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Abstract

Exploiting label hierarchies has become a
promising approach to tackling the zero-shot
multi-label text classification (ZS-MTC) prob-
lem. Conventional methods aim to learn a
matching model between text and labels, us-
ing a graph encoder to incorporate label hierar-
chies to obtain effective label representations
(Rios and Kavuluru, 2018). More recently, pre-
trained models like BERT (Devlin et al., 2018)
have been used to convert classification tasks
into a textual entailment task (Yin et al., 2019).
This approach is naturally suitable for the ZS-
MTC task. However, pretrained models are un-
derexplored in the existing work because they
do not generate individual vector representa-
tions for text or labels, making it unintuitive
to combine them with conventional graph en-
coding methods. In this paper, we explore to
improve pretrained models with label hierar-
chies on the ZS-MTC task. We propose a Rein-
forced Label Hierarchy Reasoning (RLHR) ap-
proach to encourage interdependence among
labels in the hierarchies during training. Mean-
while, to overcome the weakness of flat predic-
tions, we design a rollback algorithm that can
remove logical errors from predictions during
inference. Experimental results on three real-
life datasets show that our approach achieves
better performance and outperforms previous
non-pretrained methods on the ZS-MTC task.

1 Introduction

Multi-label text classification (MTC) is a basic
NLP problem that underlies many real-life appli-
cations like product categorization (Partalas et al.,
2015) and medical records coding (Du et al., 2019).
The labels in the output space are often interde-
pendent and in many applications organized in a
hierarchy, as shown in the example in Figure 1. A
significant challenge for real-life development of
MTC applications is severe deficiencies of anno-
tated data for each label in the hierarchy, which
demands better solutions for zero-shot learning.

Root

Active Life Shopping Local Services

Bike Rentals Sporting Goods

Bikes

Bike Repair

Input: 
It’s no doubt the best store 
to get a bike if you want to 
do bicycling on weekends!!!

Labels: 
Active Life      Bike Rentals

Shopping      Sporting Goods      Bikes

WrongMissing
Correct

Figure 1: An example of label hierarchy and predic-
tions with logical errors. Circled labels are model pre-
dictions without incorporating label hierarchy.

The existing zero-shot learning for multi-label text
classification (ZS-MTC) mostly learns a matching
model between the feature space of text and the
label space (Ye et al., 2020). In order to learn
effective representations for labels, a majority of
existing work incorporates label hierarchies via a
label encoder designed as Graph Neural Networks
(GNNs) that can aggregate the neighboring infor-
mation for labels (Chalkidis et al., 2020; Lu et al.,
2020).

Recently, pretrained models like BERT (Devlin
et al., 2018) have been widely used as strong match-
ing models due to their superior representation abil-
ity (Qiao et al., 2019). They have been applied
to convert a classification task to a textual entail-
ment task, by treating the text to be classified as the
premise, and its label as the hypothesis, which is
naturally suitable for the ZS-MTC study (Yin et al.,
2019). However, the problem of this approach is
that pretrained models cannot generate individual
vector representations for labels—a label is cou-
pled with the corresponding text in learning joint
representation—thus conventional methods, like
GNNs which utilize the label hierarchy to obtain
better label representations, cannot be directly ap-
plied to pretrained models, making them underex-
plored in the existing research.

Although pretrained models have shown poten-
tial on ZS-MTC, as discussed above, it is not in-
tuitive to introduce structural information of label
hierarchies to the learning procedure. Flattening
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all the labels without considering their hierarchi-
cal structures, however, will result in predictions
that contain logical errors, which are known as the
class-membership inconsistency (Silla and Freitas,
2011). The problem will be even more salient for
pretrained models because they only take the lit-
eral tokens of the labels as input. An example with
logical errors is shown in Figure 1. Without label
hierarchy information, the model correctly predicts
Bikes as a true label, but fails to predict its parent
label, Sporting Goods. Meanwhile, the model does
not choose the label Local Services while predict-
ing its child label Bike Repair due to the fact that
Bike Repair has tokens similar to those in the input
text.

To overcome the forementioned weakness, we
propose a Reinforced Label Hierarchy Reasoning
(RLHR) approach to introduce label structure infor-
mation to pretrained models. Instead of regarding
labels to be independent, we cast ZS-MTC as a de-
terministic Markov Decision Process (MDP) over
the label hierarchy. An agent starts from the root la-
bel and learns to navigate to the potential labels by
hierarchical deduction in the label hierarchy. The
reward is based on the correctness of the deduc-
tion paths, not simply on the correctness of each
label. Thus the reward received by one predicted
label will be determined by both the label itself
and other labels on the same path, which can help
to strengthen the interconnections among labels.
Meanwhile, we find that the hierarchical inference
method (Huang et al., 2019) will broadcast the er-
rors arising at the higher levels of label hierarchies.
Thus we further design a rollback algorithm based
on the predicted matching scores of labels to re-
duce the logical errors in the flat prediction mode
during inference. We apply our approach to differ-
ent pretrained models and conduct experiments on
three real-life datasets. Results demonstrate that
pretrained models outperform conventional non-
pretrained methods by a substantial margin. After
being combined with our approach, pretrained mod-
els can attain further improvement on both the clas-
sification metrics and logical error metrics1. We
summarize our contributions as follows:

• We demonstrate that pretrained models out-
perform conventional methods on ZS-MTC.

• We design a novel Reinforced Label Hier-
archy Reasoning (RLHR) approach and a

1Code and data available at https://github.com/
layneins/Zero-shot-RLHR

matching-score-based rollback algorithm to
introduce the structural information of label
hierarchies to pretrained models in both the
training and inference stage.

• Experiments with different pretrained mod-
els are performed on three real-life datasets.
We show the effectiveness of our proposed
approach and provide detailed analyses.

2 Related Work

Exploiting the prior distribution of the label space
has proven to be an effective method to tackle the
multi-label text classification problem because it
can provide the model with information about the
label structure. Mao et al. (2019); Huang et al.
(2019) took the explicitly represented label hierar-
chy as the structural information, while Wu et al.
(2019) assumed the prior distribution to be implicit
and trained their model to learn the distribution
during learning.

Leveraging the label hierarchy to tackle ZS-
MTC has shown to be promising in previous work,
which mostly aimed to learn a matching model
between texts and labels. Chalkidis et al. (2020,
2019); Xie et al. (2019) adopted Label-Wise Atten-
tion Networks to encourage interactions between
text and labels. Rios and Kavuluru (2018); Lu et al.
(2020) used Graph Neural Networks to capture
the structural information in the label hierarchy.
However, few existing works investigate the effec-
tiveness of pretrained models on the ZS-MTC task,
despite pretrained models being effective as match-
ing models for many natural language processing
tasks (Ma et al., 2019; Qiao et al., 2019; Nogueira
et al., 2019).

The logical error problem in flat predictions has
been widely discussed in previous MTC work (Silla
and Freitas, 2011; Wehrmann et al., 2018; Mao
et al., 2019), which is mostly solved through a hier-
archical procedure during inference. In our work,
we will investigate such a method and see that the
hierarchical inference method is not optimal for
pretrained models on the ZS-MTC task because it
broadcasts errors top-down in the label hierarchy.

Path reasoning is effective for exploiting explicit
relationships in structured data, which can be com-
bined with reinforcement learning, e.g., knowledge
graph reasoning (Wan et al., 2020; Xian et al., 2019;
Xiong et al., 2017). We propose to introduce the
label hierarchy to pretrained models through path
reasoning, with the aim to strengthen the intercon-

https://github.com/layneins/Zero-shot-RLHR
https://github.com/layneins/Zero-shot-RLHR
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nections between labels. To the best of our knowl-
edge, our work is the first to improve pretrained
models through label hierarchies for ZS-MTC.

3 Problem Formulation

3.1 Label Hierarchy Reasoning
In general, a label hierarchy is defined as G =
(L,E), where L and E are a set of labels and re-
lations, respectively. The latter represent parent-
child relations between labels. The root of G is
a special label R. A data instance x is defined
as a tuple (T, P ) with T as the input text and
P = {p1, p2, · · · , pN} as deduction paths, and a
path pi = {R, l1i , · · · , l

K−1
i , lKi } where lki ∈ L is

at the kth layer of G and lk−1i is the parent of lki . A
deduction path must be contiguous, starting with
R, and is not required to terminate at a leaf label.

3.2 Zero-shot Multi-label Text Classification
Let Ls and Lu denote the seen and unseen labels,
respectively, where Ls ∪Lu = L. Given a train-
ing set Ds = {xsi }

N1
i=1 where the labels of xsi are

all seen labels, we aim to learn a matching model
f(Ds; θ) and make prediction on Du = {xui }

N2
i=1.

Some deduction paths of xui consist of seen la-
bels while some contain both seen and unseen la-
bels. Notice that the children of an unseen label
are also unseen labels. Evaluations on Du will
be conducted in two settings: (1) evaluate the per-
formance on Lu, which is known as the zero-shot
(ZS) setting, and (2) evaluate the performance on
Ls ∪Lu, which is the generalized zero-shot (GZS)
setting (Huynh and Elhamifar, 2020).

4 Methodology

The goal of our RLHR approach is to learn a policy
P that can make more consistent predictions by
traversing the label hierarchy G to generate deduc-
tion paths. Given a training instance x, an agent
will start from the root R and follow P at each
time step to extend the deduction paths by navi-
gating to the children labels at the next level. By
measuring the correctness of the generated deduc-
tion paths with reinforcement learning (RL), the
label hierarchy is introduced to the model during
the training time and the interconnections of labels
will hence be strengthened, which can help to re-
duce logical errors in prediction. As we will show
in our experiments, hierarchical inference, which
is used in previous work (Mao et al., 2019), will
propagate the errors occurring at the high levels of

hierarchies during inference, resulting in inferior
performance. Thus we still adopt the flat prediction
during inference, but further design a rollback algo-
rithm based on the structure of G and the predicted
matching scores. We will introduce the details of
our proposed RLHR and the rollback algorithm in
the following subsections.

4.1 Base Model
Our base model adopts pretrained models M, e.g.,
BERT (Devlin et al., 2018), which have proven to
be effective in matching modelling. Given the input
text T and the label l, we follow Yin et al. (2019) by
transforming the text-label pair into textual entail-
ment representation as “[CLS] T [SEP] hypothesis
of l”. The hidden vector vcls of [CLS] is regarded
as the aggregate representation and will be used in
the classification layer to calculate the matching
score ms. The overall calculation process of ms is
abbreviated as:

ms = M(T, l) (1)

If ms ≥ γ where γ is a threshold, we then say T
belongs to label l. In experiments γ is set to be 0.5.

4.2 Reinforced Label Hierarchy Reasoning
(RLHR)

Different from vanilla pretrained models that rely
on flat prediction during training, we propose to for-
mulate the ZS-MTC task as a deterministic Markov
Decision Process (MDP) over label hierarchies.
For the input text, the agent trained by RLHR will
predict M deduction paths from the root label R.
When all deduction paths are generated, the re-
wards will be received, which are determined by
the correctness of the paths. An overall illustra-
tion of the RLHR approach is shown in Figure 2.
We introduce the details of the RL modules in this
subsection.

4.2.1 States
Maintaining just one deduction path for one data
instance will result in an inefficient learning pro-
cess. However, the number of potential deduction
paths will increase exponentially as the model goes
deeper into the lower levels of the hierarchies. To
maintain a good trade-off between computational
resources and time efficiency, we keep the beam of
deduction paths to be M . Thus for a data instance
x, the global state Sk at step k is composed of the
sub-states of M deduction paths:

Sk = {ski }Mi=1 (2)
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Figure 2: An example of our RLHR approach with M = 4. Green circles are the ground truth labels. p1, p2, p3,
and p4 are four sampled deduction paths, where p3 ends before it arrives at a leaf label.

The sub-state ski for deduction path pi at step k is
defined as a tuple (T, lki ), where T is input text and
lki is the label.

4.2.2 Actions
The complete action space Aki of sub-state ski is
defined as all possible child labels of label lki :

Aki = {l|l ∈ C(lki )} (3)

where C(lki ) denotes the child labels of lki . For
the deduction path pi at the time step k, an action
aki is to select one label lk+1

i from Aki . Notice
that the agent may not select any labels from Aki ,
which means path pi ends before it arrives at a leaf
label and a “stop” action is taken. By adding this
“early stop” mechanism, we can make the agent
automatically learn when to stop assigning new
labels to the deduction paths.

4.2.3 Policy
We parameterize the action aki by a policy network
π(·|s,A; θ) where θ is parameters. For deduction
path pi at time step k, the policy network takes as in-
put the state ski and the corresponding action space
Aki , emitting the matching score of each action
in Aki , which is calculated by the base pretrained
model M. Finally an action ak is sampled based
on the matching score distribution of the actions in
Aki . The calculation is formulated as follows:

π(ak
i |ski , Aki ; θ) = {M(T, l)|l ∈ Aki } (4)

aki ∼ π(ak
i |ski , Aki ; θ) (5)

4.2.4 Reward
In our approach, the reward is based on the cor-
rectness of a complete deduction path. Instead of
treating all labels to be flat, our approach encour-
ages the interdependence among the labels. The
reward received by a label lki is not only decided by
the correctness of itself but also the correctness of

other labels on the same deduction path pi. Given
the golden deduction paths P̂ = {p̂1, p̂2, · · · , p̂N},
pi will obtain a positive reward if pi is in P̂ or pi is
a sub-path of a path in P̂ . Formally the reward of
path pi is defined as:

ri =

{
λ · 1, if pi ⊆ p̂j where p̂j ∈ P̂
−1, otherwise,

(6)

where λ is a hyper-parameter for scaling. Under
most circumstances, the number of wrong deduc-
tion paths will be greater than the correct ones. The
problem will be even more severe for the MTC
tasks because the distribution of positive labels and
negative labels is usually imbalanced given a data
instance x. A larger λ can encourage the model to
focus more on the correct paths.

Notice that our approach differs from exist-
ing methods which adopt hierarchical classifica-
tion (Sun and Lim, 2001; Peng et al., 2018). A hi-
erarchical classification method based on the label
hierarchy can only cast the influence from parent
label to child label, while in our approach the influ-
ence is mutual between parent label and child label,
which can hence strengthen the reasoning ability
of the models.

4.2.5 Optimization
Our goal is to learn a stochastic policy π that maxi-
mize the expected total reward J(θ) of the M sam-
pled deduction paths, which can be formulated as:

J(θ) = Eπ(a|s)[

M∑
i=1

ri(s,a)] (7)

where θ is the parameter of policy network. We
adopt policy gradient (Sutton et al., 2000) as the
optimization algorithm which updates θ as:

θ ← θ + η∇θJ̃(θ) (8)
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where η is the discount learning rate. Since there
are multiple deduction paths for one data instance,
the gradient can be approximated by

J̃(θ) =
1

M

M∑
i=1

∑
k

log π(aki |ski ; θ) · (ri − rb)

(9)

rb is a constant for the stabilization of the training
procedure, for which we use the average reward of
the last training epoch in our experiments.

4.3 Inference Rollback
Existing methods mostly adopt the hierarchical in-
ference method (Mao et al., 2019), which will avoid
logical errors, i.e., class-membership inconsistency
(Silla and Freitas, 2011), but bring a serious prob-
lem: the prediction errors made at the high levels
of a hierarchy are often severely propagated to the
lower levels. For instance, if a correct label at the
first layer is missing, then all the descendant labels
will not be considered during inference. This will
no doubt harm the performance. On the contrary,
if the model still makes flat prediction, all labels
will be visited during inference, while more logical
errors will probably arise.

To overcome the forementioned weaknesses, we
propose a rollback algorithm during the inference
stage based on the predicted matching scores of all
labels. For a data instance x, we obtain the pre-
dicted labels in flat prediction mode as P , which
consists of two parts: (1) labels that can form com-
plete deduction paths, and (2) labels with logical er-
rors, which we denote as Pe = {lk11 , l

k2
2 , · · · , l

kN
N }.

For a label lkii ∈ Pe, we extract its deduction
path from G as pi = {R, l1i , · · · , l

ki−1
i , lkii } and

their corresponding predicted matching scores
{1,ms1i , · · · ,ms

ki−1
i ,mskii }2. Meanwhile we set

a rollback threshold µk for the labels in the kth

layer of G, where {µk} are hyper-parameters tuned
on the development set. As long as the matching
scores meet the requirements

{msji ≥ µ
j}ki−1j=1 ,

we add the labels in pi back to P . Otherwise label
lkii will be removed from P .

The motivation behind this matching-score-
based rollback algorithm is that for a label hierar-
chy G, the labels at higher-level hierarchy contain
more training instances but their meaning are more

2Root label R always has a matching score 1.

Dataset
Docs Labels

#Train #Dev #Test Avg(|L|) seen unseen

Yelp 187153 10858 10858 3.80 466 71
WOS 36397 5294 5294 2.00 122 28
QCD 177423 12277 12277 4.69 243 93

Table 1: Dataset Statistics. Avg(|L|) denotes the aver-
age number of labels in one data instance.

abstract, while the labels at lower levels are more
specific such as the labels “Active Life” and “Bike
Rentals” in Figure 1. Pretrained models just take
as input the literal tokens of a label and thus are
possible to obtain a better performance on certain
labels at the lower levels than those at higher levels.

5 Experiments

5.1 Experimental Setup
5.1.1 Datasets
We conduct experiments on three real-life datasets
from different domains; the details are provided
in Table 1. Yelp3 is a customer review dataset,
in which we need to classify customer reviews
into correct business categories. WOS (Kowsari
et al., 2017) is a scientific paper dataset which
provides the abstracts of published papers and the
corresponding topics. QCD is a query classifica-
tion dataset we create for the ZS-MTC task. It
is composed of search queries and target product
types, which is collected from e-commerce web-
sites. The layer numbers of the label hierarchies in
Yelp, WOS and QCD are 4, 2, and 3, respectively.
For examples of the three datasets, please refer to
Appendix A.1.

5.1.2 Implementation Details
We test our proposed approach with two pretrained
models, BERT (Devlin et al., 2018) and Distil-
BERT (Sanh et al., 2019). For BERT, we use the
uncased base version, which is of 12-layer trans-
former blocks, 768-dimension hidden state, 12 at-
tention heads and 110M parameters in total. For
DistilBERT, it contains 6-layers transformer blocks,
768-dimension hidden state and 12 attention heads,
totally 66M parameters. For training, we use Adam
(Kingma and Ba, 2014) for optimization and learn-
ing rate is set to 1e-6. Meanwhile we adopt early
stopping to avoid overfitting on the training data. λ
is set to 30 on Yelp, 20 on QCD, and 5 on WOS,

3https://www.yelp.com/dataset
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Method Setting
Yelp WOS QCD

Ma-F Mi-F EBF Err↓ Ma-F Mi-F EBF Err↓ Ma-F Mi-F EBF Err↓

CNN ZS 0.33 2.02
16.35 0.3211

0.36 4.43
28.22 0.2977

5.02 6.58
26.94 2.9386

GZS 1.31 14.97 7.00 29.58 9.66 26.22

CNN ZS 4.24 7.15
19.38 0.9303

0.54 4.53
26.88 0.3079

5.02 7.09
28.24 4.3923

+LWAN GZS 4.67 19.26 6.81 29.00 10.03 28.86

ZAGCNN
ZS 17.94 18.75

28.24 1.3136
12.02 17.17

24.72 2.5827
5.22 10.01 40.65 2.0212

GZS 16.30 25.97 19.59 36.37 23.85 42.52

DistilBERT
ZS 41.42 40.33

30.44 0.4039
70.69 65.19

55.18 0.5178
23.68 24.95

33.57 1.0854
GZS 21.29 28.18 68.03 63.64 24.43 34.29

+RLHR
ZS 42.16 43.87

40.85 0.3347
74.56 72.44

61.06 0.4732
24.58 27.79

37.46 0.8389
GZS 26.95 40.43 71.65 68.05 26.10 38.37

BERT
ZS 44.49 42.61

34.59 0.3755
77.87 77.27

56.69 0.1983 28.18 27.45
36.88 1.2497

GZS 23.38 31.53 74.69 70.56 27.04 37.20

+RLHR
ZS 45.46 48.26 49.52 0.2952 78.46 79.19 64.43 0.2488

28.32 28.80
39.99 1.1984

GZS 32.09 49.75 75.51 72.62 28.67 41.08

Table 2: Results of different methods on the three datasets under two settings. Ma-F, Mi-F, EBF, and Err denote
Macro-F1, Micro-F1, Example-based F1, and logical error rate, respectively. ZS and GZS denote the zero-shot
and generalized zero-shot setting. ↓ means the lower the better. Bold numbers indicate the best results for each
metric. All the results are acquired under the flat prediction.

which we will discuss more in Section 5.3.4. We
set M to 5 with DistilBERT and 3 with BERT by
trading off between training time and GPU memory
usage.

The RL training procedure is unstable and slow
if the agent is trained from scratch (Silver et al.,
2016). So with both BERT and DistilBERT, we
pretrain the policy network in flat prediction mode
on the training data with the learning rate of 1e-5.

5.1.3 Evaluation Metrics
In our experiments, we use standard metrics Micro-
F1 and Macro-F1 to evaluate the classification
performance for both the zero-shot and general-
ized zero-shot setting. Meanwhile, we also adopt
Example-based F1 (Peng et al., 2016) to measure
the performance from the instance level, which is
different from Micro/Macro-F1 measuring from the
label level. Though some previous works adopted
ranking based metrics (Rios and Kavuluru, 2018)
for large-scale MTC, they are not appropriate in
our settings because the datasets used in this work
contain smaller label space.

For logical errors, we report the logical error
rate, which is defined as the average number of
logical errors in one data instance. We take the
number of logical errors in one data instance as
the number of labels that cannot form a complete

deduction path.
Evaluation is conducted in two settings: (1) eval-

uate the performance on unseen labels only, which
is the zero-shot (ZS) setting, and (2) evaluate the
performance on both seen labels and unseen la-
bels, i.e., the generalized zero-shot (GZS) setting
(Huynh and Elhamifar, 2020).

5.2 Baselines

We use two different types of baselines. (1) The
type of models where label hierarchy is not utilized,
and we use CNN and CNN with Label-Wise At-
tention Networks (CNN+LWAN) (Chalkidis et al.,
2019) in our experiments. (2) The type of mod-
els where GNNs are utilized to encode the label
hierarchy to capture the label structure information.
Specifically we use ZAGCNN proposed by Rios
and Kavuluru (2018).

5.3 Results

Table 2 shows the experimental results of the base-
line models and our proposed RLHR approach on
three real-life datasets in both the zero-shot and
generalized zero-shot setting.

5.3.1 Classification Performance
As we can see in Table 2 that CNN and
CNN+LWAN have poor performance under the ZS
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Method Setting
Yelp WOS QCD

Ma-F Mi-F EBF Ma-F Mi-F EBF Ma-F Mi-F EBF

BERT
ZS 44.49 42.61

34.59
77.87 77.27

56.69
28.18 27.45

36.88
GZS 23.38 31.53 74.69 70.56 27.04 37.20

BERT ZS 45.11 43.46
34.79

73.68 74.14
54.52

26.67 31.33
37.76

+Hie-Infe GZS 23.58 31.72 71.24 69.02 26.88 38.16

BERT ZS 44.46 42.57
34.65

77.87 77.27
58.28

28.15 27.57
36.69

+Rollback GZS 23.35 31.56 75.26 71.81 26.95 36.89

BERT+RLHR
ZS 45.46 48.26

49.52
78.46 79.19

64.43
28.32 28.80

39.99
GZS 32.09 49.75 75.51 72.62 28.67 41.08

BERT+RLHR ZS 39.57 42.91
48.53

65.82 67.93
56.34

25.34 32.46 40.97
+Hie-Infe GZS 31.22 49.2 65.1 67.41 28.06 42.23

BERT+RLHR ZS 45.57 48.32 50.01 78.46 79.19 69.32 28.03 29.71
40.13

+Rollback GZS 32.17 50.18 77.16 77.26 28.58 41.18

Table 3: Performance of our matching-score-based rollback algorithm and the comparison to the hierarchical
inference method. Ma-F, Mi-F, EBF, and Err denote Macro-F1, Micro-F1, Example-based F1, and logical error
rate, respectively. ZS and GZS denote the zero-shot and generalized zero-shot setting. Bold numbers indicate the
best results for each metric. “BERT+Hie-Infe” in the last row means BERT with the hierarchical inference method,
which is used in previous work (Huang et al., 2019).

setting while the performance under GZS setting
is better, which suggests CNN and CNN+LWAN
cannot provide accurate predictions for unseen la-
bels due to the lack of label structure information.
In contrast, ZAGCNN, which utilizes the label hi-
erarchy, performs better, particularly on unseen
labels, which demonstrates the importance of label
hierarchy for ZS-MTC.

On the other hand, pretrained models, includ-
ing DistilBERT and BERT, both outperform con-
ventional non-pretrained methods with substantial
improvements on three datasets, though ZAGCNN
shows slight advantages on Micro-F1 and Example-
based F1 on the QCD dataset under the GZS setting.
When incorporated with RLHR, the performance
of pretrained models can be further improved by a
relatively large margin. We notice that the improve-
ment under GZS setting is more significant than in
the ZS setting, suggesting that seen labels benefit
more from our RLHR than unseen labels.

5.3.2 Logical Errors
As shown in Table 2, utilizing label hierarchies
does not necessarily reduce the logical error rate for
conventional methods, though it can improve the
classification performance. For example, the logi-
cal error rate of ZAGCNN is higher than CNN and
CNN+LWAN on Yelp and WOS. The logical error
rate of pretrained models is generally lower than

the conventional methods. However, pretrained
models still face the logical error problem though
they perform well on the classification metrics. We
can also see that our RLHR can help reduce the
logical error rate for DistilBERT and BERT under
most circumstances.

Note that better classification performance does
not necessarily lead to a lower logical error rate.
From Table 2, we can see although CNN and
CNN+LWAN perform poorly on classification met-
rics, they achieve a better logical error rate than
ZAGCNN and DistilBERT on the WOS dataset.
Similarly, the logical error rate of BERT is higher
than DistilBERT on QCD even though BERT has
a better classification performance. Our proposed
RLHR approach can improve both the classifica-
tion performance and logical error performance,
which demonstrates the effectiveness of RLHR.

5.3.3 Analyses on Rollback Algorithm
Due to the limit of space, we only report the re-
sults of our proposed rollback algorithm based on
BERT and put the results on DistilBERT in Ap-
pendix A.2. As shown in Table 3, we can see
that when being combined with our proposed roll-
back algorithm, the performance of BERT+RLHR
can be further improved, raising Example-based F1
on Yelp, WOS, and QCD from 49.52%, 64.43%,
39.99% to 50.01%, 69.32% and 40.13%, respec-
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Figure 3: Influence of λ on RLHR approach with BERT. Err, Ma-F and Mi-F denote logical error rate, Macro-F1
and Micro-F1 respectively.

tively. Our proposed rollback algorithm can also
be combined with BERT only, while the gain is
relatively marginal. We further investigate this and
observe that at the same level of the label hierarchy,
the matching scores obtained in RLHR is more po-
larized, compared to those obtained with BERT,
suggesting RLHR is more confident about the pre-
dictions when the label hierarchy is provided. This
yields a better prediction performance of RLHR
when the rollback algorithm is adopted.

Meanwhile, we compare the hierarchical infer-
ence method (Huang et al., 2019) with our rollback
algorithm. Both methods can completely remove
logical errors from the predicted results. How-
ever, as we can see in the table, the performance
of the hierarchical inference method is not con-
sistent on the three datasets, with either BERT or
BERT+RLHR. When conducting hierarchical in-
ference, BERT+RLHR achieves the best Micro-F1
and Example-based F1 on QCD dataset, while the
performance is harmed with a significant gap on
the WOS dataset. Similarly, the performance of
hierarchical inference with BERT achieves minor
improvement on the QCD dataset, while on WOS
and Yelp, the performance is sometimes improved
marginally or sometimes worse. The effectiveness
of hierarchical inference method depends mainly
on the classification difficulty of labels at the higher
levels of label hierarchies. As we know, such la-
bels are usually more abstract and general, thus
making the performance of hierarchical inference
susceptible.

5.3.4 Influence of λ

We discuss the influence of the parameter λ on
logical error rates and useen label classification in
this section. Due to the limit of space, we only
represent the results with BERT and put the results
based on DistilBERT in Appendix A.3. As shown
in Figure 3, for datasets with large hierarchy, like

Yelp and QCD, a larger λ helps achieve better clas-
sification performance on unseen labels, while it
will bring more logical errors. On the contrary, a
relatively small λ yields better classification per-
formance and lower logical error rates on datasets
with small hierarchies like WOS, as shown in Fig-
ure 3b. The reason is that for a large hierarchy, the
number of sampled correct deduction paths will be
much less than that of the wrong paths which is
common in the ZS-MTC task because the positive
labels are usually much less than negative labels,
while for a small label hierarchy, the number of
sampled correct paths are close to the false ones. A
large λ will encourage a model to focus more on
sampled correct paths, which will hence improve
the classification performance. Meanwhile, if λ
is too large, it will bring a bias to the dominating
labels which appear more in the datasets. Thus it
will reduce the generalization ability of the model,
which will harm the performance.

6 Conclusion

We propose a Reinforced Label Hierarchy Reason-
ing approach to incorporate label hierarchies into
pretrained models in order to better solve the zero-
shot multi-label text classification tasks. We train
an agent that starts from the root label, navigates to
potential labels in the label hierarchies and gener-
ates multiple deduction paths. By rewarding based
on the sampled deduction paths, our approach can
strengthen the interconnections among the labels
during the training stage. To overcome the weak-
ness of hierarchical inference methods, we further
design a rollback algorithm that can remove the
logical errors in flat predictions. Experiments on
the three datasets demonstrate that our proposed
approach improves the performance of pretrained
models and enable the models to make more con-
sistent predictions.
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A Appendix

A.1 Dataset preparation

We split the labels in the label space as seen labels
and unseen labels. Unseen labels do not necessarily
need to be leaf labels, and if an intermediate label is
chosen as unseen, then all its descendant labels will
be set as unseen. Meanwhile, each data instance in
dev/test sets will contain at least one unseen label.

Table 5 shows the example instances of Yelp,
WOS and QCD datasets used in this work.

A.2 Rollback Results with DistilBERT

As shown in Table 6, DistilBERT+RLHR with Roll-
back algorithm can achieve the best performance
on most evaluation metrics. Although the hierarchi-
cal inference method can improve DistilBERT on
QCD dataset, its performance is not consistent. It
lowers the performance by large margins on WOS
with both DistilBERT and DistilBERT+RLHR. In
contrast, the rollback algorithm has consistent per-
formance on all the three datasets, especially when
combined with our proposed RLHR approach.

A.3 Influence of λ with DistilBERT

As shown in Figure 4, the influence of parameter λ
on three datasets with DistilBERT is similar to that
with BERT. For Yelp and QCD datasets, a larger
λ helps achieve better classification performance
on unseen labels, while it will bring more logical
errors. On the contrary, a relatively small λ yields
both better classification performance and lower
logical error rates on WOS dataset, as shown in
Figure 4b. The results support our analyses in
Section 5.3.4.

A.4 Deduction Path Analysis

We represent the results of deduction paths in this
section, which is an important evaluation of if the
model captures the interdependencies of labels. A
path is considered as correct when it equals to or
belongs to a golden deduction path, and we report
Example-based Precision, Recall and F1 based on
BERT. As shown in Table 4, BERT can achieve
high recall but low precision on the deduction paths,
which means that it tends to predict more labels
as correct. This is because pretrained models only
take the literal tokens of labels as input without
any label structure information. On the contrary,
RLHR, which incorporates the label hierarchy, can
provide more accurate predictions of deduction

Dataset
BERT BERT+RLHR

P R F1 P R F1

Yelp 17.17 72.54 26.03 38.04 52.61 40.27
WOS 33.25 77.57 44.35 47.34 66.51 53.28
QCD 18.43 58.37 26.68 22.55 57.11 30.71

Table 4: Performance on deduction paths. P, R, F1 de-
note Example-based Precision, Recall and F1.

paths with much higher precision on all the three
datasets.
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Dataset Text Labels

Yelp
Mini donuts at it’s finest. I was there on Saturday and it was absolutely delicious.
I had a mini six pack of D O’s. I would highly recommend this place for a sweet
snack. Five thumbs up.

Food,
Restaurants,
Donuts,
Food Stands

WOS

This paper presents the design and experimental evaluation of discrete time
sliding mode controller using multirate output feedback to minimize structural
vibration of a cantilever beam using shape memory alloy wires as control ac-
tuators and piezoceramics as sensor and disturbance actuator. Linear dynamic
models of the smart cantilever beam are obtained using online recursive least
square parameter estimation. A digital control system that consists of Simulink
(TM) modeling software and dSPACE DS1104 controller board is used for
identification and control. The effectiveness of the controller is shown through
simulation and experimentation by exciting the structure at resonance.

ECE,
Digital control

QCD ipad usb c hub

Electronics,
Accessories &
Supplies,
Audio & Video
Accessories

Table 5: Examples of the three datasets
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Figure 4: Influence of λ on RLHR approach with DistilBERT. Err, Ma-F and Mi-F denote logical error rate,
Macro-F1 and Micro-F1 respectively.

Method Setting
Yelp WOS QCD

Ma-F Mi-F EBF Ma-F Mi-F EBF Ma-F Mi-F EBF

DistilBERT
ZS 41.42 40.33

30.44
70.69 65.19

55.18
23.68 24.95

33.57
GZS 21.29 28.18 68.03 63.64 24.43 34.29

DistilBERT ZS 41.88 41.00
30.61

67.81 66.45
53.13

21.13 29.29
34.35

+Hie-Infe GZS 21.49 28.36 65.65 64.05 23.91 35.12

DistilBERT ZS 41.49 40.32
30.47

70.69 65.19
56.54

23.81 24.7
33.34

+Rollback GZS 21.28 28.18 68.44 63.31 24.36 33.99

DistilBERT+RLHR
ZS 42.16 43.87

40.85
74.56 72.44

61.06
24.58 27.79

37.46
GZS 26.95 40.43 71.65 68.05 26.10 38.73

DistilBERT+RLHR ZS 39.48 41.65
40.65

63.61 64.21
53.39

20.18 29.68 38.13
+Hie-Infe GZS 26.79 40.44 62.63 64.05 24.98 39.44

DistilBERT+RLHR ZS 42.27 43.91 41.03 74.56 72.44 65.64 24.89 28.34
37.45

+Rollback GZS 26.97 40.55 73.14 71.48 26.17 38.68

Table 6: Results and comparisons of our matching-score-based rollback algorithm on DistilBERT. Ma-F, Mi-F,
EBF, Err denote Macro-F1, Micro-F1, Example-based F1 and logical error rate respectively, and ZS, GZS denote
zero-shot setting and generalized zero-shot setting. Bold figures indicate the best results for each metric.


