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Abstract

Understanding and executing natural language
instructions in a grounded domain is one of the
hallmarks of artificial intelligence. In this pa-
per, we focus on instruction understanding in
the blocks world domain and investigate the
language understanding abilities of two top-
performing systems for the task. We aim to un-
derstand if the test performance of these mod-
els indicates an understanding of the spatial do-
main and of the natural language instructions
relative to it, or whether they merely over-fit
spurious signals in the dataset. We formulate a
set of expectations one might have from an in-
struction following model and concretely char-
acterize the different dimensions of robustness
such a model should possess. Despite decent
test performance, we find that state-of-the-art
models fall short of these expectations and are
extremely brittle. We then propose a learning
strategy that involves data augmentation and
show through extensive experiments that the
proposed learning strategy yields models that
are competitive on the original test set while
satisfying our expectations much better.1.

1 Introduction

Building agents that can understand and execute
natural language instructions in a grounded en-
vironment is a hallmark of artificial intelligence
(Winograd, 1972). There is wide applicability of
this technology in navigation (Chen et al., 2019;
Tellex et al., 2011; Chen and Mooney, 2011), col-
laborative building (Narayan-Chen et al., 2019),
and several others areas (Li et al., 2020b; Brana-
van et al., 2009). The key challenge underlying
these and many other applications is the need to
understand the natural language instruction (to the
extent that it is possible) and ground relevant parts
of it in the environment. While the use of deep
networks has led to significant progress on several

1Our code is publicly available at:
http://cogcomp.org/page/publication_view/936

Figure 1: Task: Given a configuration of blocks and an
instruction, predict the source and target location.

benchmarks (Abiodun et al., 2018) an investigation
into the instruction understanding capabilities of
such systems remains lacking. We do not know
the extent to which these models truly understand
the spatial relations in the environment, nor their
robustness to variability in the environment or in
the instructions. This understanding is also impor-
tant from the viewpoint of safety critical applica-
tions , where robustness to variability is essential.
While robustness to input perturbations at test-time
has been studied in computer vision (Goodfellow
et al., 2014) and in certain natural language tasks
(Alzantot et al., 2018; Wallace et al., 2019; Shah
et al., 2020), it remains relatively elusive in the in-
struction following task in a grounded environment.
This can be attributed to the difficulty in charac-
terizing the different expectations of robustness in
this setting, due to the multiple channels of input
involved, which semantically constrain each other.

The Blocks World domain is an ideal platform
to study the abilities of a system to understand
instructions (Winograd, 1972; Bisk et al., 2016;
Narayan-Chen et al., 2019; Misra et al., 2017; Bisk
et al., 2018; Mehta and Goldwasser, 2019; Tan
and Bansal, 2018). Despite being seemingly sim-
ple, it presents key reasoning challenges, including
compositional language understanding and spatial
understanding, that need to be addressed in any
instructional domain. In Bisk et al. (2016), the en-

http://cogcomp.org/page/publication_view/936
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(a)

(b)

Figure 2: (a) A symmetric example to Fig. 1. The
model should respect this symmetry equivariance (SA).
(b) A count example (SPC): the model should not over-
fit on the number of distractor blocks.

vironment consists of a number of blocks placed on
a flat board. The model is provided with the current
configuration of blocks in the environment along
with an instruction, and is tasked with executing the
instruction by manipulating appropriate blocks. In
this work, we follow the more challenging setting
in Bisk et al. (2016) where the blocks are unla-
beled, necessitating the use of involved referential
expressions in the instructions. Fig.1 shows that
the instruction and block configuration are seman-
tically dependent, jointly determining the outcome.

Despite the success of top performing models
(Tan and Bansal, 2018; Bisk et al., 2016) on the test
set for this task, we question if the models are able
to reason about the complex language and spatial
concepts of this task and generalize or are merely
over fitting the test set. To investigate these ques-
tions we formulate the following expectations one
should have from an instruction following model:
(1) Identity Invariance Expectation: The perfor-
mance of the model on an input should not degrade
on slightly perturbing the input.
(2) Symmetry Equivariance Expectation: A
symmetric transformation of an input should cause
an equivalent transformation of model prediction
and performance should not degrade.

(3) Length Invariance Expectation: The perfor-
mance of a model should not depend on the length
of the input, as long as the semantics is unchanged.

Our expectations complement existing work in
three dimensions: (1) is related to adversarial per-
turbations (Goodfellow et al., 2014) and (2) is re-
lated to equivariance of CNNs explored in com-
puter vision (Cohen and Welling, 2016). It is also
related to contrast sets (Gardner et al., 2020; Li
et al., 2020a) and counterfactual data augmentation
(Kaushik et al., 2019). Here, we extend the inves-
tigation to this new task of instruction following
involving both natural language and an environ-
ment, discrete and continuous perturbations and
both regression and classification tasks. Contrast
(3) is related to Lake and Baroni (2018) where vul-
nerability to length in a toy sequence-sequence task
was demonstrated. Here we show that length-based
vulnerability exists in another modality—the num-
ber of blocks present on the board, for this much
more complicated task.

While these form only a subset of the expecta-
tions one might have from an instruction following
model, it already allows us to formally characterize
some of the dimensions of robustness an instruc-
tion following agent must have. As an example, a
tiny shift in the location of each block should not
affect the model prediction (identity invariance). In
Sec. 2, we formulate concrete perturbations to test
whether a given model satisfies these expectations.
The space of perturbations that we consider have
the following attributes: (a) Semantic Preserving or
Semantic Altering. (b) Linguistic or Geometric. (c)
Discrete or Continuous. We find that both models
studied suffer a large performance drop under each
of the perturbations, and fall short of satisfying our
expectations. We then present a data augmentation
scheme designed to better address our expectations
from such models. Our extensive experiments in
Sec. 2.3 indicate that our learning strategy results
in more robust models that perform much better
on the perturbed test set while maintaining similar
performance on the original test set.

2 Robustness to Expectations

Given the block configuration W ∈ R20×3 (three-
dimensional coordinate locations of a maximum
of 20 unlabeled blocks B = b1, ..., b20 and an in-
struction I , the model has to move the appropriate
block. There are two sub-tasks: (i) predicting the
source block to be moved and (ii) predicting the
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Figure 3: Relative Performance Degradation for the source (classification and regression) and target (regression)
sub-tasks. ↑ (↓) denotes higher (lower) is better respectively. Here, SPP uses only one permutation and the
degradation becomes more severe when consistency across a larger set of permutations is considered (Appendix A)

target location to move it to. While the target out-
put is always a location y ∈ R3, for the source
task the model can either predict a particular block
y ∈ {1, 2, ..., 20} (Tan and Bansal, 2018) or a par-
ticular source location y ∈ R3 (Bisk et al., 2016).
Let P denote a perturbation space and (I ′,W ′) be
the perturbed version of (I,W ) under P . Note that
(I ′,W ′) can be chosen randomly or adversarially
as the perturbation which maximizes the loss :

(I ′,W ′) = arg max
(I′,W ′)∈P

`(f(I ′,W ′), O).

Here ` denotes a loss function and O denotes the
gold source/target location. If the perturbation
space is discrete and finite we can simple search
over all candidate (I ′,W ′) to find the one with
the maximum loss. If it is continuous and infinite,
we can use a first order method (eg: First Order
Gradient Signed Method FGSM (Goodfellow et al.,
2014)) to find the adversarial (I ′,W ′).
Now we characterize P . Broadly, we have the
following two types of perturbations:

(i) Semantics Preserving (SP): Perturbations
when applied to either I or W , do not change the
meaning of either. Since the modified instruction
I ′ or world state W ′ is semantically unchanged, the
model should perform similarly on the perturbed
input. Informally, we want f(I,W ) ≈ f(I ′,W ′)
since I ≈ I ′ and W ≈ W ′. SP perturbations can
be of the following types:
• Linguistic (SPL): Perturbations that do not
change the overall meaning of the instruction.
Consider Lexical Substitutions: We identify
a list of synonyms for each of the shapes and
spatial concepts (C) in this domain.2 For each
test example which contains at least one of these

2Examples of synonym sets for shapes in C are
{tower(s), stack(s)}, {block(s), brick(s), box(es)}.

concepts we adversarially pick the one with the
highest loss over all combinations of substitutions
from the synonyms in C. Since the size of these
synonym sets are small, an explicit search over
all candidate substitutions is possible, although
the search space grows combinatorially with the
number of elements of C in I .
• Geometric (SPG): These perturbations do
not change the semantics of the board. Tiny
changes in the block locations which preserve
the overall semantics of W should not affect
model predictions. We perturb each block location
slightly in an adversarial direction3 w.r.t W .
• Count (SPC): We identify distractor blocks
which do not affect the meaning of the instruction
(Fig. 2(b)). Large distance from the source and
target location acts as a proxy for this. P comprises
of deleting k blocks where k ∈ {0, 1, 2, ..., N}
is chosen adversarially to generate W ′. We set
N = 3.4

• Permutation (SPP): These are perturba-
tions where the order in which the block
locations are fed to the model, are per-
muted: Π(B)={bΠ(1), ..., bΠ(20)}. While
semantically nothing changes in the input
((I ′,W ′) ≡ (I,Π(W )), where ≡ denotes seman-
tic equivalence), we see models still suffer a large
performance drop, even for a random permutation
Π.
(ii) Semantic Altering (SA): These perturbations

create a new (I ′,W ′) pair with different semantics,
using a simple transformation that we want the
model to be equivariant to. A horizontal mirroring
of W with a corresponding change in I (flipping
all the left concept words to right and vice versa)

3according to a FGSM attack with ε = 0.05
4Addition of such distractor blocks at locations far from

the source and target locations, form a similar perturbation set
that also leads to a significant performance drop for existing
models (Appendix A).
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P Model Source(Acc) ↑ Source(BD) ↓ Target(BD) ↓
Std. Rob. RI(%) Std. Rob. RI(%) Std. Rob. RI(%)

SPL Mstd 48.89 39.03 3.22 3.65 3.43 3.86
Mrob 48.19 42.08 7.81 3.23 3.38 7.40 3.35 3.57 7.51

SPG Mstd 48.89 23.61 3.22 3.72 3.43 3.95
Mrob 48.47 46.53 97.08 3.17 3.55 4.57 3.31 3.69 6.58

SPC Mstd 48.89 6.12 3.22 4.60 3.43 4.46
Mrob 53.19 16.27 165.85 3.40 3.47 24.56 3.51 3.67 17.71

SA Mstd 48.89 28.06 3.22 3.86 3.43 3.99
Mrob 50.14 35.42 26.23 3.20 3.48 9.84 3.35 3.56 10.78

SPP Mstd 48.89 42.28 3.22 3.56 3.43 3.65
Mrob 49.03 44.09 4.28 3.17 3.20 10.11 3.56 3.58 1.92

Table 1: Standard (Std.) and Robust (Rob.) performance of each model (Mstd) and its robust counterpart (Mrob)
for the different perturbations (P). ↑, (↓) denotes higher (lower) is better respectively. RI denotes the relative
improvement in robust evaluation of the robust model w.r.t. the standard model. BD denotes the block-distance
measure and Acc. denotes classification accuracy. The bold numbers are the best robust performance for each P .

, as in Fig: 2(a) should satisfy: if the error on
f(I,W ) is small, the error on f(I ′,W ′) should
also be small.

2.1 Model Performance vs Our Expectations

The dataset from Bisk et al. (2016)5 has 2493
training examples and 720 test examples. We
evaluate the performance of our implementation
of two models: from Bisk et al. (2016) and from
Tan and Bansal (2018). One important difference
between the two models is that while both models
treat the target subtask T as a regression task
(trained and evaluated using a normalized mean
squared error called block distance BD), Tan
and Bansal (2018) treats the source subtask as
a classification task Scls (trained using cross
entropy loss as ` and evaluated using classification
accuracy Acc.) while Bisk et al. (2016) treats it as
a regression task Sreg (trained and evaluated using
BD). We use both models for the source and the
Bisk et al. (2016) model for the target subtask. We
compare model performance on the original test
set using standard evaluation and on the perturbed
test set using a robust evaluation measure. The
robust evaluation measure for Sreg and T is
max(BD(f(I,W ), O), BD(f(I ′,W ′), O)) and
min(Acc(f(I,W ), O), Acc(f(I ′,W ′), O)) for
Scls. This robust evaluation formulation is moti-
vated by the requirement that models perform well
on both the original and the perturbed examples.
From Fig. 3 we see that models suffer a large
performance drop of upto 87.48%, 42.86% and

5https://groundedlanguage.github.io

30.03% for the source-classification,-regression
and target subtasks respectively, over different P .

2.2 Adversarial Data Augmentation
In this section we show that a simple data augmen-
tation strategy improves model performance under
robust evaluation on the perturbed test set. For each
input (I,W ) in the training data we add another
example which is adversarial:

(I ′,W ′) = arg max
(I′,W ′)∈P

`(f(I ′,W ′), O).

This perturbation set P used in training is the same
one that is used for robust test evaluation. When
P is continuous (eg: SPG), we use the FGSM at-
tack to solve this maximization and obtain (I ′,W ′).
When P is discrete (eg: SPL, SPC) we search over
the perturbation space to find the perturbation with
the highest loss. We train the model on a combined
dataset consisting of both the original train-set and
the adversarially augmented data. This is an exten-
sion of Adversarial Training (Madry et al., 2017) to
the instruction following task for (i) both discrete
and continuous perturbations (ii) both regression
and classification tasks.

2.3 Results
In this section we show the benefits of adversarially
augmented robust training. Consider the models
Mstd from Bisk et al. (2016) and Tan and Bansal
(2018) which were shown to perform poorly under
robust evaluation in Sec. 2.1. Here we compare
their performance with their robustly trained vari-
ants Mrob. For all models we perform standard

https://groundedlanguage.github.io
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evaluation and robust evaluations for each perturba-
tion type. This is done for the source (classification
and regression) and target sub-tasks. In Table 1 we
show the results under the different settings, aver-
aged over 5 runs. For every perturbation category
and for all sub-tasks, we see that the robust models
(i) outperform their standard counterparts in terms
of robust evaluation metric and (ii) in some cases
even on standard evaluation. Thus, knowledge-
free robust training framework can produce models
which are less brittle to perturbations with com-
petitive standard performance on the original test
set.

3 Conclusion

In this paper we formulated the performance expec-
tations for an instruction following system. Based
on these expectations, we created several categories
of perturbations and showed that existing models
fail spectacularly on them. We then demonstrated
the benefits of adversarial data augmentation on
each perturbation category.
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A Appendix A: Additional Experiments

In this appendix, we show a few additional experi-
ments to investigate the following claims:

• For the SPP perturbation, an even stricter eval-
uation that requires consistent predictions for
a larger set of permutations over the block
indices, further degrades performance of the
existing models. Table 2 shows this for the
case of two permutations corresponding to
each instance. In all cases, adversarial data
augmentation helps improve performance un-
der the robust evaluation metric.

P Model Source(BD) ↓
Std. Rob. RI(%)

SPP-1 Mstd 3.22 3.56
Mrob 3.17 3.20 10.11

SPP-2 Mstd 3.22 3.69
Mrob 3.18 3.22 12.74

P Model Target(BD) ↓
Std. Rob. RI(%)

SPP-1 Mstd 3.43 3.65
Mrob 3.56 3.58 1.92

SPP-2 Mstd 3.43 3.75
Mrob 3.57 3.59 4.27

Table 2: SPP Perturbation: Standard (Std.) and Ro-
bust (Rob.) performance of the Bisk et al. (2016) model
(Mstd) and its robust counterpart (Mrob) for the differ-
ent perturbations (P): SPP − i denotes the perturba-
tion set contains i additional permutations of the orig-
inal input. ↓ denotes lower is better . RI denotes the
relative improvement in robust evaluation of the robust
model w.r.t. the standard model. BD denotes the block-
distance measure. The bold numbers are the best robust
performance for each P .

• For the SPC perturbation, a gradual degrada-
tion in model performance is observed as the
number of distractor blocks (whose presence
or absence do not affect the semantics of the
instruction) removed, are increased. Further,
addition of distractor blocks also leads to sig-
nificant performance degradation in Table 3.
In all cases, adversarial data augmentation
helps improve performance under the robust
evaluation metric and sometimes, even under
the standard evaluation metric.

P Model Source(Acc) ↑
Std. Rob. RI(%)

R(1) Mstd 48.89 18.5
Mrob 53.61 28.23 52.59

R(2) Mstd 48.89 10.01
Mrob 53.89 16.13 61.14

R(3) Mstd 48.89 6.12
Mrob 53.19 16.27 165.85

A(1) Mstd 48.89 19.33
Mrob 49.31 23.64 22.30

Table 3: SPC Perturbation: Standard (Std.) and Ro-
bust (Rob.) performance of the Tan and Bansal (2018)
model (Mstd) and its robust counterpart (Mrob) for the
different perturbations (P): A(i) and R(i) denotes the
addition and removal of i blocks respectively. ↑ denotes
higher is better.


