mapping.
The key observation here is that since support and
query examples are drawn from the same mapping,
we might expect a meta-learner to use the support
set for adaptation. In the NLP case, since tasks are
heterogeneous, support and query examples may
belong to different reasoning categories. We instan-
tiate this by letting support and query points come
from different sine waves (Fig. 2(b)).

More formally, our construction consists of mul-
tiple datasets. Each dataset is defined as a unit

(a) 1D sine wave regression (Finn et al., 2017). Each task is a
sine-wave with a fixed amplitude and phase offset.

(b) Three datasets from our 2D sine wave regression. Each
dataset is a unit square with multiple reasoning categories; A
reasoning category is a distinct sinusoid along a ray that maps
x = (x1, x2) to the value of the sine-wave y at that point.

Figure 2: Comparing the classic 1D sine wave regres-
sion with our setting. For a randomly sampled episode,
red dots mark support examples and the green square
marks a query example. Notice how in 2(a), the sup-
port and query come from the same sine wave while
in 2(b) they often come from different sine waves. This
makes adaptation challenging, leading to memorization
overfitting.

square sampled from a 10 × 10 grid over x1 =
[−5, 5] and x2 = [−5, 5]. Within each dataset, we
construct multiple reasoning categories by defin-
ing each reasoning category to be a sine wave
with a distinct phase offset. This is illustrated
in Fig. 2(b) where each unit square represents a
dataset, and sine waves along distinct rays corre-
spond to reasoning categories. The target label
y for the regression task is defined for each cate-
gory by a randomly sampled phase φ ∈ [0.1, 2π]
and y = sin(‖x − bxc‖2 − φ). At meta-training
time, we sample a subset of these 100 squares as
our training datasets, and then evaluate few-shot
adaptation to reasoning categories from held out
datasets at meta-test time.

Experiments. We use similar hyperparameters
as Finn et al. (2017) elaborated in Appendix A.1.

We start by considering MAML-BASE, a meta-
learner that is trained directly over a dataset-based
task distribution. Concretely, we define each train-
ing task as a dataset and randomly sample episodes
to train the meta-learner. Note that since episodes
are drawn uniformly at random from an entire
dataset, we expect support and query sets to often
contain points from disjoint reasoning categories
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(Fig. 2(b)), making adaptation infeasible. Thus, we
expect pre and post adaptation losses to be similar,
which is indeed reflected in the learning curves in
Fig. 3(a). We observe that the orange and blue lines,
corresponding to pre and post adaptation losses re-
spectively, almost overlap. In other words, the
meta-learner ignores the support set entirely. This
is what we mean by memorization overfitting.

Next we consider MAML-ORACLE, a meta-
learner that is trained on tasks based on the underly-
ing reasoning categories—distinct sine waves. Con-
sequently, support and query sets are both drawn
from the same sine wave, similar to Finn et al.
(2017) making adaptation feasible. From Fig. 3(b),
we observe large gaps between pre and post adap-
tation losses which indicates that memorization
overfitting has been mitigated.
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Figure 3: Learning curves for MAML-BASE (a) and
MAML-ORACLE (b). The lack of a gap between pre-
adaptation (orange) and post-adaptation (blue) losses
for MAML-BASE indicates strong memorization over-
fitting. A big gap for MAML-ORACLE indicates that
this model learns to adapt.

These experiments confirm our hypothesis about
the challenges of meta-learning with heterogeneous
task distributions. Since NLI datasets require a
wide range of skills, we might expect similar chal-
lenges on few-shot NLI as well.

5 DRECA

In this section, we introduce our approach for ex-
tracting reasoning categories for NLI. The key ob-
servation here is that high quality sentence pair
representations, such as those obtained from a
finetuned BERT model, can bring out the micro-
structure of NLI datasets. Indeed, the fact that pre-
trained transformers can be used to create meaning-
ful clusters has been shown in other recent works
(c.f. Aharoni and Goldberg (2020); Joshi et al.
(2020)).

At a high level, the goal of DRECA is to take a
heterogeneous task (such as a dataset) and produce
a decomposed set of tasks. In doing so, we hope to

obtain a large number of relatively homogeneous
tasks that can prevent meta overfitting.

Given a training task T tr
i , we first group ex-

amples by their labels, and then embed exam-
ples within each group with an embedding func-
tion EMBED(.). Concretely, for each N -way
classification task T tr

i we form groups gil =
{(EMBED(xpi ), y

p
i ) | y

p
i = l}. Then, we proceed

to refine each label group into K clusters via k-
means clustering to break down T tr

i into groups
{Cj(gil)}Kj=1 for l = 1, 2, . . . , N .

These cluster groups can be used to produceKN

potential DRECA tasks.2 Each task is obtained by
choosing one of K clusters for each of the N label
groups, and taking their union. At meta-training
time, learning episodes are sampled uniformly at
random from DRECA tasks with a probability λ
and from one of the original tasks with probability
1− λ. Since our clustering procedure is based on
finetuned BERT vectors, we expect the resulting
clusters to roughly correspond to distinct reason-
ing categories. Indeed, when the true reasoning
categories are known, we show in Section 7.2 that
DRECA yields clusters that recover these reason-
ing categories almost exactly.

6 NLI Experiments

6.1 Datasets

We evaluate DRECA on 4 NLI few-shot learning
problems which we describe below (more details
in Appendix A.2.1). The first problem is based on
synthetic data, while the other 3 problems are on
real datasets and hence a good demonstration of
the utility of our proposal.

HANS-FEWSHOT is a few-shot classification
problem over HANS (McCoy et al., 2019), a syn-
thetic diagnostic dataset for NLI. Each example
in HANS comes from a hand-designed syntactic
template which is associated with a fixed label (en-
tailment or not_entailment). The entire dataset
consists of 30 such templates which we use to de-
fine 15 reasoning categories. We then hold out 5
of these for evaluation, and train on the remaining
10. While this is a simple setting, it allows us to
compare DRECA against an “oracle" with access
to the underlying reasoning categories.

2Note that we do not instantiate the KN tasks. Instead, we
simply sample an episode from random chosen clusters from
each label group.
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COMBINEDNLI consists of a combination of 3
NLI datasets—MultiNLI (Williams et al., 2018),
Diverse Natural Language Inference Collection
(DNC; Poliak et al. (2018)) and Semantic Frag-
ments (Richardson et al., 2020) for training. These
training datasets cover a broad range of NLI phe-
nomena. MultiNLI consists of crowdsourced exam-
ples, DNC consists of various semantic annotations
from NLP datasets re-cast into NLI and Semantic
fragments is a synthetic NLI dataset covering logi-
cal and monotonicity reasoning. Our objective is to
train a single meta-learner that can then be used to
make predictions on diverse NLP problems recast
as NLI. To this end, we evaluate models trained on
COMBINEDNLI on 2 datasets. In COMBINEDNLI-
RTE, we evaluate on the RTE datasets (Dagan et al.,
2005; Bar-Haim et al., 2006; Giampiccolo et al.,
2007; Bentivogli et al., 2009) as provided in GLUE
(Wang et al., 2019). The RTE datasets consist of
various IE and QA datasets recast as NLI. Second,
we consider the QANLI dataset (Demszky et al.,
2018) which recasts question answering into NLI.
In particular, we consider RACE (Lai et al., 2017)
and use gold annotations provided in Demszky et al.
(2018) to transform it into an NLI dataset.

GLUE-SciTail where we train on all NLI
datasets from GLUE (Wang et al., 2019) and eval-
uate on SciTail (Khot et al., 2018). This setting is
comparable to Bansal et al. (2020b) with the differ-
ence that we only meta-train on the NLI subset of
GLUE, whereas they meta-train on all GLUE tasks.
We follow the same evaluation protocol as Bansal
et al. (2020b) and report 2-way 4-shot accuracy.

6.2 Models
Non-Episodic Baselines. All non-episodic base-
lines train hθ on the union of all examples from
each T tr

i . In MULTITASK (FINETUNE), we ad-
ditionally finetune the trained model on the sup-
port set of each test task. In MULTITASK (K-NN),
each query example in the test task is la-
beled according to the nearest neighbor of
the example in the support set. Finally, in
MULTITASK (FINETUNE + K-NN), we first fine-
tune the trained model on the support set and then
label each query example based on its nearest
neighbor in the support set.

Episodic Meta-learners. MAML-BASE is a
MAML model where every task corresponds to
a dataset. In the HANS-FEWSHOT setting where
underlying reasoning categories are known, we also

compare with an oracle model MAML-ORACLE

which is trained over a mixture of dataset-based
tasks as well as oracle reasoning categories. Fi-
nally, MAML-DRECA is our model which trains
MAML over a mixture of the original dataset-based
tasks as well as the augmented tasks from DRECA.

Evaluation. To control for variations across dif-
ferent support sets, we sample 5–10 random sup-
port sets for each test task. We finetune each of our
models on these support sets and report means and
95% confidence intervals assuming the accuracies
follow a Gaussian.

Training Details. We use first order MAML (Fo-
MAML) for computational efficiency. We use
BERT-base as provided in the transformers library
(Wolf et al., 2019) as the parameterization for hθ
and EMBED(; ). The meta-training inner loop op-
timization involves 10 gradient steps with Adam,
with a support set of 2 examples (2-way 1-shot) for
all except GLUE-SciTail where the support set size
is 8 (2-way 4-shot). We experiment with 4-shot
adaptation on GLUE-SciTail to match the evalua-
tion setup from Bansal et al. (2020b). The mixing
weight λ is set to 0.5 for all our experiments. More
details can be found in Appendix A.2.2.

Results. We report results on the synthetic
HANS-FEWSHOT setting in Table 4, where we
find that DRECA improves over all baselines. In
particular, we observe an improvement of +6.94
over MULTITASK (FINETUNE + K-NN) and +4.3
over MAML-BASE. Moreover, we observe that
MAML-DRECA obtains a comparable accuracy
as MAML-ORACLE.

Next, we report results on our 3 real NLI set-
tings in Table 3. Again, we find that DRECA im-
proves model performance across all 3 settings:
MAML-DRECA improves over MAML-BASE

by +2.5 points on COMBINEDNLI-QANLI, +2.7
points on COMBINEDNLI-RTE and +1.6 points
on GLUE-SciTail. On GLUE-SciTail, we com-
pare against SMLMT (Bansal et al., 2020b) and
find that MAML-DRECA improves over it by 1.5
accuracy points. However, we note that the confi-
dence intervals of these approaches overlap, and
also that (Bansal et al., 2020a) consider the entire
GLUE data to train the meta-learner whereas we
only consider NLI datasets within GLUE.
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Model COMBINEDNLI-QANLI COMBINEDNLI-RTE GLUE-SciTail

MULTITASK (FINETUNE) 69.66 ± 0.39 65.47 ± 3.19 75.80 ± 2.58
MULTITASK (K-NN) 68.97 ± 1.26 63.69 ± 6.65 69.76 ± 3.74
MULTITASK (FINETUNE + K-NN) 67.38 ± 2.61 66.52 ± 5.48 76.44 ± 1.77

MAML-BASE 69.43 ± 0.81 72.61 ± 0.85 76.38 ± 1.25
SMLMT (Bansal et al., 2020b) – – 76.75 ± 2.08
MAML-DRECA 71.98 ± 0.79 75.36 ± 0.69 77.91 ± 1.60

Table 3: Results on NLI few-shot learning. We report the mean and 95% confidence intervals assuming accuracies
follow a Gaussian. Bolded cells represent the best mean accuracy for the particular dataset. For all settings except
GLUE-SciTail, we consider 2 way 1 shot adaptation. For GLUE-SciTail, we consider 2 way 4 shot adaptation.
SMLMT numbers are taken directly from Bansal et al. (2020b).

Model HANS-FEWSHOT

MULTITASK (FINETUNE) 80.76 ± 1.83
MULTITASK (K-NN) 70.35 ± 2.29
MULTITASK (FINETUNE + K-NN) 80.59 ± 1.63

MAML-BASE 82.64 ± 1.80
MAML-ORACLE 86.74 ± 1.06

MAML-DRECA 87.53 ± 2.38

Table 4: Results on HANS-FEWSHOT. We report the
mean and 95% confidence intervals assuming accura-
cies follow a Gaussian.

Dataset #Reasoning Categories Cluster purity

HANS-FEWSHOT 10 85.6%

Table 5: Measuring cluster purity. Our model is effec-
tive at recovering underlying reasoning types.

7 Analysis

7.1 Visualizing the geometry of finetuned
BERT on HANS-FEWSHOT

We start by visualizing finetuned BERT embed-
dings used by DRECA for HANS-FEWSHOT. As
mentioned earlier, HANS consists of 30 manually
defined syntactic templates which can be grouped
into 15 reasoning categories. Following the proce-
dure for EMBED() (details in Appendix A.2.2), we
finetune BERT (Devlin et al., 2019) for 5000 ran-
domly chosen examples from HANS. To obtain a
vector representation for each example x = (p, h),
we concatenate the vector at the [CLS] token, along
with a mean pooled representation of the premise
and hypothesis. We then use t-SNE (Maaten and
Hinton, 2008) to project these representations onto
2 dimensions. Each point in Fig. 4 is colored with
its corresponding reasoning category, and we can
observe a clear clustering of examples according

Figure 4: t-SNE plot of BERT vectors after finetuning
on HANS. We see distinct clusters corresponding to
the various reasoning categories.

to their reasoning category.

7.2 Evaluating DRECA Cluster Purity

To understand if reasoning categories can be accu-
rately recovered with our approach, we measure the
purity of DRECA clusters for HANS-FEWSHOT

where true reasoning categories are known. This is
evaluated by computing the number of examples
belonging to the majority reasoning type for each
cluster and then dividing by the total number of
examples. From Table 5, we observe high clus-
ter purity which provides evidence that DRECA is
able to recover true reasoning categories.

7.3 Distribution of linguistic phenomena
across clusters

We seek to understand how different linguistic phe-
nomena present in the overall population are dis-
tributed among various clusters. To perform this
analysis, we focus on MultiNLI annotation tags
from Williams et al. (2018). A subset of exam-
ples in MultiNLI are assigned tags based on the
presence of certain keywords, e.g., time words like
days of the week; quantifiers like every, each, some;
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negation words like no, not, never. Additionally,
certain tags are assigned based on the PTB (Marcus
et al., 1993) parses of examples, e.g., presence or
absence of adjectives/adverbs etc. For each anno-
tation tag, we compute the fraction of examples
labeled with that tag in each cluster. We visualize
this for 10 annotation tags and indicate statistically
significant deviations from the averages in Fig. 5.
Statistical significance is measured with binomial
testing with a Bonferroni correction to account for
multiple testing.

For every annotation tag, we shade all clusters
that contain a statistically significant deviation from
the mean. For instance, there is a positive cluster
with 2.5 fold enrichment in Negation tags com-
pared to the average, and a negative cluster that
contains over 4 times the population average of
Negation (Hyp only) tags. Similarly, among Con-
ditionals, we have positive clusters that contain
1.4 times the population average and a negative
cluster containing half the population average. In-
terestingly, we find most positive clusters to be
significantly poverished in Adverb (Hyp only) tags,
while most negative clusters are enriched in these
tags. This analysis presents evidence that clusters
used by DRECA localize linguistic phenomena to
a small number of clusters.

8 Discussion

Comparing with CACTUs. Our work is most
similar to CACTUs from Hsu et al. (2019). Apart
from differences in the modality considered (text vs
images), we differ in the following ways. Conceptu-
ally, Hsu et al. (2019) consider a fully unsupervised
meta-learning setting where no labels are provided
and use cluster IDs to induce labels, while our
goal is to produce additional tasks in a supervised
meta-learning setting. Second, CACTUs tasks are
constructed by directly applying k-means on the
entire training dataset while we apply k-means sep-
arately on each label group and construct tasks by
choosing a cluster from each label group, leading
to tasks with uniform label distribution. Finally,
while CACTUs uses constructed tasks directly, our
work using them to augment the original task dis-
tribution.

Number of examples in support set. All eval-
uation in this work considers small support sets
where number of examples per label range from
1–4. This setting is somewhat restrictive since in
practice, one might be able to get a few hundred

(a) adj/adv-hyp-only-ptb (b) Plural (Premise Only)

(c) Negation (d) Negation (Hyp only)

(e) Conditionals (f) Quantifiers

(g) Modals (h) Adverb (Hyp only)

(i) Superlatives (Hyp only) (j) Belief Verbs

Figure 5: Fraction of cluster examples belonging to
each linguistic annotation tag. Cluster groups corre-
sponding to entailment (non-entailment) are colored
green (red). The fraction of examples in the overall
population is marked with a dashed line. We observe
that many clusters have a statistically significant over-
sampling / undersampling of certain tags (drawn with
a ligher color), according to a binomial test with a p-
value of 0.05 under a Bonferroni correction for multi-
ple testing.

examples for the target domain. These moderately
sized support sets could themselves be heteroge-
neous where adapting a single learner might be
hard. In such cases, we can use a similar cluster-
ing approach to separate out the support set into
homogeneous tasks and adapt a separate learner for
each task. These learners could then be plugged
into a mixture of experts framework for making
predictions.
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Using k-means to produce task refinements.
While we are able to get sufficiently homogeneous
clusters with k-means, we note one shortcoming
with this approach. Any input has multiple at-
tributes / factors of variations and it may be possible
to create a clustering for each factor. The current
k-means based approach doesn’t model this since
we only produce a single clustering of the data. For
instance, x1 = The man was walking in the park
=⇒ The man is not at home and x2 = He went
with his friends to the mall =⇒ He is not at work
can belong to the same cluster if the underlying
metric is based on reasoning types. At the same
time, it could also be clustered with x3 = The man
was walking in the park 6=⇒ The woman is in
the park if the distance metric is based on lexical
similarity. A promising direction for future work
is to explore these multi-clusterings based on the
various factors of variation present in the training
data.

Non-meta learning based few-shot adaptation.
In this work, we use tools from meta-learning to
directly optimize for few-shot behavior. While not
directly comparable to us, there have been many
recent approaches to few-shot adaptation for NLP
that do not use meta-learning. Brown et al. (2020)
show impressive few-shot adaptation in large lan-
guage models through “in-context learning" which
is presumably acquired only through its language
modeling objective,. Schick and Schütze (2020)
train multiple models on lexical variations of a
small support set and use these to label additional
unlabeled examples from the target domain. These
“self-labeled” examples are used to train a second
model which can then make predictions on query
examples. Finally, Gao et al. (2020) explore in-
context learning of smaller language models for
few-shot adaptation. In particular, they introduce
a pipeline to identify useful prompts for the target
domain, along with informative labeled examples
to prepend as context for the LM.

9 Conclusion

Many papers point out fundamental challenges in
creating systems that achieve human-like under-
standing of tasks like NLI. Here, we studied con-
ditions under which systems can learn from ex-
tremely few samples. We believe that such systems
would complement and enhance further study into
more sophisticated challenges such as model ex-
trapolation.

One of the main ingredients for successful appli-
cation of meta-learning is a large number of high
quality training tasks to sample learning episodes
for the meta-learner. We observe that such a task
distribution is usually not available for important
NLP problems, leading to less desirable ad hoc
attempts that treat entire datasets as tasks. In re-
sponse, we propose DRECA as a simple and gen-
eral purpose task-augmentation strategy. Our ap-
proach creates a refinement of the original set of
tasks (entire datasets) that roughly correspond to
linguistic phenomena present in the dataset. We
show that training on a task distribution augmented
with DRECA leads to consistent improvements on
4 NLI few-shot classification problems, matching
other approaches that require additional unlabeled
data and well as oracles that have access to the true
task distribution.
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A Appendix

A.1 2D Sine Wave Regression: Training
Details

We use a two layer neural network with 40 di-
mensional hidden representations and ReLU non-
linearity as the parameterization of f . Following
Finn et al. (2017), we take a single gradient step
on the support set at meta-training time, and take
10 gradient steps at meta-test time. The MAML
weights are optimized with Adam and the inner
loop adaptation is done with SGD with a learning
rate of 1e-2. For each outer loop update, we sample
5 tasks, and each episode consists of a support set
of size 5, i.e., we consider 5 shot adaptation.

A.2 NLI Experiments

A.2.1 Dataset Generation Details
We describe details of how our datasets are gener-
ated below. Note that all our datasets are in English.

HANS-FEWSHOT. The reasoning categories we
use are in Table 6. We randomly split these 15
reasoning categories in HANS into training and
test tasks. For each task, we sample 500 ex-
amples split equally among entailment and
not_entailment.

COMBINEDNLI. We first convert MultiNLI and
Semantic Fragments into 2-way (entailment vs
not_entailment) NLI problems by collapsing
both contradiction and neutral labels into
not_entailment, and resampling such that the
dataset is balanced between the 2 label classes. To
evaluate on QANLI, we use the RACE QA dataset
and transform it into NLI as in Demszky et al.
(2018). For RTE, we create a test set ourselves by
randomly sampling examples from the RTE dataset
provided by Wang et al. (2019). Dataset statistics
can be found in Table 7.

GLUE-SciTail. We use MultiNLI, RTE, QNLI
and SNLI as training data, following a similar pro-
cedure to convert 3-way NLI datasets into 2-way
NLI. For evaluation, we use SciTail. Dataset statis-
tics are in Table 8.

A.2.2 Training Details
Hyperparameters for all MAML models can be
found in Table 9. We implement MAML in Py-
torch using the higher library (Grefenstette et al.,
2019). We take the BERT-base implementation
from the huggingface library (Wolf et al., 2019) as

Task Syntactic Templates

1 ce_adverb, cn_adverb
2 ce_embedded_under_verb,

cn_embedded_under_verb
3 ce_conjunction, cn_disjunction
4 ce_after_since_clause, cn_after_if_clause
5 ce_embedded_under_since, cn_embedded_under_if
6 le_conjunction, ln_conjunction
7 le_passive, ln_passive
8 le_relative_clause, ln_relative_clause
9 le_around_prepositional_phrase, ln_preposition
10 le_around_relative_clause, ln_subject/object_swap
11 se_PP_on_obj, sn_PP_on_subject
12 se_relative_clause_on_obj,

sn_relative_clause_on_subject
13 se_adjective, sn_NP/S
14 se_conjunction, sn_NP/Z
15 se_understood_object, sn_past_participle

Table 6: The 15 reasoning categories constructed from
30 HANS syntactic templates. For each reasoning cat-
egory, we select 2 syntactic templates corresponding to
entailment and not_entailment labels, giving
us 15 binary classification tasks.

Dataset #examples

Training Datasets

MultiNLI 261798
DNC 440456
Semantic Fragments 33170

Test Datasets

RTE 554
QANLI 1990

Table 7: Dataset statistics for COMBINEDNLI

the parameterization for hθ, which has 110 million
parameters

DRECA. We first finetune BERT on the entire
training dataset for 5 epochs. Then, we embed each
example by concatenating the embeddding at the
[CLS] token along with the mean pooled repre-
sentation of the premise and the hypothesis to get
a 2304-dimensional vector. Next, we apply PCA
to select a subset of dimensions that explain 99%
of the variance. We then apply k-means clustering
after standardizing the resulting embeddings.
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Dataset #examples

Training Datasets

MultiNLI 261798
SNLI 366832
QNLI 104732
RTE 2482

Test Dataset

SciTail 2126

Table 8: Dataset statistics for GLUE-SciTail

Hyperparameter Value

inner loop learning rate 5e-5
outer loop learning rate 5e-5
inner loop adaptation steps 10
inner / outer loop optimizer Adam
max number of iterations 20000
episode size 32
episode batch size 5

Table 9: Hyperparameters for MAML based models.

B Discovering Reasoning Categories in
2D Sine Wave Regression

To discover latent reasoning categories for the 2D
Sine Wave Regression dataset, we train a feedfor-
ward neural net (paramaterized similarly as hθ) on
the union of all the datasets, and use the final layer
representation to cluster examples. We then use
these clusters instead of the true reasoning cate-
gories to augment the original task distribution.

We now show learning curves on held out test
tasks in Fig. 6. As expected, MAML-BASE

fails to adapt to new reasoning categories, indi-
cating that it was unable to acquire the required
skill from its training tasks. On the other hand,
MAML-ORACLE is able to adapt very well, which
confirms our hypothesis that a large number of
high quality tasks helps. Finally, we see that using
MAML trained on the augmented task distribution
is able to match the performance of the oracle.

0 5K 10K 15K 20K 25K 30K
Steps

0

2

4

6

8

10
MAML-Oracle
MAML-Baseline
Ours

Figure 6: Learning curves on the 2D sine-wave regres-
sion task. We observe that the oracle meta-learner out-
performs the baseline, and our proposed approach is
able to bridge the gap.


