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Abstract

Probing neural models for the ability to per-
form downstream tasks using their activation
patterns is often used to localize what parts
of the network specialize in performing what
tasks. However, little work addressed poten-
tial mediating factors in such comparisons. As
a test-case mediating factor, we consider the
prediction’s context length, namely the length
of the span whose processing is minimally re-
quired to perform the prediction. We show
that not controlling for context length may lead
to contradictory conclusions as to the local-
ization patterns of the network, depending on
the distribution of the probing dataset. Indeed,
when probing BERT with seven tasks, we find
that it is possible to get 196 different rankings
between them when manipulating the distribu-
tion of context lengths in the probing dataset.
We conclude by presenting best practices for
conducting such comparisons in the future.1

1 Introduction

The strong performance of end-to-end models and
the difficulty in understanding their inner work-
ings has led to extensive research aimed at inter-
preting their behavior (Li et al., 2016; Yosinski
et al., 2015; Karpathy et al., 2015). This notion
has led researchers to investigate the behavioral
traits of networks in general (Li et al., 2015; Haco-
hen et al., 2020) and representative architectures in
particular (Schlichtkrull et al., 2020). Within NLP,
Transformer-based pretrained embeddings are the
basis for many tasks, which underscores the impor-
tance in interpreting their behavior (Belinkov et al.,
2020), and especially the behavior of BERT (De-
vlin et al., 2019; Rogers et al., 2020), perhaps the
most widely used of Transformer-based models.

In this work, we analyze the common approach
of probing (§2), used to localize where “knowledge”

1The code is available at https://github.com/
lovodkin93/BERT-context-distance.

of particular tasks is encoded; localization is often
carried out in terms of the layers most responsible
for the task at hand (c.f. Tenney et al., 2019b). Vari-
ous works (Tenney et al., 2019a; Peters et al., 2018;
Blevins et al., 2018) showed that some tasks are
processed in lower levels than others.

We examine the extent to which potential me-
diating factors may account for observed trends
and show that varying some mediating factors (see
§2) may diminish, or even reverse, the conclusions
made by Tenney et al. (T19; 2019a). Specifically,
despite reaffirming T19’s experimental findings, we
contest T19’s interpretation of the results, namely
that the processing carried out by BERT parallels
the classical NLP pipeline. Indeed, T19 concludes
that lexical tasks (POS tagging) are performed
by the lower layers, followed by syntactic tasks,
whereas more semantic tasks are performed later
on. This analysis rests on the assumption that the
nature of the task (lexical, syntactic, or semantic)
is the driving force that determines what layer per-
forms what analysis. We show that other factors
should be weighed in as well. Specifically, we show
that manipulating the distribution of examples in
the probing dataset can lead to a variety of different
conclusions as to what tasks are performed first.

We argue that potential mediators must be con-
sidered when comparing tasks, and focus on one
such mediator – the context length, which we de-
fine as the number of tokens whose processing is
minimally required to perform the prediction. We
operationalize this notion by defining it as the max-
imal distance between any two tokens for which a
label is predicted. This amounts to the span length
in tasks that involve a single span (e.g., NER), and
to the dependency length in tasks that address the
relation between two spans. See §2. Our motiva-
tion for considering context length as a mediator
is grounded in previous work that presented the
difficulty posed by long-distance dependencies in
various NLP tasks (Xu et al., 2009; Sennrich, 2017),

https://github.com/lovodkin93/BERT-context-distance
https://github.com/lovodkin93/BERT-context-distance
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and particularly in previous work that indicated the
Transformers’ difficulty to generalize across dif-
ferent dependency lengths (Choshen and Abend,
2019).

We show that in some of the cases where one
task seems to be better predicted by a higher layer
than another task, controlling for context length
may reverse that order. Indeed we show that 196
different rankings between the seven tasks explored
in T19 may be obtained with a suitable distribution
over the probing datasets, namely 196 different
ways to rank the tasks according to their expected
layer. Moreover, our results show that when context
length is not taken into account, one task (e.g.,
dependency parsing) may seem to be processed
at a higher layer than another (e.g., NER), when
its expected layer (see §2) is, in fact, lower for all
ranges of context lengths (§3.1.1).

2 Background

We begin by laying out the terminology and
methodology we will use in the paper.

Edge Probing. Edge probing is the method of
training a classifier for a given task on different
parts of the network (without fine-tuning). Suc-
cess in classification is interpreted as evidence that
the required features for classification are some-
how encoded in the examined part and are suffi-
ciently easy to extract. In our experiments, we
follow T19 and probe BERT with Named Entity
Recognition (NER), a constituent-based task (clas-
sifying Non-terminals - Non-term.), Semantic Role
Labeling (SRL), Co-reference (Co-ref.), Semantic
Proto-Roles (SPR; Reisinger et al., 2015), Relation
Classification (RC) and the Stanford Dependency
Parsing (Dep.; de Marneffe et al., 2006).

Causal considerations in interpreting probing re-
sults were also emphasized by several recent works
(e.g., Kaushik et al., 2020; Vig et al., 2020; Elazar
et al., 2021).

Localization by Expected Layer. The expected
layer metric (which we will henceforth refer to it
as Elayer) of T19 assesses which layer in BERT
is most needed for prediction: a probing classifier
P (l) is trained on the lowest l layers. Then, a dif-
ferential score ∆(l) is computed, which indicates
the performance gain when taking into account one
additional layer:

∆(l) = Score(P (l))− Score(P (l−1)) (1)

Once all the {∆(l)}12
l=1 are computed, we may com-

pute Elayer:

Elayer[l] =

∑12
l=1 l ·∆(l)∑12
l=1 ∆(l)

(2)

Therefore, unlike standard edge probing, which
is performed on each layer individually, computing
Elayer takes into account all layers up to a given l.

Mediation Analysis. Each of the explored tasks
classifies one or two input sub-spans. In both cases,
we define the context length to be the distance be-
tween the earliest and latest span index. Namely,
for tasks with two spans (e.g., SPR), span1=[i1,j1]
and span2=[i2,j2], where span1 appears before
span2, the context length is j2-i1, whereas for tasks
with just one span (e.g., NER), span1=[i1,j1], it is
j1-i1.

In order to examine the effect of context length
on Elayer, we model it as a mediating factor,
namely as an intermediate variable that (partly) ex-
plains the relationship between two other variables
(in this work, a task and its Elayer). See Figure 1.

We bin each task’s test set into non-overlapping
bins, according to their context length ranges. We
use the notation ‘i-j’ to denote the bin of context
lengths in the range [i,j]. For example, the sec-
ond bin would be ’3-5’, denoting context lengths
3, 4, and 5. In addition, given a specific task, two
possible approaches exist to examine the media-
tion effect of context length on the task’s Elayer.
The first one bins all the task’s data into sub-sets,
in advance. Then, this approach fine-tunes over
each subset separately. Alternatively, the second
approach fine-tunes over the whole dataset, binning
only during the test phase. We follow the latter ap-
proach, as it is more computationally efficient.

T

C Elayer

Figure 1: The relationship we stipulate between the
task, the context length, and Elayer. We use two ran-
dom variables: T is the task, which can be any of the
seven tasks we observe and C is the context length.

Interestingly, in §3.1.1, we encounter a spe-
cial edge case, where the aggregated average (i.e.,
Elayer) of one task is higher than another, whereas
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in each sub-set (by a given context length) it is
lower. This may occur when the weight of the
sub-sets differs between the two aggregations.

3 Experiments

We hypothesize that the context length is a medi-
ating factor in the Elayer of a task. In order to test
this hypothesis, we run the following experiments,
aiming at isolating the context length.

We use the SPR1 dataset (Reisinger et al., 2015)
to probe SPR, the English Web Treebank for the
Dep. task (Silveira et al., 2014), the SemEval 2010
Task 8 for the RC task (Hendrickx et al., 2009),
and the OntoNotes 5.0 dataset (Weischedel et al.,
2013) for the other tasks. Configurations follow the
defaults in the Jiant toolkit implementation (Wang
et al., 2019). In addition, we work with the BERT-
base model.

3.1 The Effect on Elayer

First, we wish to confirm that context length indeed
affects Elayer and that the task is not a sole contrib-
utor to this. Given a task and a threshold thr, we
compile a dataset for the task containing the sub-
set of examples with context lengths shorter than
thr, and use it to compute Elayer. We do it for all
tasks and for every integer threshold between 0 and
a maximal threshold, which is selected separately
for each task to ensure that at least 2000 instances
remain in the last bin.

We find that context length plays an important
role in the difference between the expected layers
(Figure 2). Most notably, the Co-ref., SRL, Dep.,
and RC tasks’ Elayer increases when increasing the
threshold.

Next, we divide the data into smaller bins of
non-overlapping context length ranges, in order
to control for the influence of the context lengths
on the expected layers of the tasks. We compute
Elayer for sub-sets of similar lengths. In choos-
ing the size of each such range, we try to balance
between informativeness (narrower ranges) and re-
liability (having enough examples in each range,
so as to reduce noise). We find that the narrowest
range width that retains at least 1% of the examples
in each bin is 3. We thus divide the dataset for each
task into context length ranges of width 3, until
the maximal threshold is reached. Higher context
lengths are lumped into an additional bin.

Figure 2: Elayer as a function of a threshold on the
context length. For each such threshold thr (x-axis),
Elayer (y-axis) is computed based only on the examples
with context length no longer than thr.

3.1.1 Manipulating the Context Length
Distribution: An Extreme Case.

We begin by examining two specific tasks: Dep.
and NER, and their Elayer for each context length’s
range. We then consider, for simplicity, a case
where all the context lengths of Dep. are of length
9+, while those of NER are in the range of 3-5
(Figure 3). We see that when controlling for context
length, Dep. is computed in a lower layer than
NER, regardless of the range. However, depending
on the distribution of context lengths in the probing
dataset, the outcome may be completely different,
with Dep. being processed in higher layers (for a
similar example of a different task-pair, see §A.1).

These results indicate that the results of T19 do
not necessarily indicate that BERT is performing a
pipeline of computations (as is commonly asserted,
see e.g., T19 and Blevins et al. (2018)), and that
mediating factors need to be taken into account
when interpreting Elayer.

Figure 3: Elayer of NER and Dep. for different context
length ranges (4 left blue and yellow pairs), and their
Elayer when all instances of NER are of context length
l ∈ [3, 5] and all those of Dep. are of context length
l ≥ 9 (rightmost green and red pair). While for every
context length range, NER’s Elayer is bigger than that
of Dep., for some context length distribution that order
may be reversed.

https://github.com/nyu-mll/jiant
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3.2 Imposing Similar Length Distributions
In the previous section, we observed that one task
can be both higher and lower than another. That
depends on the distribution of context lengths in
the probing dataset. We next ask whether such a
"paradox" arises in experiments when imposing the
same context length distributions on the two tasks.

Following Pearl (2001), we employ mediation
analysis and specifically concentrate on the Natural
Direct Effect (NDE), which is the difference be-
tween two of the observed dependent variables (in
our case Elayer ), when fixing the mediator. In our
case, the NDE is the difference between the Elayer

of two tasks, while forcing the same context length
distribution on both. For convenience, we force the
distribution of one of the examined tasks (for more
details, see §A.2), but any distribution is applicable.
In general, the equation for computing the NDE of
tasks t1 and t2, with the context length distribution
of t1 imposed on both, is:

NDEt1�t2 =
∑
c

[E∆[l|C = c, T = t2]

− E∆[l|C = c, T = t1]] · P (C = c|T = t1)

(3)

where T is a random variable of the tasks, and C is
a random variable of the context length.

We apply NDE twice for every pair of tasks
(once for each task’s context length distribution).
We then compare the results to the difference be-
tween the tasks’ expected layers where each task
keeps its original context length distribution (un-
mediated). Results (Figure 4) show that the differ-
ence could be more than 50 times larger (change of
1.24 in absolute value) or decrease by 86% (0.73 in
absolute value). In some cases the order of the two
tasks is reversed, namely, the task that is lower with
one distribution becomes higher with another. This
shows that even among our examined set of seven
tasks, the effect of potential mediators cannot be
ignored. For more results, see §A.3.

3.2.1 Controlling for Context Length
After observing that the distribution of context
length in the probing dataset may affect the relative
order of the expected layers, we propose a more de-
tailed and accurate method to compare the expected
layers, which does not rely on a specific length dis-
tribution. We do so by plotting the controlled effect,
namely Elayer for each range separately.

Our results (Figure 5) allow computing the range
of possible expected layers for a task, that may re-
sult from taking any context length distribution

Figure 4: Difference between unmediated Elayer and
NDE for NER and Co-ref. (left); NER and RC (mid-
dle); and SPR and RC (right). The employed context
length distributions (as part of the NDE calculations)
are of Co-ref., NER and SPR, respectively.

(Figure 6). The figure shows the wide range of
possible relative behaviors of Elayer for task-pairs:
from notable to negligible difference in expected
layers (e.g., SRL and Co-ref.), to pairs whose or-
dering of expected layers may be reversed (i.e.,
overlapping ranges, such as with SPR and RC). In
fact, by taking into account every possible combi-
nation of context length distribution for each of the
tasks, we get as many as 196 possible rankings of
the seven tasks according to their Elayer. One such
possible order is, for example, Non-term. < Dep. <
SRL < RC < NER < Co-ref. < SPR. We elaborate
on this in §A.4.

To recap, we find that the difference in Elayer

between some tasks may considerably change and
their order may reverse, depending on the context
length. This finding lends further support to our
claim that mediators should be taken into account.

Figure 5: Expected layers of all seven tasks as a func-
tion of context length range.

4 Conclusion

We showed that when performing edge probing to
identify what layers are responsible for addressing
what tasks, it is imperative to take into account
potential mediators, as they may be responsible
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Figure 6: The range of possible expected layers when
varying context length, for each of the seven tasks.

for much of the observed effect. Specifically, we
showed that context length has a significant impact
on a task’s Elayer. Our analysis shows the wide
range of relative orderings of the expected layers
for different tasks when assuming different con-
text length distributions; from extreme edge cases,
like the one we observed in §3.1.1, to more com-
mon, but potentially misleading ones, where the
difference between expected layers may dramati-
cally increase or decrease depending on the context
length distribution. Most importantly, it shows that
by manipulating the context length distribution, we
may get a wide range of outcomes.

Our work suggests that mediating factors should
be taken into account when basing analysis on the
Elayer. On a broader note, alternative hypotheses
should be considered, before limiting oneself to a
single interpretation.

Future work will consider the effect of other me-
diating factors. The two methods we used, NDE
and controlled effect, can be used to examine the
impact of other mediating factors and should be
adopted as part of the field’s basic analysis toolkit
(cf. Feder et al., 2020; Vig et al., 2020). NDE
should be used when several effects are examined
simultaneously, as it facilitates the assessment of
their effect on the tasks’ complexity. It is also ad-
visable to use NDE when a more practical examina-
tion is required, i.e., when distributions of the medi-
ators are given empirically, as it is easier to derive
the mediating factors’ impact using this method.
In contrast, the controlled effect method should
be used when examining the effects of two vari-
ables (e.g., tasks and mediating factors) or when
comparing several tasks with one mediating effect.
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A Appendix

A.1 Additional Example of the Extreme Case
We show another example of a task-pair that, under
certain distributions of context lengths, exhibits
similar behavior to that observed in the edge case
described in §3.1.1 (figure 7).

Figure 7: Elayer of SRL and Non-term. for different
context length ranges (4 left blue and yellow pairs), and
their Elayer when all instances of SRL are of context
length l ∈ [0, 2] and all those of Non-term. are of con-
text length l ≥ 9 (rightmost green and red pair). While
for every context length range, SRL’s Elayer is bigger
than that of Non-term., for some context length distri-
bution that order may be reversed.

A.2 Context Length Distribution
A lot of our work deals with possible context
length distributions, normalizing distribution, and
accounting for the distribution. We provide here
the actual distributions which are the underlying
property controlling the seen effects. We provide
data on the percentage of examples in each context
length range for each task (figure 8).

Figure 8: Percentage of examples as a function of con-
text length range, for each of the 7 tasks (see legend).

A.3 NDE vs. Unmediated Difference for All
Task-Pairs

For every task-pair, we compare the unmediated
Elayer difference with the pair’s NDE. Figure 9
presents this comparison for each task-pair, with

the distribution of one of the pair’s tasks being
applied in the NDE calculations, for each task-pair.

A.4 Extreme Elayer Differences
Based on figure 6, we compute the extreme Elayer

differences of each task-pair. Namely, for each
such pair, we juxtapose the difference between the
maximal possible Elayer of the first task and the
minimal Elayer of the second one with the opposite
case (the difference between the minimal possible
Elayer of the first task and the maximal Elayer of
the second one). Our results can be seen in figure
10.
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Figure 9: Difference between unmediated Elayer and NDE for every task-pair. The employed context length
distributions (as part of the NDE calculations) are, from left to right, of NER, SRL, Dep., Non-term., SRL, Co-ref.,
Dep., Non-term., SRL, Non-term., SPR, SRL, SPR, SPR, Non-term., SRL, RC, NER, Non-term., Dep. and SRL.

Figure 10: Difference between the minimal possible expected layer of the left task and the maximal possible
expected layer of the right task (blue - see legend), and vice-versa (yellow - see legend), for every task-pair.


