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Abstract

The dominant approach in probing neural net-
works for linguistic properties is to train a new
shallow multi-layer perceptron (MLP) on top
of the model’s internal representations. This
approach can detect properties encoded in the
model, but at the cost of adding new param-
eters that may learn the task directly. We
instead propose a subtractive pruning-based
probe, where we find an existing subnetwork
that performs the linguistic task of interest.
Compared to an MLP, the subnetwork probe
achieves both higher accuracy on pre-trained
models and lower accuracy on random mod-
els, so it is both better at finding proper-
ties of interest and worse at learning on its
own. Next, by varying the complexity of
each probe, we show that subnetwork prob-
ing Pareto-dominates MLP probing in that it
achieves higher accuracy given any budget of
probe complexity. Finally, we analyze the re-
sulting subnetworks across various tasks to lo-
cate where each task is encoded, and we find
that lower-level tasks are captured in lower lay-
ers, reproducing similar findings in past work.

1 Introduction

While pre-training has produced large gains for
natural language tasks, it is unclear what a model
learns during pre-training. Research in probing in-
vestigates this question by training a shallow classi-
fier on top of the pre-trained model’s internal repre-
sentations to predict some linguistic property (Adi
et al., 2016; Shi et al., 2016; Tenney et al., 2019,
inter alia). The resulting accuracy is then roughly
indicative of the model encoding that property.

However, it is unclear how much is learned by
the probe versus already captured in the model rep-
resentations. This question has been the subject of
much recent debate (Hewitt and Liang, 2019; Voita
and Titov, 2020; Pimentel et al., 2020b, inter alia).

The code is available at https://github.com/
stevenxcao/subnetwork-probing.

We would like the probe to find only and all prop-
erties captured by a model, leading to a tradeoff
between accuracy and complexity: a linear probe is
insufficient to find the non-linear patterns in neural
models, but a deeper multi-layer perceptron (MLP)
is complex enough to learn the task on its own.

Motivated by this tradeoff and the goal of low-
complexity probes, we consider a different ap-
proach based on pruning. Specifically, we search
for a subnetwork — a version of the model with a
subset of the weights set to zero — that performs
the task of interest. As our search procedure, we
build upon past work in pruning and perform gradi-
ent descent on a continuous relaxation of the search
problem (Louizos et al., 2017; Mallya et al., 2018;
Sanh et al., 2020). The resulting probe has many
fewer free parameters than MLP probes.

Our experiments evaluate the accuracy-
complexity tradeoff compared to MLP probes on
an array of linguistic tasks. First, we find that
the neuron subnetwork probe has both higher
accuracy on pre-trained models and lower accuracy
on random models, so it is both better at finding
properties of interest and less able to learn the
tasks on its own. Next, we measure complexity
as the bits needed to transmit the probe parame-
ters (Pimentel et al., 2020a; Voita and Titov, 2020).
Varying the complexity of each probe, we find
that subnetwork probing Pareto-dominates MLP
probing in that it achieves higher accuracy given
any desired complexity. Finally, we analyze the
resulting subnetworks across various tasks and find
that lower-level tasks are captured in lower layers,
reproducing similar findings in past work (Tenney
et al., 2019). These results suggest that subnetwork
probing is an effective new direction for improving
our understanding of pre-training.

2 Related Work

Probing. Probing investigates whether a model
captures some hypothesized property and typically

https://github.com/stevenxcao/subnetwork-probing
https://github.com/stevenxcao/subnetwork-probing
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involves learning a shallow classifier on top of the
model’s frozen internal representations (Adi et al.,
2016; Shi et al., 2016; Conneau et al., 2018). Re-
cent work has primarily applied this technique to
pre-trained models.1 Clark et al. (2019), Hewitt and
Manning (2019), and Manning et al. (2020) found
that BERT captures various properties of syntax.
Tenney et al. (2019) probed the layers of BERT for
an array of tasks, and they found that their local-
ization mirrored the classical NLP pipeline (part-
of-speech, parsing, named entity recognition, se-
mantic roles, coreference) in that lower-level tasks
were captured in the lower layers.

However, these results are difficult to interpret
due to the use of a learned classifier. One line of
work suggests comparing the probe accuracy to
random baselines, e.g. random models (Zhang and
Bowman, 2018) or random control tasks (Hewitt
and Liang, 2019). Other works take an information-
theoretic view: Voita and Titov (2020) measure the
complexity of the probe in terms of the bits needed
to transmit its parameters, while Pimentel et al.
(2020b) argue that probing should measure mu-
tual information between the representation and the
property. Pimentel et al. (2020a) propose a Pareto
approach where they plot accuracy versus probe
complexity, unifying several of these goals. We
use these proposed metrics to compare our probing
method to standard probing approaches.

Subnetworks. While pruning is widely used for
model compression, some works have explored
pruning as a technique for learning as well. Mallya
et al. (2018) found that a model trained on Im-
ageNet could be used for new tasks by learning
a binary mask over the weights. More recently,
Radiya-Dixit and Wang (2020) and Zhao et al.
(2020) showed the analogous result in NLP that
weight pruning can be used as an alternative to fine-
tuning for pre-trained models. Our paper seeks
to use pruning to reveal what the model already
captures, rather than learn new tasks.

3 Subnetwork Probing

Given a task and a pre-trained encoder model with a
classification head, our goal is to find a subnetwork
with high accuracy on that task, where a subnet-
work is the model with a subset of the encoder

1While probing is also used in other domains (e.g. neural
decoding), we focus on understanding neural models. There-
fore, one source of strength for our probe is that we exploit the
entire model, rather than only operating on representations.

weights masked, i.e. set to zero. We search for this
subnetwork via supervised gradient descent on the
head and a continuous relaxation of the mask. We
also mask at several levels of granularity, including
pruning weights, neurons, or layers.

To learn the masks, we follow Louizos et al.
(2017). Letting φ ∈ Rd denote the model weights,
we associate the ith weight φi with a real-valued
parameter θi, which parameterizes a random vari-
able Zi ∈ [0, 1] representing the mask. Zi follows
the hard concrete distribution HardConcrete(β, θi)
with temperature β and location θi,

Ui ∼ Unif[0, 1]

Si = σ

(
1

β

(
log

Ui
1− Ui

+ θi

))
Zi = min (1,max (0, Si(ζ − γ) + γ)) ,

where σ denotes the sigmoid and γ = −0.1,
ζ = 1.1 are constants. This random variable can
be thought of as a soft version of the Bernoulli. Si
follows the concrete (or Gumbel-Softmax) distribu-
tion with temperature β (Maddison et al., 2016;
Jang et al., 2016). To put non-zero mass on 0
and 1, the distribution is stretched to the interval
(γ = −0.1, ζ = 1.1) and clamped back to [0, 1].

We will denote the mask as Zi = z(Ui, θi) and
the masked weights as φ ∗ Z. We can then opti-
mize the mask parameters θ via gradient descent.
Specifically, let f(x;φ) denote the model. Then,
given a data point (x, y) and a loss function L, we
can minimize the expectation of the loss, or

L(x, y, θ) = EUi∼Unif[0,1]L(f(x;φ ∗ z(U, θ)), y).

We estimate the expectation via sampling: we sam-
ple a single U and take the gradient ∇θL(f(x;φ ∗
z(U, θ)). To encourage sparsity, we penalize the
mask based on the probability it is non-zero, or

R(θ) = E‖θ‖0 =
1

d

d∑
i=1

σ

(
θi − β log

−γ
ζ

)
.

Letting λ denote regularization strength, our objec-
tive becomes 1

|D|
∑

(x,y)∈D L(x, y, θ) + λR(θ).2

4 Probe Evaluation

To evaluate the accuracy-complexity tradeoff of a
probe, we adapt methodology from recent work.

2Departing from past work, we schedule λ linearly to
improve search: it stays fixed at 0 for the first 25% of training,
linearly increases to λmax for the next 50%, and then stays
fixed. We set λmax = 1 in our evaluation experiments.
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First, we consider the non-parametric test of prob-
ing a random model (Zhang and Bowman, 2018).
We check probe accuracy on the pre-trained model,
the model with the encoder randomly reset (reset
encoder), and the model with the encoder and em-
beddings reset (reset all). An ideal probe should
achieve high accuracy on the pre-trained model and
low accuracy on the reset models.3

Next, we consider a parametric test based on
probe complexity. We first vary the complexity
of each probe, where for subnetwork probing we
associate multiple encoder weights with a single
mask,4 and for the MLP probe we restrict the rank
of the hidden layer. We then plot the resulting
accuracy-complexity curve (Pimentel et al., 2020a).

To plot this curve, we need a measure of com-
plexity that can compare probes of different types.
Therefore, we measure complexity as the num-
ber of bits needed to transmit the probe parame-
ters (Voita and Titov, 2020), where for simplicity
we use a uniform encoding. In the subnetwork case,
this encoding corresponds to using a single bit for
each mask parameter. In the case of an MLP probe,
each parameter is a real number, so the number of
bits per parameter depends on its range and preci-
sion. For example, if each parameter lies in [a, b]
and requires ε precision, then we need log( b−aε )
bits per parameter. To avoid having the choice of
precision impact results, we plot lower and upper
bounds of 1 and 32 bits per parameter.

5 Experimental Setup

We probe bert-base-uncased (Devlin et al.,
2019; Wolf et al., 2020) for the following tasks:

(1) Part-of-speech Tagging: We use the part-
of-speech tags in the universal dependencies
dataset (Zeman et al., 2017). As our classifica-
tion head, we use dropout with probability p = 0.1,
followed by a linear layer and softmax projecting
from the BERT dimension to the number of tags.

3The reset encoder model contains some non-contextual
information from its word embeddings, but no modeling of
context; therefore, we would expect it to have better probe
accuracy on tasks based mainly on word type (e.g. part-of-
speech tagging).

4For subnetworks, the pre-trained model has 72 ma-
trices of size 768 × 768; see https://github.com/
huggingface/transformers/blob/v3.4.0/
src/transformers/modeling_bert.py. For each
matrix, let nr and nc denote the number of rows and columns
per mask. Then, we set (nr, nc) to (768, 768), (768, 192),
(768, 24), (768, 6), (768, 1), (192, 1), (24, 1), (6, 1), and
(1, 1). (768, 768) corresponds to masking entire matrices,
(768, 1) to masking neurons, and (1, 1) to masking weights.

Pre-trained ↑ Reset encoder ↓ Reset all ↓

Part-of-speech Tagging

Subnetworks 93.39 87.53 71.53
MLP-1 90.25 86.53 69.16

Fine-tuning 95.69 86.47 84.42

Dependency Parsing

Subnetworks 86.86 54.31 39.84
MLP-1 76.65 54.09 42.81

Fine-tuning 89.93 79.10 74.48

Named Entity Recognition

Subnetworks 87.94 68.09 30.83
MLP-1 84.80 69.35 53.25

Fine-tuning 93.68 81.80 70.08

Table 1: Probe accuracy for bert-base-uncased
(Pre-trained), the model with the encoder reset but the
embeddings preserved (Reset encoder), and the model
completely reset (Reset all). The ↑ and ↓ denote
whether higher or lower is better (substantially better
numbers are bolded). For reference, we also include
fine-tuning (training all model parameters rather than
probing). Compared to MLP-1, neuron subnetwork
probing achieves higher accuracy for the pre-trained
model and lower accuracy for the random models.

(2) Dependency Parsing: We use the universal
dependencies dataset (Zeman et al., 2017) and the
biaffine head for classification (Dozat and Man-
ning, 2016). We report macro-averaged labeled
attachment score.

(3) Named Entity Recognition (NER): We use
the data from the CoNLL 2003 shared task (Tjong
Kim Sang and De Meulder, 2003) and the same
classification head as for part-of-speech tagging.
We report F1 using the CoNLL 2003 script.

Our primary probing baseline is the MLP probe
with one hidden layer (MLP-1):

MLP-1(x) = ReLU(LayerNorm(UV Tx)),

with U, V ∈ Rd×r. The choice of r restricts
the rank of the hidden layer and thus its com-
plexity.5 Then, if g(x;φ) is our pre-trained en-
coder and cls is the classification head, our two
probes are fSubnetwork(x) = cls(g(x;φ ∗ Z)) and
fMLP-1(x) = cls(MLP-1(g(x;φ))).

While we vary the complexity of each probe to
produce the accuracy-complexity plot, we default
to neuron subnetwork probing and full rank MLP-1
probing in all other experiments.

5We set the rank to 1, 2, 5, 10, 25, 50, 125, 250, and 768.

https://github.com/huggingface/transformers/blob/v3.4.0/src/transformers/modeling_bert.py
https://github.com/huggingface/transformers/blob/v3.4.0/src/transformers/modeling_bert.py
https://github.com/huggingface/transformers/blob/v3.4.0/src/transformers/modeling_bert.py
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Figure 1: Subnetwork probe and MLP-1 probe accuracy on the pre-trained model plotted versus probe complexity,
measured in ln(bits). For the MLP-1 probe, we plot lower and upper bounds on complexity of 1 and 32 bits per
parameter. The subnetwork probe Pareto-dominates the MLP-1 probe in that it achieves higher accuracy for any
desired complexity, even if we assume the optimistic lower bound on MLP-1 complexity of 1 bit per parameter.

Figure 2: The percentage of non-zero weights in each layer for subnetworks of the pre-trained model and the
reset encoder model. While the reset encoder model’s subnetworks are distributed uniformly across the layers, the
pre-trained model’s subnetworks are localized, with the order part-of-speech→ dependencies→ NER.

6 Results

Accuracy-Complexity Tradeoff. Table 1 shows
the results from the non-parametric experiments.
When probing the pre-trained model, the subnet-
work probe has much higher accuracy than the
MLP-1 probe across all tasks. Furthermore, when
probing the random models, the subnetwork probe
has much lower accuracy for dependency parsing
and NER, suggesting that the probe is less able to
learn the task on its own. Overall, these numbers
suggest that the subnetwork probe is a more faith-
ful probe in that it finds properties when they are
present, and does not find them in a random model.

Figure 1 plots the results from the parametric ex-
periments, where we vary the complexity of each
probe, apply it to the pre-trained model, and plot
the resulting accuracy-complexity curve. We find
that the subnetwork probe Pareto-dominates the
MLP-1 probe in that it achieves higher accuracy
for any complexity, even if we assume an overly op-
timistic MLP-1 lower bound of 1 bit per parameter.
In particular, for part-of-speech and dependency
parsing, the subnetwork probe achieves high ac-
curacy even when given only 72 bits, while the
MLP-1 probe falls off heavily at ∼20K bits.

Subnetwork Analysis. An auxiliary benefit of
subnetwork probing is that we can examine the
subnetworks produced by the procedure. One pos-
sibility is to look at the locations of the subnet-
works, and one way to examine location is to count
the number of unmasked weights in each layer. Fig-
ure 2 shows locations of the remaining parameters
in the subnetworks extracted from the pre-trained
model and the random encoder model. To prune
as many parameters as possible, we set λmax to
be the largest out of (1, 5, 25, 125) such that ac-
curacy is within 10% of fine-tuning accuracy (see
the Appendix for more details). We then examine
the sparsity levels of the attention heads for each
layer. While reset encoder model’s subnetworks
are uniformly distributed across the layers, the pre-
trained model’s subnetworks are localized and fol-
low the order part-of-speech→ dependencies→
NER, reproducing the order found in Tenney et al.
(2019). While Tenney et al. (2019) derived layer
importance by training classifiers at each layer, we
find location directly via pruning. This experiment
strengthens their result and represents one exam-
ple where subnetwork probing reveals additional
insights into the model beyond accuracy.
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7 Conclusion

Together, these results show that subnetwork prob-
ing is more faithful to the model and offers richer
analysis than existing probing approaches. While
this work explores accuracy and location-based
analysis, there are other possible directions, e.g.,
applying neuron explainability techniques. There-
fore, we see subnetwork probing as a fruitful new
direction for understanding pre-training.

8 Ethical Considerations

While pre-trained models have improved perfor-
mance for many NLP tasks, they exhibit biases
present in the pre-training corpora (Manzini et al.,
2019; Tan and Celis, 2019; Kurita et al., 2019, in-
ter alia). As a result, deploying pre-trained models
runs the risk of reinforcing social biases. Probing
gives us a tool to better understand and hopefully
mitigate these biases. As one example of such a
study, Vig et al. (2020) analyze how neurons and
attention heads contribute to gender bias in pre-
trained transformers. Therefore, while we analyze
linguistic tasks in our paper, our method could also
provide insights into model bias, e.g. by analyzing
subnetworks for bias detection tasks like CrowS-
Pairs (Nangia et al., 2020) or StereoSet (Nadeem
et al., 2020).
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A Appendix

A.1 Hyperparameters
The mask parameters are optimized using Adam
with β = (0.9, 0.999), ε = 1× 10−8, and learning
rate 0.2 with linear warmup for the first 10% of
the data. The classification head parameters are
also optimized using Adam with the same hyper-
parameters and warmup, except with learning rate
5×10−5. The MLP-1 and fine-tuning baselines are
also optimized using Adam with the same hyperpa-
rameters, warmup, and learning rate 5× 10−5. We
train for 30 epochs for all tasks.

A.2 Varying Regularization Strength
Table 2 shows probing accuracies for λmax ∈
(1, 5, 25, 125). Our method is consistently more
selective than MLP-1 across the various values of
λmax, except for λmax = 125, which seems to re-
quire too much sparsity.

A.3 Reproducibility Checklist
Experiments were run in Google Colab using a
single 12GB NVIDIA Tesla K80 GPU. For each
task, one run of fine-tuning took about half an hour.
We used the transformers implementation of the
bert-base-uncasedmodel (Wolf et al., 2020;
Devlin et al., 2019), which has 12 layers, 768 hid-
den dimension, 12 heads, and 110M parameters.
As data, we used the dev (2002 examples) and train
(12541 examples) splits of the English universal
dependencies dataset (Zeman et al., 2017), and the
test (3235 examples) and train (13862 examples)
splits of the CoNLL 2003 NER shared task (Tjong
Kim Sang and De Meulder, 2003).

Reset all Reset encoder Pre-trained

Part-of-speech Tagging

Subnetworks
λmax = 1 71.53 87.53 93.39
λmax = 5 70.45 87.20 92.41
λmax = 25 68.65 86.23 90.66
λmax = 125 66.39 86.10 84.86

MLP-1 69.16 86.53 90.25
Fine-tuning 84.42 86.47 95.69

Dependency Parsing

Subnetworks
λmax = 1 39.84 54.31 86.86
λmax = 5 43.36 54.93 85.99
λmax = 25 41.43 54.41 83.12
λmax = 125 43.07 53.70 74.49

MLP-1 42.81 54.09 76.65
Fine-tuning 74.48 79.10 89.93

Named Entity Recognition (NER)

Subnetworks
λmax = 1 30.83 68.09 87.94
λmax = 5 22.92 65.18 84.48
λmax = 25 3.41 57.82 72.26
λmax = 125 2.04 57.56 50.67

MLP-1 53.25 69.35 84.80
Fine-tuning 70.08 81.80 93.68

Table 2: Subnetwork probing accuracies while varying
regularization strength.
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