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Abstract
Multimodal pre-training has propelled great
advancement in vision-and-language research.
These large-scale pre-trained models, although
successful, fatefully suffer from slow infer-
ence speed due to enormous computation cost
mainly from cross-modal attention in Trans-
former architecture. When applied to real-
life applications, such latency and computa-
tion demand severely deter the practical use
of pre-trained models. In this paper, we
study Image-text retrieval (ITR), the most ma-
ture scenario of V+L application, which has
been widely studied even prior to the emer-
gence of recent pre-trained models. We pro-
pose a simple yet highly effective approach,
LightningDOT that accelerates the inference
time of ITR by thousands of times, with-
out sacrificing accuracy. LightningDOT re-
moves the time-consuming cross-modal atten-
tion by pre-training on three novel learning
objectives, extracting feature indexes offline,
and employing instant dot-product matching
with further re-ranking, which significantly
speeds up retrieval process. In fact, Light-
ningDOT achieves new state of the art across
multiple ITR benchmarks such as Flickr30k,
COCO and Multi30K, outperforming existing
pre-trained models that consume 1000× mag-
nitude of computational hours.1

1 Introduction

Image-text retrieval (ITR) has been widely stud-
ied as a staple benchmark task in both NLP and
computer vision communities. Traditional ITR
search engines typically deploy ranking-based mod-
els built upon visual-semantic embedding match-
ing (Faghri et al., 2017; Huang et al., 2018) or
deep cross-modal fusion with attention mecha-
nism (Lee et al., 2018; Li et al., 2020a,b). Ear-
liest works (Kiros et al., 2014; Faghri et al., 2017;

∗Equal Contribution.
1Code and pre-training checkpoints are available at

https://github.com/intersun/LightningDOT.
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Figure 1: Evolution of Image-Text Retrieval (ITR) paradigm.
(a) Early work (Faghri et al., 2017) using dot product to
learn the similarity between global image features and global
text features. (b) Later study (Lee et al., 2018) applying
cross-attention between the features of each region and each
word. (c) Pre-trained V+L models (Chen et al., 2020) with
deep Transformer. (d) LightningDOT without cross-attention.
CMR, SMRM and VMLM refer to different pre-training tasks,
which will be introduced later in method section.

Wang et al., 2018) employ separate image en-
coder (e.g., CNN) and text encoder (e.g., RNN),
the embeddings from which are then measured by
doc product for similarity matching (Figure 1(a)).
Later studies (Lee et al., 2018, 2019; Wang et al.,
2019; Zhang et al., 2020) improve this paradigm by
employing advanced region-level visual encoder
(e.g., Faster-RCNN) and applying cross-attention
between word features and region features for mul-
timodal fusion (Figure 1(b)).

With the advent of Transformer (Vaswani et al.,
2017) and BERT (Devlin et al., 2019), cross-
modal retrieval tasks are more recently dominated
by vision-and-language (V+L) pre-trained models,
such as ViLBERT (Lu et al., 2019), UNITER (Chen
et al., 2020), OSCAR (Li et al., 2020b), and
VILLA (Gan et al., 2020). Large-scale pre-trained
models learned from massive corpus of image-text
pairs can power heterogeneous downstream tasks
that take diverse modalities as inputs (e.g., text,
image, video, audio). These models benefit from

https://github.com/intersun/LightningDOT
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the self-attention mechanism in Transformer ar-
chitecture, learning joint image+text embeddings
through pre-training objectives such as masked lan-
guage modeling (MLM) and masked region model-
ing (MRM) (Figure 1(c)).

However, the very ingredient that engenders
the success of these pre-trained models, cross-
modal attention between two modalities (through
self-attention), also destines the inevitable latency
and huge computation cost in training and de-
ploying such massive-scale models. For exam-
ple, UNITER (Chen et al., 2020) builds upon
12/24 Transformer layers, and trains over 10 mil-
lion image+text pairs. The inference time of such
large models with 110 million parameters is 48
seconds on average for text query from COCO
dataset (Chen et al., 2015), not scalable in real-life
applications serving millions of queries per second.

To make real-time ITR possible with low latency,
we ask a bold question: can we go back to the begin-
ning, reverting to simple dot product for efficient
cross-modal retrieval? To make this retro experi-
ment feasible, we rely on Transformer to pre-train
high-quality image and text encoders, but use ef-
ficient dot product for multimodal fusion instead
of computationally heavy self-attention. To still fa-
cilitate effective cross-modal embedding learning,
we use a special [CLS] token on both encoders,
which transfers the learned embedding from the
other modality (Figure 1(d)). We name this new
paradigm LightningDOT, for its lightening speed
benefiting from dot product computation.

By removing the time-consuming cross-attention
between modalities, the model can learn visual-
semantic embeddings without extensive matching
between each image-text pair during inference, as
used in existing pre-trained models (Chen et al.,
2020; Li et al., 2020b; Lu et al., 2019). Further,
by eliminating the dependency on real-time com-
putation over image-text pairs, we can compute all
image and text embeddings independently offline
just for once, and reuse these embeddings as cached
indexes for new queries on the fly (Figure 2).

For model training, we propose three learning ob-
jectives to jointly train two Transformer blocks: Im-
age Encoder and Language Encoder. Specifically,
Visual-embedding fused MLM (namely VMLM)
and Semantic-embedding fused MRM (namely
SMRM) ensure cross-modal information is har-
nessed even without cross-modality self-attention.
A cross-modal retrieval objective (namely CMR)

encourages the model to learn multimodal fusion
through pre-training. To maintain competitive
model performance, we further introduce a re-
ranking mechanism to bring back the benefit of
cross-attention methods.

In summary, LightningDOT is designed with late
fusion to learn visual-semantic embeddings. Ex-
periments on popular ITR benchmarks show that
LightningDOT is 600/1900 times faster than exist-
ing pre-trained models on Flickr30k/COCO, while
achieving new state-of-the-art results. When re-
trieving from larger candidate pool (>120K im-
ages), LightningDOT is 23,000 times faster. To the
best of our knowledge, this is the first known effort
on improving V+L model efficiency.

2 Related Work

V+L Pre-training Inspired by the success of
Transformer-based (Vaswani et al., 2017) lan-
guage model pre-training (Devlin et al., 2019; Liu
et al., 2019; Yang et al., 2019; Raffel et al., 2020;
Lan et al., 2020; Clark et al., 2020), vision-and-
language pre-training (Huang et al., 2020b; Su
et al., 2020; Li et al., 2020b, 2019a) has become
the prevailing paradigm in learning multimodal
representations, with strong results on tasks such
as image-text retrieval (Kiros et al., 2014), visual
question answering (Antol et al., 2015) and refer-
ring expression comprehension (Yu et al., 2016).
Exemplary works include two-stream (Tan and
Bansal, 2019; Lu et al., 2019) and single-stream
models (Chen et al., 2020; Li et al., 2020a; Zhou
et al., 2020). Multi-task learning (Lu et al., 2020)
and adversarial training (Gan et al., 2020) are also
explored. This family of pre-training methods aims
for general-purpose V+L without computation cost
consideration. To the best of our knowledge, our
work is the first known effort on pre-training visual-
semantic embedding that enables low-latency real-
time cross-modal retrieval. Ours is concurrent work
with CLIP (Radford et al., 2021).

Image-Text Retrieval Early cross-modal em-
bedding works (Kiros et al., 2014; Wang et al.,
2018; Faghri et al., 2017) focus on using a two-
stream model to learn a unified visual-semantic
embedding, with progressive improvement on two
popular benchmarks: Flickr30K (Plummer et al.,
2015) and COCO (Chen et al., 2015). Later meth-
ods with cross-attention (Lee et al., 2018, 2019;
Wang et al., 2019; Zhang et al., 2020) become
more popular, with significant performance gain.



984

Image 
Encoder

Language 
Encoder

Top-𝑀

Re-Ranker

Re-ranked 
Top-𝐾

Encoded Offline

A man riding a 
surfboard on top 
of a blue wave

…

Inference Only

Faster
R-CNN …

Image Encoder Language Encoder

CMRSMRM VMLM

[CLS] A  man  …  wave

… …

… [CLS] 

(b) Image Retrieval Pipeline(a) Pre-training Tasks

Similarity Score

Figure 2: An overview of our proposed framework. (a) LightningDOT is pre-trained with Sementic-embedding Fused Mask
Region Modeling (SMRM), Visual-embedding Fused Mask Language Modeling (VMLM) and Cross-modal Retrieval (CMR).
(b) LightningDOT ITR pipeline (image retrieval as an example). Similarities between input textual query and image candidates
are computed via dot product. During inference, image representations can be computed offline, and a re-ranker can be applied
for better accuracy, still with significant speedup.

Pre-trained V+L models also fall into this category.
By exploiting large-scale image-text datasets, pre-
trained V+L models further push the performance
on Flickr30K and COCO. Although achieving high
recall, cross-attention requires excessive compu-
tation cost during inference that cannot be over-
looked.2 In this work, inspired by dense retrieval in
text retrieval domain (Guu et al., 2020; Karpukhin
et al., 2020; Xiong et al., 2020; Mao et al., 2020;
Lewis et al., 2020), we propose a more efficient
attention-less framework. With pre-training, our
model achieves better performance while being sig-
nificantly faster than cross-modal attention meth-
ods. Note that the proposed approach is orthogonal
to model compression techniques that reduce the
number of layers/parameters (Sun et al., 2019; Jiao
et al., 2020), since we do not reduce the number
of parameters from the UNITER baseline. These
two approaches can be combined to further boost
the speed, which is an interesting future work di-
rection.

3 LightningDOT Framework

In this section, we present the proposed Light-
ningDOT framework, which consists of two deep
Transformers as image and language encoders. We
first introduce three tasks designed to pre-train the
model, then present our inference pipeline from
offline feature extraction to online instant retrieval.

3.1 Model Pre-training

We denote the Transformer-based (Vaswani et al.,
2017) image encoder and language encoder by

2The total inference time is quadratic to the dataset size
with cross-attention for image-text retrieval task.

fθV and fθL , respectively (θV , θL are learnable
parameters). Given a dataset of paired image
and text {(i, t)}, we first extract region features
v = {v0,v1, . . . ,vN} (vj ∈ Rdv , N is the num-
ber of regions) for image i, along with bound-
ing box positions of regions via a pre-trained
Faster-RCNN (Ren et al., 2015; Anderson et al.,
2018).3 The image encoder fθV encodes this se-
quence of image regions into a d-dimensional space
fθV (v) = h = {h0, . . . ,hN} (hj ∈ Rd). The cor-
responding text t is tokenized into sub-word units
and projected into high-dimensional feature vec-
tors w = {w0,w1, ...,wT } (wj ∈ Rdw , T is the
number of tokens) following Devlin et al. (2019).4

Similarly, the text encoding process can be written
as fθL(w) = z = {z0, . . . , zT } (zj ∈ Rd). We re-
gard the output [CLS] embedding h0 as global im-
age representation, and z0 as global text representa-
tion. Following sections discuss how to jointly train
these two encoders to learn strong visual-semantic
embeddings, through three pre-training objectives.

Visual-embedding Fused Masked Language
Modeling (VMLM) Masked Language Model-
ing (MLM) pre-training is first proposed by De-
vlin et al. (2019), where 15% of the words are
masked5 and the model is trained to reconstruct
the masked words. Formally, we denote wm =
{wm1 , . . . ,wmM } as masked tokens, where m ∈
NM is the set of masked indices of size M , ran-
domly sampled from a natural number N. w\m are

3v0 is a special [CLS] embedding.
4A 30k BPE (Sennrich et al., 2016) vocabulary (bert-base-

cased) is used to tokenize the text. A special [CLS] token is
also prepended following the common practice (w0).

5In practice, this 15% is further decomposed into 10%
random words, 10% unchanged, and 80% [MASK].
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the unmasked words. MLM can be optimized by
minimizing the negative log-likelihood:

LMLM(t) = − logPθL(wm|w\m)

= − 1

M

M∑
k=1

logPθmlm(wmk
|zmk

) ,
(1)

where θmlm is the additional parameters introduced
to map hidden states z to word probabilities.

Under the V+L setting, the textual input is usu-
ally highly correlated with the image. To lever-
age this cross-modal relation, we propose visual-
embedding fused MLM (VMLM), in which the
paired image i is considered as additional input
when training the model to reconstruct masked to-
kens in sentence t. The loss function of VMLM
can be formulated as:

LVMLM(t, i) = − logPθ(wm|w\m, i)

= − 1

M

M∑
k=1

logPθmlm(wmk
|zmk

+ h0) ,
(2)

where θ = {θV , θL} and the word probabilities
Pθ are conditioned on the corresponding image i
via the global image representation h0. Although
VMLM takes a similar mathematical form to the
MLM task proposed in UNITER, they differ in two
main aspects: 1) LightningDOT uses two separate
encoders (h0 is computed by fθV ); and 2) visual
dependency is explicitly injected to text represen-
tations (zmk

+ h0), instead of implicitly learned
through cross-modal attention.

Semantic-embedding Fused Masked Region
Modeling (SMRM) Recent works on V+L pre-
training (Lu et al., 2019; Tan and Bansal, 2019)
have shown that mask-then-reconstruct pre-training
on image regions also helps image+text embedding
learning. Similar to MLM, Masked Region Model-
ing (MRM) is supervised by:

LMRM(i) = Dθmrm(vm, fθV (v\m))

=
1

M

M∑
k=1

Dθmrm(vmk
,hmk

) ,
(3)

where D can be any differentiable distance func-
tion. Among the variants of MRM, we consider
Masked Region Feature Regression (MRFR) with
L2 distance and Masked Region Classification with
KL-Divergence (MRC-kl), due to their proven suc-
cess in learning V+L representations (Chen et al.,

2020).6 In MRFR, the L2 distance between two
feature vectors x and y is defined as:

Dθfr(x,y) =
∑
k

‖xk − gθfr(yk)‖
2
2 ,

where ‖ · ‖2 denotes L2-norm, and gθfr(·) is a learn-
able Multi-layer Perceptron (MLP) with parameters
θfr. The KL-divergence DKL in MRC-kl measures
distance between two probability distributions:

Dθmrc(x,y) =
∑
k

DKL(c(xk) || gθmrc(yk)) ,

where θmrc is the parameters of a trainable MLP
that maps feature vector xk to the object class dis-
tribution c(xk) predicted by Faster R-CNN.

To incorporate language information encoded
in the paired text, we extend MRM to Semantic-
embedding fused MRM (SMRM), where the global
text representation z0 is exploited when recon-
structing masked regions.

LSMRM(i, t) = Dθmrm(vm, fθV (v\m), t)

=
1

M

M∑
k=1

Dθmrm(vmk
,hmk

+ z0) .
(4)

The specific variants SMRFR and SMRC-kl can be
derived using the corresponding distance function,
which is omitted for simplicity. Note that both
the cross-modal fusion introduced in Eqn. (2) and
Eqn. (4) uses simple addition without introducing
extra parameters from their uni-modal counterpart.
Moreover, the extra parameters θmlm and θmrm is
not needed at downstream inference so will not
slow down the retrieval.

Cross-modal Retrieval Objective (CMR) Be-
yond image or text focused reconstructive objec-
tives, we also propose a new pre-training task,
Cross-modal Retrieval (CMR), to leverage the
paired information between image and text. With
this learning objective, the model is optimized to
promote high similarity score for a matched image-
sentence pair (i, t) and vice versa. The similarity
score between query t and image i is defined as:

S(t, i) = 〈z0,h0〉 , (5)

where 〈·, ·〉 denotes the inner product between two
vectors, and h0 and z0 are the output [CLS] em-
beddings from image encoder fθV and language
encoder fθL , respectively.

6In our implementation, no textual inputs are directly con-
catenated with image regions due to separate encoding of
image and text.
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Figure 3: An illustration of the proposed CMR Loss. Note
that positive pairs lie in the diagonal of the matrix.

In order to capture both image-retrieval and text-
retrieval supervision signals in a single forward-
backward pass, we propose a bi-directional variant
of contrastive loss. Given any matched image-text
pair (i, t), we treat text t as the query, sample n− 1
negative images {i2, i3, . . . , in}, and then compute
the objective function as:

L(t)IR = − log
eS(t,i1)∑n
k=1 e

S(t,ik)
,

where t1 := t. Similarly, we take image i as query
(i1 := i), sample n− 1 negative text, and compute:

L(i)TR = − log
eS(i,t1)∑n
k=1 e

S(i,tk)

to optimize for text retrieval.
Following Henderson et al. (2017); Gillick et al.

(2019); Karpukhin et al. (2020), we use in-batch
negatives to avoid the actual sampling of a neg-
ative image or text: given a batch of n positive
image-text pairs B = {(i1, t1), . . . , (in, tn)}, we
use all other images from within the batch as neg-
atives ({ij} ,where j ∈ {1, 2, . . . , n} and j 6= k)
for every positive pair (ik, tk), and vice versa for
negative text. The final CMR loss for batch B is:

LCMR(B) =
1

2n

n∑
k=1

L(ik)TR + L(tk)IR . (6)

An illustration of LCMR is presented in Figure 3.7

Through joint pre-training with CMR, VMLM and
SMRM, the visual-semantic embeddings learned
from image encoder and language encoder can be
readily applied to downstream tasks. During fine-
tuning stage, we directly adopt CMR loss to super-
vise the training process.

7The whole similarity matrix can be computed efficiently
with one batched matrix multiplication call. This operation
can take advantage of GPU hardware with Tensor Cores for
faster training.

3.2 Real-time Inference

For simplicity, we take text-to-image retrieval as
an example to introduce the real-time inference
pipeline (Figure 2(b)): (i) Offline image feature
extraction and encoding; (ii) Online retrieval with
text query; and (iii) Online re-ranking with top-
retrieved images. Text retrieval is conducted in a
symmetric manner.

Offline Feature Extraction Image retrieval task
requires the model to rank every image i in an im-
age database I based on its similarity to a text query
t. In LightningDOT, we first apply the image en-
coder fθV to all images in I , and cache the resulting
global image representations {h(i)

0 ∈ Rd|i ∈ I}
into an index (Johnson et al., 2019) in memory
for later use. Note that the entire image-to-index
process, including Faster-RCNN feature extraction
and Transformer encoding, can all be conducted
offline. Therefore, for every new query t at real
time, the cached index can be reused for maximum
inference time saving.

Online Retrieval During inference, given a text
query t, we encode it with the language encoder θL,
and then compute its similarity score to the embed-
ding of every image in I (stored in memory index)
via Eqn (5). Finally, the images will be ranked by
their similarity scores, from the highest to lowest.
In practice, people are more interested in top-K
retrieval, with a list of K images It satisfying:

It := {imk
}Kk=1 , where

S(t, im1) ≥ S(t, im2) ≥ · · · ≥ S(t, imK ) and

S(t, imK ) ≥ S(t, i) ∀i ∈ (I \ It) . (7)

This optimization problem has been well studied,
and we use FAISS (Johnson et al., 2019) to solve
it in our implementation. It is worth noting that in
order to apply fast search, the similarity function
has to be decomposable. Therefore, we choose the
simple dot product as S instead of a more com-
plicated neural network function. Similarly, for
text retrieval, the same architecture can be applied
by simply pre-computing the embedding for all
sentences and using an image as query instead.

Re-ranking To further improve retrieval accu-
racy, we propose a two-stage approach by adopting
an optional re-ranking model. In the first stage,
we use LightningDOT to retrieve top-M images
(or texts), where M is an integer much smaller
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Model
COCO Test (5k images) Flickr30K Test (1k images)

Text Retrieval Image Retrieval Text Retrieval Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10 AR R@1 R@5 R@10 R@1 R@5 R@10 AR

VSE++∗ 41.3 69.2 81.2 30.3 59.1 72.4 58.9 52.9 80.5 87.2 39.6 70.1 79.5 68.3
SCO∗ 42.8 72.3 83.0 33.1 62.9 75.5 61.6 55.5 82.0 89.3 41.1 70.5 81.1 69.9
GXN 42.0 - 84.7 31.7 - 74.6 - 56.8 - 89.6 41.5 - 80.0 -
SCAN-single 46.4 77.4 87.2 34.4 63.7 75.7 64.1 67.9 89.0 94.4 43.9 74.2 82.8 75.4
R-SCAN 45.4 77.9 87.9 36.2 65.6 76.7 65.0 66.3 90.6 96.0 51.4 77.8 84.9 77.8
CAMP 50.1 82.1 89.7 39.0 68.9 80.2 68.3 68.1 89.7 95.2 51.5 77.1 85.3 77.8
CAAN 52.5 83.3 90.9 41.2 70.3 82.9 70.2 70.1 91.6 97.2 52.8 79.0 87.9 79.8
ViLBERT - - - - - - - - - - 58.2 84.9 72.8 -
Unicoder-VL 62.3 87.1 92.8 46.7 76.0 85.3 75.0 86.2 86.3 99.0 71.5 90.9 94.9 88.1
UNITER-base 64.4 87.4 93.1 50.3 78.5 87.2 76.8 85.9 97.1 98.8 72.5 92.3 95.9 90.4
UNITER-large 65.7 88.6 93.8 52.9 79.9 88.0 78.1 86.9 98.1 99.2 75.5 94.0 96.6 91.7
OSCAR 73.5 92.2 96.0 57.5 82.8 89.8 82.0 - - - - - - -
LightningDOT∗ 60.1 85.1 91.8 45.8 74.6 83.8 73.5 83.9 97.2 98.6 69.9 91.1 95.2 89.3
+UNITERbase Re-Ranker 64.6 87.6 93.5 50.3 78.7 87.5 77.0 86.5 97.5 98.9 72.6 93.1 96.1 90.8
+UNITERlarge Re-Ranker 65.7 89.0 93.7 53.0 80.1 88.0 78.2 87.2 98.3 99.0 75.6 94.0 96.5 91.8
+OSCAR Re-Ranker 74.2 92.4 96.0 57.4 82.7 89.9 82.1 - - - - - - -

Table 1: Evaluation results on image-to-text and text-to-image retrieval over Flickr30k and COCO test sets. We compare the
proposed method with both task-specific models: VSE++ (Faghri et al., 2017), GXN (Gu et al., 2018), SCO (Huang et al., 2018),
SCAN (Lee et al., 2018), R-SCAN (Lee et al., 2019), CAMP (Wang et al., 2019) and CAAN (Zhang et al., 2020), and V+L
pre-trained models: ViLBERT (Lu et al., 2019), Unicoder-VL (Li et al., 2020a), UNITER (Chen et al., 2020) and OSCAR (Li
et al., 2020b). Models in bold∗ are embedding-based methods without cross-attention.

than the database (index) size. Next, we apply
a stronger retrieval model (usually slower due to
the use of cross-attention) to re-rank the retrieved
top-M pairs from the first stage. The final M sim-
ilarity scores obtained from the second stage will
be used to re-compute the desired top-K retrieval
(K ≤M ) in Eqn. (7). Please refer to figure 2 for a
more detailed visualization. Our experiments show
that this two-stage approach can benefit from the
best of both worlds: maintaining a constant fast
speed per query8 while achieving state-of-the-art
accuracy. Another advantage of this pipeline is
that it can readily incorporate any advanced model
as the re-ranker, thus future stronger image-text
retrieval models can take advantage of Lightning-
DOT for better efficiency.

4 Experiments

This section discusses our experiments on pre-
training and evaluating LightningDOT on down-
stream ITR benchmarks.

4.1 Datasets and Metrics

For pre-training, we use pre-processed data pro-
vided by Chen et al. (2020), including 4.2 million

8The computation time of LightningDOT is negligible
compared to that of UNITER. Therefore, the empirical speed
is proportional to the number of pairs UNITER has to rank:
constant M for LightningDOT + UNITER vs. the whole
database (index) size for UNITER only.

images with 9.5 million associated captions from
COCO (Chen et al., 2015), VG (Krishna et al.,
2017), Conceptual Captions (Sharma et al., 2018),
and SBU captions (Ordonez et al., 2011).

For evaluation, we use Flickr30k (Plummer et al.,
2015) and COCO (Lin et al., 2014) datasets, which
include 31K/123K images, respectively, each as-
sociated with 5 human-written captions. Follow-
ing (Faghri et al., 2017), we split COCO into
114K/5K/5K and Flickr30K into 29K/1k/1k images
for train, validation and test.

Downstream performance is measured by recall
at K (R@K) for both image and text retrieval tasks.
We also use an additional metric “AR”, the average
of R@K for all K across both image and sentence
retrieval tasks.

4.2 Results on Flickr30K and COCO
We compare the proposed approach with state-of-
the-art methods (with and without pre-training)
and report the results in Table 1. Without cross-
attention, our method outperforms non-pre-training
approaches by large margins on all metrics. Specif-
ically, our model improves over CAAN (Zhang
et al., 2020) (SOTA method with cross-attention)
by 3.3% (73.5 vs. 70.2) on COCO and 9.5% (89.3
vs. 79.8) on Flickr30K in terms of AR. When
compared with methods without cross-attention
(VSE++ (Faghri et al., 2017) and SCO (Huang
et al., 2018)), LightningDOT achieves nearly
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Model
COCO Full (123K Images) Flickr30K Full (31K Images)

Text Retrieval Image Retrieval Text Retrieval Image Retrieval

R@5 R@10 R@20 R@5 R@10 R@20 AR R@5 R@10 R@20 R@5 R@10 R@20 AR

LightningDOT 40.1 51.0 62.0 28.2 37.4 47.8 44.4 69.6 78.9 86.1 51.8 62.3 72.3 70.2
+ Re-Ranker-base 47.9 58.5 67.8 35.7 45.2 55.2 51.7 74.2 81.7 88.2 56.9 66.7 75.6 73.9
+ Re-Ranker-large 48.0 59.0 68.9 37.3 46.8 56.4 52.7 75.1 83.9 90.5 60.1 69.5 78.3 76.2

Table 2: Results on the extreme retrieval setting of full Flickr30k and full COCO datasets.

Method #images SCAN Ours +Re-ranker
Flickr30K-test 1,000 1.8× 639× 46×
COCO-test 5,000 1.9× 1,927× 95×
Flickr30K-full 31,014 1.8× 6,591× 1,255×
COCO-full 123,287 1.9× 23,869× 2,235×

Table 3: Speedup w.r.t. UNITER-base. We compare Light-
ningDOT (Ours) and +Re-Ranker, plus a lightweight cross-
attention method SCAN (Lee et al., 2018). LightningDOT
with/without UNITER-base re-ranker is significantly faster.

20-point gain on AR. Although LightningDOT
achieves slightly lower AR than UNITER (pre-
training method with cross-attention), with 3.5/1.1
points drop on Flickr30K/COCO, it is 600/1900 ×
faster than UNITER during inference time.

We further apply second-stage re-ranking, and
use UNITER to score top-M retrieved image-text
pairs from LightningDOT to obtain the final top-
K ranked lists. With re-ranking, LightningDOT
achieves an instant performance lift, surpassing
UNITER on both benchmarks, while still 46-95
times faster than UNITER. With an even stronger
re-ranker OSCAR, LightningDOT achieves simi-
lar results to the state-of-the-art performance on
COCO.

4.3 Speed & Space Improvement

To demonstrate the efficiency of LightningDOT, we
use UNITER-base as baseline to compare inference
speed. We also compare with a more lightweight
cross-attention method SCAN (Lee et al., 2018),
which uses GRU (Chung et al., 2014) instead of
a 12-layer Transformer. All methods are tested
on a single TITAN RTX GPU, with batch size of
400. As shown in Table 3, SCAN is ∼1.9× faster
than UNITER-base across both benchmarks, as the
computational cost of GRU is much cheaper than
that of Transformer (performance drop is signifi-
cant though). However, the speedup from SCAN
is limited, as it computes cross-attention between
each query and all images. On the other hand,
LightningDOT is 639× faster than UNITER on
Flickr30K. When tested with 5 times more im-

ages in COCO, the speedup from LightningDOT
is 1927×. Even with re-ranking, LightningDOT is
still much more efficient than UNITER-base (46×
faster on Flickr30K and 95× faster on COCO).

To mimic a real-life scenario for image retrieval,
where the candidate pool contains hundreds of thou-
sands of images, we combine all images from train-
ing, validation and test set to form a larger candi-
date pool. Note that models are still trained on the
training set. Although the number of text queries
remain the same, the number of candidate images
scales up by >20×, where cross-attention meth-
ods immediately become impractical. We refer
this setting on both benchmarks as Flickr30k-full
(31k) and COCO-full (123k). Our algorithm is
6,591× faster on Flickr30k-full and 23,869× faster
on COCO-full, which clearly shows the advantage
of LightningDOT and its potential in real-world ap-
plications. With re-ranking, LightningDOT is still
more than 1,000× and 2,000× faster on Flickr30k-
full and COCO-full, respectively. In general, for
other re-rankers such as OSCAR, our algorithm can
approximately speed up inference by Nimages/M
times, whereNimages is the number of candidate im-
ages, and M is number of re-ranked images from
top-M retrieved results by LightningDOT.

Similarly, we construct a full setting for text re-
trieval by combining all text queries from training,
validation and test set. Results are summarized in
Table 2. Considering the size of candidate pool has
become more than 20× larger, we adopt recall at
top 5, 10, 50 as evaluation metrics. Our method
achieves reasonably good performance, with AR of
44.4 on COCO and 70.2 on Flickr30K. Re-ranking
further lifts AR to 56.4 and 76.2. Results from
UNITER or SCAN are not included as the compu-
tation of pairwise scores is extremely expensive,
given the excessive amount of retrieval candidates.
While LightningDOT only takes minutes to eval-
uate, UNITER-base is estimated to take about 28
days9 to evaluate under the full setting for both

9This estimation is based on the inference time taken by
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Text Retrieval Image Retrieval

Method R@1 R@5 R@10 R@1 R@5 R@10 AR

R-CNN only 62.2 85.9 91.1 42.0 70.9 80.3 72.1
+Image Encoder 73.4 92.5 95.6 59.5 84.5 90.3 82.6
+PT† 83.5 96.4 98.7 68.6 90.5 94.8 88.8
LightningDOT 85.2 96.4 98.7 69.9 90.4 94.5 89.2

Table 4: Ablation studies on model design over
Flickr30K validation set. PT† indicates pre-training with
MLM+MRM+CMR, while LightningDOT is pre-trained with
VMLM+SMRM+CMR.

Text Retrieval Image Retrieval

LightningDOT R@1 R@5 R@10 R@1 R@5 R@10 AR

No PT 73.4 92.5 95.6 59.5 84.5 90.3 82.6
PT(CMR) 75.0 93.9 97.3 61.5 85.5 91.1 84.0
PT(All) 78.1 94.0 96.9 62.6 85.7 91.8 84.8

Table 5: Ablation studies on pre-training tasks over
Flickr30K validation set after finetuning on the corresponding
training set. All pre-training experiments are conducted on
COCO dataset only. PT is short for pre-training. PT(CMR)
refers to pre-training using CMR task only, and PT(All) refers
to pre-training with all of the three tasks.

image retrieval and text retrieval.
In addition, We compare all models with the

same setting: cache as much as possible for fastest
speed, where our model outperforms others in both
speed and space on image retrieval. The proposed
algorithm maps each image to a 768-dimensional
vector, which only consumes about 300Mb stor-
age space for the whole COCO dataset. For cross-
attention models such as SCAN, UNITER or OS-
CAR, they also need to cache image features,
which typically requires to save a 36 x 2048 di-
mensional vector per image, and it consumes about
28GB storage space for COCO dataset.

4.4 Ablation Studies
We conduct ablation studies on Flickr30K (Table 4)
and compare LightningDOT (L4) against 3 ablated
instances: (i)“R-CNN only” (L1): image repre-
sentations are extracted from Faster R-CNN di-
rectly, with no image encoder applied; (ii) “+Im-
age Encoder” (L2): regional features are encoded
with a 12-layer Transformer as the image encoder;
(iii) “+PT†” (L3): our model is pre-trained with
MLM+MRM+CMR, then finetuned on Flickr30K.
Note that the difference between MLM vs. VMLM
and MRM vs. SMRM is whether the predictions
of masked tokens (regions) rely on infused embed-
dings from the other modality.

UNITER-base on a smaller dataset.

Multi30K COCO

Method DE FR CS ZH JA Meta-Ave
S-LIWE 72.1 63.4 59.4 73.6 70.0 67.7
MULE 64.1 62.3 57.7 75.9 75.6 67.1
SMALR 69.8 65.9 64.8 77.5 76.7 70.9
M3P 82.0 73.5 70.2 81.8 86.8 78.9
UNITER 85.9 87.1 85.7 88.4 85.9 86.6
LightningDOT 83.3 83.7 82.2 87.2 82.3 83.7
+Re-Ranker 86.1 87.1 86.2 88.4 86.1 86.8

Table 6: Evaluation on multilingual image-text retrieval over
Multi30K and COCO datasets. We compare with task-specific
methods: S-LIWE (Wehrmann et al., 2019), MULE (Kim
et al., 2020), SMALR (Burns et al., 2020), pre-trained method
M3P (Huang et al., 2020a) and UNITER with translate-test.
Numbers in blue indicate the use of different dev/test splits of
COCO compared to other methods. UNITER and Re-ranker
are large model size.

Results show that “R-CNN only” is not suffi-
cient in learning good image representations for
ITR task, while image encoder with Transformer
architecture can effectively learn contextualized
image representations, hence achieving better per-
formance. Pre-trained models (L3-4) generally
achieve better performance, compared to non-
pretrained models (L1-2). Comparing “+PT†” to
the full instance of LightningDOT, dependency on
the other modality in VMLM and SMRM brings
universal performance lift across all metrics. This
indicates that these cross-modal dependencies in-
troduced by VMLM and SMRM are effective in
learning the association between image and text
inputs.

In addition, we investigate the effectiveness of
each pre-training task in Table 5. Comparing to
baseline without pre-training, pre-training with
CMR alone lifts +1.4 on AR. Pre-training with
all three tasks achieves the best performance, in-
dicating that the learning of contextualized word
and region representations promotes better global
alignment between image and text, and these three
pre-training tasks work collaboratively to yield bet-
ter visual-semantic embeddings.

4.5 Multilingual Image-Text Retrieval
We further report results on multilingual image-text
retrieval tasks. Specially, we evaluate Lightning-
DOT under the translate-test setting, which is to
translate the test captions in other languages to
English by leveraging Machine Translation (MT)
tool.10 Note that our method is only trained on
English captions, without exploiting the original or
translated captions from multilingual benchmarks.

10We use Microsoft Azure Translation API Service.
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Figure 4: Retrieved top 10 images from the query "Sky view of a blue and yellow biplane flying near each other."
The ground truth is in the red rectangle.

We consider two benchmarks: Multi30K (Elliott
et al., 2016, 2017; Barrault et al., 2018) with cap-
tions in German, French and Czech; and COCO
Japanese (Yoshikawa et al., 2017) and Chinese (Li
et al., 2019b).

Average Recall (AR) is used as the evaluation
metric. Meta-Ave, the average of AR over different
languages across two benchmarks, is used as a
global metric. More details on multilingual ITR
benchmarks are included in Appendix.

We compare LightningDOT against 3
task-specific methods: S-LIWE (Wehrmann
et al., 2019), MULE (Kim et al., 2020) and
SMALR (Burns et al., 2020), which all exploit
captions in different languages to learn multi-
lingual or language-agnostic word embeddings.
We also compare with a pre-trained model
M3P (Huang et al., 2020a), which is alternatively
pre-trained with image-caption pairs labeled in
English and cross-lingual corpus in 100 different
languages. Note that all methods discussed above
are trained/finetuned on captions in different
languages. For fair comparison, we report perfor-
mance of UNITER under the same translate-test
setting, which is finetuned with English captions
only and tested on translated captions.

Table 6 shows similar trends of performance im-
provements as on English benchmarks. Compared
to both state-of-the-art task-specific methods and
pre-trained models, LightningDOT under translate-
test setting achieves new state of the art on most
languages and establishes a strong baseline for fu-
ture study on these multilingual benchmarks.

4.6 Qualitative Examples
We show an example of image retrieval results here
at figure 4 for query as "Sky view of a blue and yel-
low biplane flying near each other". In addition to
the ground truth image in the red rectangle, all the
10 images retrieved by our model are valid retrieval
since multiple keywords ("sky", "blue", "yellow",
"airplane", "near") are captured for each image.
Please see the appendix A.4 for more examples.

5 Conclusion

In this paper, we propose a pre-training framework
that learns joint visual-semantic embedding with-
out any cross-attention between modalities. Light-
ningDOT outperforms previous state of the art,
while significantly speeding up inference time by
600-2000× on Flickr30K and COCO image-text
retrieval benchmarks. Future work includes extend-
ing the efficient training framework to other V+L
tasks.
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A Appendix

A.1 Implementation Details

To further facilitate the reproductivity of our pro-
posed method, we include more details about the
choice of model size and hyper-parameters for both
pre-training and fine-tuning.

The model dimensions are set to (L=12, H=768,
A=12) for both image encoder and language en-
coder, where L is the number of stacked Trans-
former blocks; H stands for hidden activation di-
mension, and A is the number of attention heads.
The total number of parameters in LightningDOT
is 220M. Pre-training and finetuning learn the pa-
rameters of both encoders. During inference, with
offline representation caching, only the forwarding
pass with one encoder from the query modality will
be performed online.

For both pre-training and finetuning,
AdamW (Loshchilov and Hutter, 2019) is
used to optimize the model training, with β1=0.9,
β2=0.98. We adopt a learning rate warmup
strategy, where the learning rate is linearly
increased during the first 10% of training steps,
followed by a linear decay to 0. We set the L2
weight decay to be 0.01.

During pre-training, we follow UNITER (Chen
et al., 2020) to randomly sample 1 task per mini-
batch update.11 Our best model is pre-trained on
VMLM+SMRM+CRM for 300,000 optimization
steps. We set the batch size to 10240 per GPU
(batch size is specified by #tokens + #regions, as in
UNITER). Pre-training experiments are conducted
on 8× V100 GPUs with 6-step gradient accumu-
lation, and the learning rate is set to be 5e-5. For
ablation studies presented in Table 5, the ablated
instances of our model are pre-trained for 30k steps
on COCO dataset (Lin et al., 2014) only, and the
same choice of learning rate and batch size are
applied as in the best pre-training setting.

For finetuning, we set batch size n to 96 (n is in
examples, instead of the sequence length of tokens
and regions), and search learning rate from {1e-5,
2e-5, 5e-5}. We select models based on their AR
on the validation set. The best learning rate is 5e-5
for COCO and 1e-5 for Flickr30K. Our models are
trained for 15 epochs on Flickr30k, and 20 epochs
on COCO. For re-ranking, we choose k from {20,
50}.

11Code obtained from https://github.com/ChenRocks/UNITER.

A.2 Multilingual Image-Text Retrieval
Benchmarks

When evaluating on ITR under the multilingual set-
ting, we consider two benchmarks: Multi30K (El-
liott et al., 2016, 2017; Barrault et al., 2018) and
COCO Japanese (Yoshikawa et al., 2017) and
Chinese (Li et al., 2019b). Multi30K is con-
structed by manually translating English captions
in Flickr30K (Plummer et al., 2015) to German,
French, and Czech. Each image in Multi30K is
paired with 5 captions in German, 1 caption in
French and Czech. We adopt the same train/val/test
split as in Flickr30K. COCO Japanese (Yoshikawa
et al., 2017) collected 820K Japanese captions for
165K COCO images (Lin et al., 2014). We use
the same train/dev/test splits for COCO Japanese
as in Karpathy and Fei-Fei (2015), and present re-
sults on the 1K test set. Similarly, Li et al. (2019b)
collected 1-2 Chinese captions per image for 20K
COCO images to build COCO Chinese. We follow
the original split defined in Li et al. (2019b).

A.3 Inference Time

We present the detailed inference time of UNITER-
base, SCAN the proposed LightningDOT and
LightningDOT with UNITER-base re-ranker in Ta-
ble 7, measured by seconds/query. UNITER clearly
is the slowest, as the 12-layer Transformer model
inference needs to be run between each query and
all images. Comparing between Flickr30k-test and
COCO-test, its inference time scales up linearly
with the number of images. With the lightweight
GRU (Chung et al., 2014), SCAN is ∼1.9× faster
than UNITER. Across all settings, LightningDOT
is significantly faster than both cross-attention
methods (UNITER-base and SCAN). When adding
UNITER-base as the re-ranker, our method slows
down by ∼10, but still achieves decent speedup.

A.4 More Qualitative Examples

We show several qualitative results of image re-
trieval (top-10). All results are retrieved from
COCO-Full dataset (123k images in total). Our
model can well understand the underlying seman-
tic meaning. For example, “romantic” only appears
twice in the whole COCO dataset annotations, yet
the top retrieved images are all topic-related (Fig-
ure 5). With multiple keywords, our model at-
tempts to retrieve the combinations of them (if not
all). For example, for the query “blue girl boy ball”
with four keywords, our model retrieves images
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Method #images UNITER-base SCAN LightningDOT LightningDOT+Re-ranker
Flickr30K-test 1000 0.41 0.23 0.00064 0.0089
COCO-test 5000 1.95 1.04 0.00101 0.020
Flickr30K-full 31014 12.8* 7.10* 0.00193 0.010
COCO-full 123287 48.0* 25.7* 0.00201 0.021

Table 7: Image retrieval time cost measured by computation time (in seconds) for each query. The computation time for
UNITER and SCAN is roughly linear to #images. Numbers with * are estimated by running time on test set.

Figure 5: Retrieved top-10 images for query "romantic".

Figure 6: Retrieved top-10 images for query "blue girl boy ball"

that capture at least three keywords (Figure 6).

We also present image retrieval results where
the text query is sampled from COCO dataset. We
randomly sample 3 queries and present the results
as below (ground truth on the top, retrieved top-10

images at the bottom). Clearly, our model retrieves
related images from the full dataset.
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Figure 7: Retrieved top 10 images from the query "A man and a little boy on skis on a ski hill." (Top picture is the
ground truth.)

Figure 8: Retrieved top 10 images from the query "A road is lined with buildings and has cars on it." (Top picture
is the ground truth.)
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Figure 9: Retrieved top 10 images from the query "Two train employees stand near the open train car door." (Top
picture is the ground truth.)

Figure 10: Retrieved top 10 images from the query "The sun hits the floor in a rustic bedroom." (Top picture is the
ground truth.)


