
Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 946–959

June 6–11, 2021. ©2021 Association for Computational Linguistics

946

Does BERT Pretrained on Clinical Notes Reveal Sensitive Data?
Eric Lehman? Ψ Υ 1, Sarthak Jain? Υ 2, Karl PichottaΦ, Yoav GoldbergΩ, and Byron C. WallaceΥ

ΨMIT CSAIL
ΥNortheastern University

ΦMemorial Sloan Kettering Cancer Center
ΩBar Ilan University / Ramat Gan, Israel; Allen Institute for Artificial Intelligence

1lehmer16@mit.edu
2jain.sar@northeastern.edu

Abstract

Large Transformers pretrained over clinical
notes from Electronic Health Records (EHR)
have afforded substantial gains in performance
on predictive clinical tasks. The cost of train-
ing such models (and the necessity of data
access to do so) coupled with their utility
motivates parameter sharing, i.e., the release
of pretrained models such as ClinicalBERT
(Alsentzer et al., 2019). While most efforts
have used deidentified EHR, many researchers
have access to large sets of sensitive, non-
deidentified EHR with which they might train
a BERT model (or similar). Would it be safe to
release the weights of such a model if they did?
In this work, we design a battery of approaches
intended to recover Personal Health Informa-
tion (PHI) from a trained BERT. Specifically,
we attempt to recover patient names and con-
ditions with which they are associated. We
find that simple probing methods are not able
to meaningfully extract sensitive information
from BERT trained over the MIMIC-III cor-
pus of EHR. However, more sophisticated “at-
tacks” may succeed in doing so: To facili-
tate such research, we make our experimental
setup and baseline probing models available.1

1 Introduction

Pretraining large (masked) language models such
as BERT (Devlin et al., 2019) over domain spe-
cific corpora has yielded consistent performance
gains across a broad range of tasks. In biomedical
NLP, this has often meant pretraining models over
collections of Electronic Health Records (EHRs)
(Alsentzer et al., 2019). For example, Huang et al.
(2019) showed that pretraining models over EHR
data improves performance on clinical predictive
tasks. Given their empirical utility, and the fact
that pretraining large networks requires a nontriv-
ial amount of compute, there is a natural desire to

? equal contribution.
1https://github.com/elehman16/

exposing_patient_data_release.

share the model parameters for use by other re-
searchers in the community.

However, in the context of pretraining models
over patient EHR, this poses unique potential pri-
vacy concerns: Might the parameters of trained
models leak sensitive patient information? In the
United States, the Health Insurance Portability and
Accountability Act (HIPAA) prohibits the sharing
of such text if it contains any reference to Pro-
tected Health Information (PHI). If one removes
all reference to PHI, the data is considered “dei-
dentified”, and is therefore legal to share.

While researchers may not directly share non-
deidentified text,2 it is unclear to what extent mod-
els pretrained on non-deidentified data pose pri-
vacy risks. Further, recent work has shown that
general purpose large language models are prone
to memorizing sensitive information which can
subsequently be extracted (Carlini et al., 2020).
In the context of biomedical NLP, such concerns
have been cited as reasons for withholding direct
publication of trained model weights (McKinney
et al., 2020). These uncertainties will continue
to hamper dissemination of trained models among
the broader biomedical NLP research community,
motivating a need to investigate the susceptibility
of such models to adversarial attacks.

This work is a first step towards exploring the
potential privacy implications of sharing model
weights induced over non-deidentified EHR text.
We propose and run a battery of experiments in-
tended to evaluate the degree to which Transform-
ers (here, BERT) pretrained via standard masked
language modeling objectives over notes in EHR
might reveal sensitive information (Figure 1).3

2Even for deidentified data such as MIMIC (Johnson
et al., 2016), one typically must complete a set of trainings
before accessing the data, whereas model parameters are typ-
ically shared publicly, without any such requirement.

3We consider BERT rather than an auto-regressive
language model such as GPT-* given the comparatively
widespread adoption of the former for biomedical NLP.

https://github.com/elehman16/exposing_patient_data_release
https://github.com/elehman16/exposing_patient_data_release
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Figure 1: Overview of this work. We explore initial strategies intended to extract sensitive information from BERT
model weights estimated over the notes in Electronic Health Records (EHR) data.

We find that simple methods are able to recover
associations between patients and conditions at
rates better than chance, but not with performance
beyond that achievable using baseline condition
frequencies. This holds even when we enrich clin-
ical notes by explicitly inserting patient names into
every sentence. Our results using a recently pro-
posed, more sophisticated attack based on gener-
ating text (Carlini et al., 2020) are mixed, and con-
stitute a promising direction for future work.

2 Related Work

Unintended memorization by machine learning
models has significant privacy implications, es-
pecially where models are trained over non-
deidentified data. Carlini et al. (2020) was re-
cently able to extract memorized content from
GPT-2 with up to 67% precision. This raises ques-
tions about the risks of sharing parameters of mod-
els trained over non-deidentified data. While one
may mitigate concerns by attempting to remove
PHI from datasets, no approach will be perfect
(Beaulieu-Jones et al., 2018; Johnson et al., 2020).
Further, deidentifying EHR data is a laborious step
that one may be inclined to skip for models in-
tended for internal use. An important practical
question arises in such situations: Is it safe to share
the trained model parameters?

While prior work has investigated issues at
the intersection of neural networks and privacy
(Song and Shmatikov, 2018; Salem et al., 2019;
Fredrikson et al., 2015), we are unaware of work
that specifically focuses on attacking the modern

Transformer encoders widely used in NLP (e.g.,
BERT) trained on EHR notes, an increasingly pop-
ular approach in the biomedical NLP community.
In a related effort, Abdalla et al. (2020) explored
the risks of using imperfect deidentification algo-
rithms together with static word embeddings, find-
ing that such embeddings do reveal sensitive in-
formation to at least some degree. However, it
is not clear to what extent this finding holds for
the contextualized embeddings induced by large
Transformer architectures.

Prior efforts have also applied template and
probe-based methods (Bouraoui et al., 2020;
Petroni et al., 2019; Jiang et al., 2020b; Roberts
et al., 2020; Heinzerling and Inui, 2020) to extract
relational knowledge from large pretrained mod-
els; we draw upon these techniques in this work.
However, these works focus on general domain
knowledge extraction, rather than clinical tasks
which pose unique privacy concerns.

3 Dataset

We use the Medical Information Mart for Inten-
sive Care III (MIMIC-III) English dataset to con-
duct our experiments (Johnson et al., 2016). We
follow prior work (Huang et al., 2019) and re-
move all notes except for those categorized as
‘Physician’, ‘Nursing’, ‘Nursing/Others’, or ‘Dis-
charge Summary’ note types. The MIMIC-III
database was deidentified using a combination of
regular expressions and human oversight, success-
fully removing almost all forms of PHI (Nea-
matullah et al., 2008). All patient first and



948

last names were replaced with [Known First
Name ...] and [Known Last Name ...]
pseudo-tokens respectively.

We are interested in quantifying the risks of re-
leasing contextualized embedding weights trained
on non-deidentified text (to which one working at
hospitals would readily have access). To simu-
late the existence of PHI in the MIMIC-III set,
we randomly select new names for all patients
(Stubbs et al., 2015).4 Specifically, we replaced
[Known First Name] and [Known Last
Name] with names sampled from US Census
data, randomly sampling first names (that appear
at least 10 times in census data) and last names
(that appear at least 400 times).5

This procedure resulted in 11.5% and 100%
of patients being assigned unique first and last
names, respectively. While there are many forms
of PHI, we are primarily interested in recovering
name and condition pairs, as the ability to infer
with some certainty the specific conditions that a
patient has is a key privacy concern. This is also
consistent with prior work on static word embed-
dings learned from EHR (Abdalla et al., 2020).

Notes in MIMIC-III do not consistently explic-
itly reference patient names. First or last names
are mentioned in at least one note for only 27,906
(out of 46,520) unique patients.6 Given that we
cannot reasonably hope to recover information re-
garding tokens that the model has not observed,
in this work we only consider records correspond-
ing to these 27,906 patients. Despite comprising
61.3% of the total number of patients, these 27,906
patients are associated with the majority (82.6%)
of all notes (1,247,291 in total). Further, only
10.2% of these notes contain at least one mention
of a patient’s first or last name.

Of the 1,247,291 notes considered, 17,044 in-
clude first name mentions, and 220,782 feature last
name mentions. Interestingly, for records corre-
sponding to the 27,906 patients, there are an ad-
ditional 18,345 false positive last name mentions
and 29,739 false positive first name mentions; in

4We could have used non-deidentified EHRs from a hos-
pital, but this would preclude releasing the data, hindering
reproducibility.

5We sampled first and last names from https:
//www.ssa.gov/ and https://www.census.gov/
topics/population/genealogy/data/2010_
surnames.html, respectively.

6In some sense this bodes well for privacy concerns, given
that language models are unlikely to memorize names that
they are not exposed to; however, it is unclear how particular
this observation is to the MIMIC corpus.

these cases the name is also an English word (e.g.,
‘young’). As the frequency with which patient
names are mentioned explicitly in notes may vary
by hospital conventions, we also present semi-
synthetic results in which we insert names into
notes such that they occur more frequently.

4 Enumerating Conditions

As a first attempt to evaluate the risk of BERT
leaking sensitive information, we define the fol-
lowing task: Given a patient name that appears
in the set of EHR used for pretraining, query the
model for the conditions associated with this pa-
tient. Operationally this requires defining a set
of conditions against which we can test each pa-
tient. We consider two general ways of enumerat-
ing conditions: (1) Using International Classifica-
tion of Diseases, revision 9 (ICD-9) codes attached
to records, and (2) Extracting condition strings
from the free-text within records.7 Specifically,
we experiment with the following variants.

[ICD-9 Codes] We collect all ICD-9 codes associ-
ated with individual patients. ICD-9 is a standard-
ized global diagnostic ontology maintained by the
World Health Organization. Each code is also as-
sociated with a description of the condition that
it represents. In our set of 27,906 patients, we
observe 6,841 unique ICD-9 codes. We addition-
ally use the short ICD-9 code descriptions, which
comprise an average of 7.03 word piece tokens per
description (under the BERT-Base tokenizer). On
average, patient records are associated with 13.6
unique ICD-9 codes.

[MedCAT] ICD-9 codes may not accurately re-
flect patient status, and may not be the ideal means
of representing conditions. Therefore, we also
created lists of conditions to associate with pa-
tients by running the MedCAT concept annotation
tool (Kraljevic et al., 2020) over all patient notes.
We only keep those extracted entities that corre-
spond to a Disease / Symptom, which we use to
normalize condition mentions and map them to
their UMLS (Bodenreider, 2004) CUI and descrip-
tion. This yields 2,672 unique conditions from the
27,906 patient set. On average, patients are asso-
ciated with an average of 29.5 unique conditions,
and conditions comprise 5.37 word piece tokens.

Once we have defined a set of conditions to use
7In this work, we favor the adversary by considering the

set of conditions associated with reidentified patients only.

https://www.ssa.gov/
https://www.ssa.gov/
https://www.census.gov/topics/population/genealogy/data/2010_surnames.html
https://www.census.gov/topics/population/genealogy/data/2010_surnames.html
https://www.census.gov/topics/population/genealogy/data/2010_surnames.html
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for an experiment, we assign binary labels to pa-
tients indicating whether or not they are associated
with each condition. We then aim to recover the
conditions associated with individual patients.

5 Model and Pretraining Setup

5.1 Contextualized Representations (BERT)
We re-train BERT (Devlin et al., 2019) over the
EHR data described in Section 3 following the
process outlined by Huang et al. (2019),8 yield-
ing our own version of ClinicalBERT. However,
we use full-word (rather than wordpiece) masking,
due to the performance benefits this provides.9 We
adopt hyper-parameters from Huang et al. (2019),
most importantly using three duplicates of static
masking. We list all model variants considered
in Table 1 (including Base and Large BERT mod-
els). We verify that we can reproduce the results
of Huang et al. (2019) for the 30-day readmission
from the discharge summary prediction task.

We also consider two easier semi-synthetic
variants, i.e., where we believe it should be more
likely that an adversary could recover sensitive
information. For the Name Insertion Model,
we insert (prepend) patient names to every sen-
tence within corresponding notes (ignoring gram-
mar), and train a model over this data. Similarly,
for the Template Only Model, for each patient
and every MedCAT condition they have, we cre-
ate a sentence of the form: “[CLS] Mr./Mrs.
[First Name] [Last Name] is a yo pa-
tient with [Condition] [SEP]”. This over-
representation of names should make it easier to
recover information about patients.

5.2 Static Word Embeddings
We also explore whether PHI from the MIMIC
database can be retrieved using static word embed-
dings derived via CBoW and skip-gram word2vec
models (Mikolov et al., 2013). Here, we fol-
low prior work (Abdalla et al. 2020; this was
conducted on a private set of EHR, rather than
MIMIC). We induce embeddings for (multi-word)
patient names and conditions by averaging con-
stituent word representations. We then calculate
cosine similarities between these patient and con-
dition embeddings (See Section 6.3).

8https://github.com/kexinhuang12345/
clinicalBERT/blob/master/notebook/
pretrain.ipynb

9https://github.com/google-research/
bert

6 Methods and Results

We first test the degree to which we are able to re-
trieve conditions associated with a patient, given
their name. (We later also consider a simpler task:
Querying the model as to whether or not it ob-
served a particular patient name during training.)
All results presented are derived over the set of
27,906 patients described in Section 4.

The following methods output scalars indicat-
ing the likelihood of a condition, given a patient
name and learned BERT weights. We compute
metrics with these scores for each patient, measur-
ing our ability to recover patient/condition asso-
ciations. We aggregate metrics by averaging over
all patients. We report AUCs and accuracy at 10
(A@10), i.e., the fraction of the top-10 scoring
conditions that the patient indeed has (according
to the reference set of conditions for said patient).

6.1 Fill-in-the-Blank
We attempt to reveal information memorized dur-
ing pretraining using masked template strings.
The idea is to run such templates through BERT,
and observe the rankings induced over conditions
(or names).10 This requires specifying templates.

Generic Templates We query the model to fill
in the masked tokens in the following sequence:
“[CLS] Mr./Mrs. [First Name] [Last
Name] is a yo patient with [MASK]+ [SEP]”.
Here, Mr. and Mrs. are selected according to the
gender of the patient as specified in the MIMIC
corpus.11 The [MASK]+ above is actually a se-
quence of [MASK] tokens, where the length of
this sequence depends on the length of the tok-
enized condition for which we are probing.

Given a patient name and condition, we com-
pute the perplexity (PPL) for condition tokens
as candidates to fill the template mask. For ex-
ample, if we wanted to know whether a patient
(“John Doe”) was associated with a particular con-
dition (“MRSA”), we would query the model with
the following (populated) template: “[CLS] Mr.
John Doe is a yo patient with [MASK] [SEP]”
and measure the perplexity of “MRSA” assum-
ing the [MASK] input token position. For multi-
word conditions, we first considered taking an av-
erage PPL over constituent words, but this led to

10This is similar to methods used in work on evaluating
language models as knowledge bases (Petroni et al., 2019).

11We do not include age as Huang et al. (2019) does not
include digits in pretraining.

https://github.com/kexinhuang12345/clinicalBERT/blob/master/notebook/pretrain.ipynb
https://github.com/kexinhuang12345/clinicalBERT/blob/master/notebook/pretrain.ipynb
https://github.com/kexinhuang12345/clinicalBERT/blob/master/notebook/pretrain.ipynb
 https://github.com/google-research/bert
 https://github.com/google-research/bert
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Model Name Starts from Train iterations (seqlen 128) Train iterations (seqlen 512)
Regular Base BERT Base 300K 100K
Regular Large BERT Large 300K 100K
Regular Base++ BERT Base 1M -
Regular Large++ BERT Large 1M -
Regular Pubmed-base PubmedBERT (Gu et al., 2020) 1M -
Name Insertion BERT base 300K 100K
Template Only BERT base 300K 100K

Table 1: BERT model and training configurations considered in this work. Train iterations are over notes from the
MIMIC-III EHR dataset.

Model AUC A@10
ICD9
Frequency Baseline 0.926 0.134
Regular Base 0.614 0.056
Regular Large 0.654 0.063
Name Insertion 0.616 0.057
Template Only 0.614 0.050
MedCAT
Frequency Baseline 0.933 0.241
Regular Base 0.529 0.109
Regular Large 0.667 0.108
Name Insertion 0.541 0.112
Template Only 0.784 0.160

Table 2: Fill-in-the-Blank AUC and accuracy at 10
(A@10). The Frequency Baseline ranks conditions
by their empirical frequencies. Results for Base++,
Large++, Pubmed-Base models are provided in Ap-
pendix Table 10.

counterintuitive results: longer conditions tend to
yield lower PPL. In general, multi-word targets are
difficult to assess as PPL is not well-defined for
masked language models like BERT (Jiang et al.,
2020a; Salazar et al., 2020). Therefore, we bin
conditions according to their wordpiece length and
compute metrics for bins individually. This sim-
plifies our analysis, but makes it difficult for an
attacker to aggregate rankings of conditions with
different lengths.

Results We use the generic template method to
score ICD-9 or MedCAT condition descriptions
for each patient. We report the performance (aver-
aged across length bins) achieved by this method
in Table 2, with respect to AUC and A@10. This
straightforward approach fares better than chance,
but worse than a baseline approach of assigning
scores equal to the empirical frequencies of condi-
tions.12 Perhaps this is unsurprising for MIMIC-

12We note that these frequencies are derived from the
MIMIC data, which affords an inherent advantage, although
it seems likely that condition frequencies derived from other
data sources would be similar. We also note that some very
common conditions are associated with many patients — see
Appendix Figures A1 and A2 — which may effectively ‘in-
flate’ the AUCs achieved by the frequency baseline.

III, as only 0.3% of sentences explicitly mention a
patient’s last name.

If patient names appeared more often in the
notes, would this approach fare better? To test
this, we present results for the Name Insertion
and Template Only variants in Table 2. Recall
that for these we have artificially increased the
number of patient names that occur in the training
data; this should make it easier to link conditions
to names. The Template Only variant yields bet-
ter performance for MedCAT labels, but still fares
worse than ranking conditions according to em-
pirical frequencies. However, it may be that the
frequency baseline performs so well simply due
to many patients sharing a few dominating condi-
tions. To account for this, we additionally calcu-
late performance using the Template Only model
on MedCAT conditions that fewer than 50 patients
have. We find that the AUC is 0.570, still far lower
than the frequency baseline of 0.794 on this re-
stricted condition set.

Other templates, e.g., the most common phrases
in the train set that start with a patient name and
end with a condition, performed similarly.

Masking the Condition (Only) Given the ob-
served metrics achieved by the ‘frequency’ base-
line, we wanted to establish whether models are
effectively learning to (poorly) approximate con-
dition frequencies, which might in turn allow for
the better than chance AUCs in Table 2. To
evaluate the degree to which the model encodes
condition frequencies we design a simple tem-
plate that includes only a masked condition be-
tween [CLS] and [SEP] token (e.g., [CLS]
[MASK]. . .[MASK] [SEP]). We then calculate
the PPL of individual conditions filling these
slots. In Table 3, we report AUCs, A@10 scores,
and Spearman correlations with frequency scores
(again, averaged across length bins). The latter
are low, suggesting that the model rankings differ
from overall frequencies.
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Model AUC A@10 Spearman
ICD-9
Regular Base 0.496 0.042 0.114
Regular Large 0.560 0.049 0.109
Name Insertion 0.483 0.042 0.100
Template Only 0.615 0.056 0.240
MedCAT
Regular Base 0.472 0.110 0.218
Regular Large 0.530 0.113 0.173
Name Insertion 0.473 0.102 0.156
Template Only 0.595 0.110 0.248

Table 3: Average AUC, A@10 and Spearman corre-
lations over conditions binned by description length.
Correlations are w/r/t empirical condition frequencies.

6.2 Probing

The above token prediction infill setup attacks the
model only via fixed templates. But the induced
representations might implicitly encode sensitive
information that happens to not be readily exposed
by the template. We therefore also investigate a
probing setup (Alain and Bengio, 2017; Bouraoui
et al., 2020), in which a representation induced by
a pretrained model is provided to a second prob-
ing model which is trained to predict attributes of
interest. Unlike masked token prediction, probing
requires that the adversary have access to a subset
of training data to associate targets with represen-
tations.

We train an MLP binary classifier on top of the
encoded CLS token from the last layer of BERT.
The probe is trained to differentiate positive in-
stances (conditions the patient has) from negative
examples (conditions the patient does not have) on
a randomly sampled subset of 5000 patients (we
downsample the negative class for balancing). We
use the following template to encode the patient-
condition pairs: “[CLS] Mr./Mrs. [NAME] is a
patient with [CONDITION] [SEP]”. For more
information on the setup, see Section A.5. Results
are reported in Table 4. For comparison, we also
consider a simpler, “condition only” template of
“[CLS] [CONDITION] [SEP]”, which does
not include the patient name.

We run experiments on the Base, Large, and
Name Insertion models. These models achieve
strong AUCs, nearly matching the frequency base-
line performance in Table 2.13 However, it ap-
pears that removing the patient’s name and sim-
ply encoding the condition to make a binary pre-
diction yields similar (in fact, slightly better) per-

13Though the AUCs for the probing are calculated over a
randomly sampled test subset of the full data used in Table 2.

Name + Condition Condition Only
Model AUC A@10 AUC A@10
ICD-9
Standard Base 0.860 0.131 0.917 0.182
Regular Base 0.917 0.148 0.932 0.195
Regular Large 0.909 0.153 0.922 0.186
Name Insertion 0.871 0.095 0.932 0.204
MedCAT
Standard Base 0.918 0.355 0.954 0.464
Regular Base 0.946 0.431 0.956 0.508
Regular Large 0.942 0.393 0.955 0.475
Name Insertion 0.925 0.365 0.950 0.431

Table 4: Probing results using BERT-encoded CLS to-
kens on the test set. We use 10,000 patients out of
27,906 due to time constraints. Standard Base is the
original BERT base model.

formance. This suggests that the model is mostly
learning to approximate condition frequencies.

The standard probing setup encourages the
model to use the frequency of target conditions to
make predictions. To address this, we also con-
sider a variant in which we probe for only individ-
ual conditions, rather than defining a single model
probing for multiple conditions, as above. This
means we train independent models per condition,
which can then be used to score patients with re-
spect to said conditions. To train such models we
upsample positive examples such that we train on
balanced sets of patients for each condition.14

This approach provides results for each condi-
tion which vary in frequency. To assess the com-
parative performance of probes over conditions
of different prevalence, we group conditions into
mutually exclusive bins reflecting frequency (al-
lowing us to analyze differences in performance,
e.g., on rare conditions). We group conditions by
frequencies, from rarest (associated with 2-5 pa-
tients) to most common (associated with >20 pa-
tients). We randomly sample 50 conditions from
each of these groups, and train an MLP classifier
on top of the encoded CLS token from the last
layer in BERT (this results in 50 different mod-
els per group, i.e., 200 independent models). We
measure, in terms of AUC and A@10, whether the
probe for a condition return comparatively higher
scores for patients that have that condition.

We report results in Table 5. Except for the
rarest conditions (associated with <5 patients),
these models achieve AUCs that are at best mod-
estly better than chance, with all A@10 metrics

14We upsample the minority examples, rather than under-
sampling as before, because the single-condition models are
comparatively quick to train.
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Model (1,5] (5,10] (10,20] (20, 10k]
ICD-9
Regular Base 0.520 0.507 0.500 0.526
Regular Large 0.444 0.505 0.479 0.522
Name Insertion 0.477 0.484 0.491 0.504
MedCAT
Regular Base 0.481 0.534 0.525 0.487
Regular Large 0.439 0.531 0.519 0.509
Name Insertion 0.460 0.577 0.508 0.525

Table 5: Probing results (AUCs) for conditions with
different frequencies. We make predictions for con-
ditions using independent models based on BERT-
encoded CLS tokens. We use a 50/50 train/test split
over patients (results are over the test set). Columns
correspond to conditions of different frequencies, with
respect to the number of patients with whom they are
associated (headers provide ranges). All A@10 ≈ 0.

≈0. In sum, these models do not meaningfully re-
cover links between patients and conditions.

6.3 Differences in Cosine Similarities

Prior work (Abdalla et al., 2020) has demonstrated
that static word vectors can leak information: The
cosine similarities between learned embeddings of
patient names and conditions are on average sig-
nificantly smaller than the similarities between pa-
tient names and conditions they do not have. We
run a similar experiment to investigate whether
contextualized embeddings similarly leak infor-
mation (and also to assess the degree to which this
holds on the MIMIC corpus as a point of com-
parison). We calculate the average cosine similar-
ity between learned embeddings of patient names
and those of positive conditions (conditions that
the patient has) minus negative conditions (those
that they do not have). Conditions and names span
multiple tokens; we perform mean pooling over
these to induce embeddings. Here again we evalu-
ate on the aforementioned set of 27,906 patients.

We report results for BERT and word2vec
(CBoW and SkipGram; Mikolov et al. 2013) in
Table 6.15 Values greater than zero here suggest
leakage, as this implies that patient names end up
closer to conditions that patients have, relative to
those that they do not. Even when trained over
the Name Insertion data (which we manipulated
to frequently mention names), we do not observe
leakage from the contextualized embeddings.

15We provide additional results in the Appendix, includ-
ing results for alternative pooling strategies and results on the
original MIMIC dataset; all yield qualitatively similar results.

Model Mean Std.
ICD-9
Regular Base -0.010 0.019
Regular Large -0.045 0.052
SkipGram Base 0.004 0.050
CBoW Base 0.008 0.035
BERT Name Insertion -0.007 0.017
SkipGram Name Insertion 0.019 0.040
CBoW Name Insertion 0.017 0.043
MedCAT
Regular Base -0.037 0.015
Regular Large -0.055 0.029
SkipGram Base -0.011 0.024
CBoW Base -0.001 0.022
BERT Name Insertion -0.027 0.013
SkipGram Name Insertion 0.013 0.024
CBoW Name Insertion 0.015 0.026

Table 6: Differences in (a) similarities between patient
names and conditions they have, and (b) similarities be-
tween patient names and conditions they do not have.
Static embeddings are 200 dimensional; we train these
for 10 epochs. For BERT models, we use 10k patients
rather than the ∼28k due to compute constraints.

6.4 Can we Recover Patient Names?

Here we try something even more basic: We at-
tempt to determine whether a pretrained model has
seen a particular patient name in training. The
ability to reliably recover individual patient names
(even if not linked to specific conditions) from
BERT models trained over EHR data would be
concerning if such models were to be made public.
We consider a number of approaches to this task.

Probing We encode the patient’s name ([CLS]
[NAME] [SEP]) using BERT and train a Logis-
tic Regression classifier that consumes resultant
CLS representations and predicts whether the cor-
responding patient has been observed in training.

As mentioned above, patient names are explic-
itly mentioned in notes for 27,906 patients; these
constitute our positive examples, and the remain-
ing patients (of the 46,520) are negative examples.
We split the data into equally sized train and test
sets. We report results in Table 7. To contextualize
these results, we also run this experiment on the
standard BERT base model (which is not trained
on this EHR data). We observe that the AUCs are
near chance, and that the performance of the stan-
dard BERT base model is relatively similar to that
of the Regular and Large base models, despite the
fact that the standard BERT base model has not
seen any notes from MIMIC.
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Model AUC
Regular Base 0.508
Large Base 0.501
Standard Base 0.498

Table 7: Predictions (on a test set) of which names have
been seen by the model. We include the standard BERT
(Devlin et al., 2019) model (“Standard Base”), which is
not trained on MIMIC, as a comparator.

Model AUC
First Name Masked
Regular Base 0.510
Regular Large 0.506
Name Insertion 0.562
Template Only 0.625
Last Name Masked
Regular Base 0.503
Regular Large 0.498
Name Insertion 0.517
Template Only 0.733

Table 8: We compute the perplexity of the masked parts
of names for all 46,520 patients and measure whether
the (27,906) reidentified patients receive lower perplex-
ity, compared to remaining patients.

6.5 Does observing part of a name reveal
more information?

Given a first name, can we predict whether we
have seen a corresponding last name? More
specifically, we mask out a patient’s last name
(but not their first) in the template “[CLS] [First

Name] [MASK]+ [SEP]” and record the perplexity
of the target last name. We take as the set of out-
puts all 46,520 patient names in the corpus.

We can also flip this experiment, masking only
first names. This is intuitively quite difficult, as
only 10K / 77M sentences (0.013%) contain both
the patient’s first and last name. This number in-
cludes first and last name mentions that are also
other English words (e.g. “young”). Results are
reported in Table 8. We do observe reasonable
signal in the semi-synthetic Name Insertion and
Template Only variants.

6.6 Text Generation

Recent work by Carlini et al. (2020) showed that
GPT-2 (Radford et al., 2019) memorizes training
data, and proposed techniques to efficiently re-
cover sensitive information from this model (e.g.,
email addresses). They experimented only with
large, auto-regressive language models (i.e., GPT-
2), but their techniques are sufficiently general for
us to use here. More specifically, to apply their

approaches to a BERT-based model16 we must be
able to sample text from BERT, which is com-
plicated by the fact that it is not a proper (auto-
regressive) language model. To generate out-
puts from BERT we therefore followed a method
proposed in prior work (Wang and Cho, 2019).
This entails treating BERT as a Markov random
field language model and using a Gibbs sampling
procedure to generate outputs. We then analyze
these outputs from (a) our regular BERT-based
model trained on MIMIC; (b) the Name Insertion
model, and; (c) a standard BERT Base model (De-
vlin et al., 2019). We generate 500k samples from
each, each sample consisting of 100 wordpiece to-
kens.

Comparator Model Perplexity Following Car-
lini et al. (2020), we attempt to identify which
pieces of generated text are most likely to contain
memorized names (in this case, from EHR). To
this end, we examine segments of the text in which
the difference in likelihood of our trained BERT
model versus the standard BERT-base model (De-
vlin et al., 2019) is high. For the samples gen-
erated from the standard BERT-base model (not
trained on MIMIC), we use our ClinicalBERT
model as the comparator.17 Using an off-the-shelf
NER tagger (Honnibal et al., 2020), we identify
samples containing name tokens.

For each sample, we mask name tokens individ-
ually and calculate their perplexity under each of
the the respective models. We take the difference
between these to yield a score (sequences with
high likelihood under the trained model and low
likelihood according to the general-domain BERT
may contain vestiges of training data) and use it
to rank our extracted names; we then use this to
calculate A@100.

As expected, the Name Insertion model pro-
duced more names than the Base model, with
approximately 60% of all sentences containing a
name (not necessarily in MIMIC). Additionally,
the A@100 of the Name Insertion model sub-
stantially outperforms the Base model. However,
when we use spaCy to examine sentences that con-
tain both a condition and a patient’s name (of the
27,906), we find that 23.5% of the time the pa-

16Which, at least at present, remains the default encoder
used in biomedical NLP.

17Note that this means that even though samples are gen-
erated from a model that cannot have memorized anything in
the EHR, using a comparator model that was to re-rank these
samples may effectively reveal information.
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Model Sent. with Name First Names Last Names A@100 Name + Positive Condition
Standard BERT Base 84.7% 2.16% 7.72% 0.34 12.17%
Regular Base 47.9% 0.94% 3.14% 0.16 23.53%
Name Insertion 59.6% 2.65% 4.56% 0.84 4.17%

Table 9: Results over texts generated by the Base and Name Insertion models. The ‘Sent. with Name’ column is
percentage of extracted sentences that contain a name token. The First and Last name columns show what percent
of unique names produced are in the MIMIC dataset. After re-ranking all unique names, we report the percentage
of top 100 names that belong to a reidentified patient. Finally, The Name + Positive Condition displays what
percent of sentences with a patient’s name also contain one of their true (MedCAT) conditions.

tient does indeed have a condition produced by the
Base model. It is unclear to what extent this re-
flects memorization of concrete patient-condition
pairs per se, as opposed to learning more diffused
patient-agnostic distributions of conditions in the
MIMIC dataset. The corresponding statistic for
the Name Insertion variant (4.17%) may be low
because this tends to produce poor quality out-
puts with many names, but not many conditions.
This is an intriguing result that warrants further
research.

However, we caution that these generation ex-
periments are affected by the accuracy of NER
taggers used. For example, many of the extracted
names tend to also be generic words (e.g., ‘young’,
‘date’, ‘yo’, etc.) which may artificially inflate
our scores. In addition, MedCAT sometimes uses
abbreviations as conditions, which may also yield
‘false positives’ for conditions.

7 Limitations

This work has important limitations. We have
considered only relatively simple “attacks”, based
on token in-filling and probing. Our prelimi-
nary results using the more advanced generation
approach (inspired by Carlini et al. 2020) is a
promising future direction, although the quality of
generation from BERT — which is not naturally a
language model — may mitigate this. This high-
lights a second limitation: We have only consid-
ered BERT, as it is currently the most common
choice of pretrained Transformer in the bioNLP
community. Auto-regressive models such as GPT-
2 may be more prone to memorization. Larger
models (e.g., T5 (Raffel et al., 2020) or GPT-3
(Brown et al., 2020)) are also likely to heighten
the risk of data leakage if trained over EHR.

Another limitation is that we have only consid-
ered the MIMIC-III corpus here, and the style in
which notes are written in this dataset — names
appear very infrequently — likely renders it par-
ticularly difficult for BERT to recover implicit as-

sociations between patient names and conditions.
We attempted to address this issue with the semi-
synthetic Name Insertion variant, where we arti-
ficially inserted patient names into every sentence;
this did not yield qualitatively different results for
most experiments. Nonetheless, it is possible that
experiments on EHR datasets from other hospi-
tals (with different distributions over tokens and
names) would change the degree to which one is
able to recover PHI.

Finally, these results for BERT may change un-
der different masking strategies — for example,
dynamic masking (Liu et al., 2019) or choice of
tokenizer. Both of these may affect memorization
and extraction method performance.

8 Conclusions

We have performed an initial investigation into
the degree to which large Transformers pretrained
over EHR data might reveal sensitive personal
health information (PHI). We ran a battery of ex-
periments in which we attempted to recover such
information from BERT model weights estimated
over the MIMIC-III dataset (into which we arti-
ficially reintroduced patient names, as MIMIC is
deidentified). Across these experiments, we found
that we were mostly unable to meaningfully ex-
pose PHI using simple methods. Moreover, even
when we constructed a variant of data in which we
prepended patient names to every sentence prior to
pretraining BERT, we were still unable to recover
sensitive information reliably. Our initial results
using more advanced techniques based on gener-
ation (Carlini et al. 2020; Table 9) are intriguing
but inconclusive at present.

Our results certainly do not rule out the possi-
bility that more advanced methods might reveal
PHI. But, these findings do at least suggest that do-
ing so is not trivial. To facilitate further research,
we make our experimental setup and baseline
probing models available: https://github.com/
elehman16/exposing_patient_data_release.

https://github.com/elehman16/exposing_patient_data_release
https://github.com/elehman16/exposing_patient_data_release
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Ethical Considerations

This work has ethical implications relevant to pa-
tient privacy. HIPAA prohibits the distribution of
PHI, for good reason. Without this type of pri-
vacy law, patient information, for example, could
be passed on to a lender and be used to deny a pa-
tient’s application for mortgages or credit card. It
is therefore essential that patient information re-
main private. This raises an important practical
concerning methods in NLP that we have sought
to address: Does releasing models pretrained over
sensitive data pose a privacy risk? While we were
unable to reliably recover PHI in this work, we
hope that this effort encourages the community
to develop more advanced attacks to probe this
potential vulnerability. We would still advise re-
searchers to err on the side of caution and only
consider releasing models trained over fully dei-
dentified data (e.g. MIMIC).
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Zied Bouraoui, José Camacho-Collados, and
S. Schockaert. 2020. Inducing relational knowledge
from bert. In AAAI.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-
Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel Ziegler, Jeffrey
Wu, Clemens Winter, Chris Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot
learners. In Advances in Neural Information Pro-
cessing Systems, volume 33, pages 1877–1901. Cur-
ran Associates, Inc.
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Figure A1: A distribution of ICD-9 codes and how
many patients (of the 27K) have each condition. All
bin end values are not inclusive.

A Appendix

A.1 Training Our BERT Models
As mentioned previously, we follow most of the
hyperparameters stated in (Huang et al., 2019).
The code presented in Huang et al. (2019) acciden-
tally left out all notes under the category ‘Nurs-
ing/Other’; we added these back in, in addition
to any notes that fell under the ‘Discharge Sum-
maries’ summary category. Our dataset consists
of approximately 400M words (ignoring word-
pieces). The number of epochs (following Devlin
et al. 2019) can be calculated as

num steps · batch size · tokens per seq
total number of tokens

, which at batch size of 128 and sequence length of
128, comes out to 40 epochs if trained for 1M steps
(in the ++ models). For standard models, it comes
out to 29 epochs. We used cloud TPUs (v2 and
v3) to train our models. All experiments are run
on a combination of V100, Titan RTX and Quadro
RTX 8000 GPUs.

A.2 Condition Distribution
In Appendix Figures A1 and A2, we can see
the distribution of ICD-9 and MedCAT conditions
across patients. With respect to the ICD-9 codes,
there are only 4 conditions that are shared across
10,000+ patients. This number is 32 for MedCAT
conditions.

A.3 Condition Given Name
In addition to the results in Table 2, we report all
Spearman coefficients, relative to the frequency
of conditions (in Appendix Table 10). We addi-
tionally report results for Base++, Large++, and

Figure A2: A distribution of MedCAT codes and how
many patients (of the 27K) have each condition. All
bin end values are not inclusive.

Model AUC A@10 Spearman
ICD9
Regular Base 0.614 0.056 0.177
Regular Large 0.654 0.063 0.181
Name Insertion 0.616 0.057 0.158
Template Only 0.614 0.050 0.137
Regular Base++ 0.588 0.059 0.141
Regular Large++ 0.535 0.046 0.107
Regular PubmedBase++ 0.583 0.055 0.160
MedCAT
Regular Base 0.529 0.109 0.175
Regular Large 0.667 0.108 0.214
Name Insertion 0.541 0.112 0.161
Template Only 0.784 0.160 0.262
Regular Base++ 0.511 0.109 0.124
Regular Large++ 0.469 0.098 0.152
Regular PubmedBase++ 0.592 0.076 0.211

Table 10: AUC, accuracy at 10 (A@10), and Spearman
coefficient relative to condition frequency.

Pubmed-Base models. With respect to AUC,
these models all perform worse than the Regular
Large model. Additionally, in Appendix Figure
A3, we can see how experiment results change
with respect to the length of conditions (owing,
as we mentioned in the main text, to complica-
tions in computing likelihoods of varying length
sequences under MLMs).

A.4 Condition Only

In addition to the results in Table 3, we show
results for Base++, Large++, and Pubmed-Base
models. Interestingly, the Large and Pubmed-Base
model’s perform better when names are not in-
cluded. We see the biggest difference between
Appendix Table 10 and 11 in the Templates Only
model, suggesting that this model is memorizing
the relationship between patients and conditions.
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Figure A3: Per-length performance of both ICD-9 and MedCAT labels for the ‘masked conditon’ (only) experi-
ments. A bin length of k contains conditions comprising k token pieces.

Model AUC A@10 Spearman
ICD-9
Regular Base++ 0.498 0.044 0.113
Regular Large++ 0.516 0.044 0.076
Regular PubmedBase++ 0.544 0.043 0.123
MedCAT
Regular Base++ 0.456 0.103 0.157
Regular Large++ 0.454 0.113 0.122
Regular PubmedBase++ 0.628 0.080 0.213

Table 11: AUC and A@10 measures with models given
only a masked out condition. We calculate spearman
coefficients are given relative to the frequency baseline.

A.5 MLP Probing for Names and Conditions

In this experiment, we randomly sample 10,000
patients from our 27,906 patient set (due to com-
putational constraints), of which we keep 5,000 for
training and 5,000 for testing. For each of these
patient names and every condition in our universe
of conditions, we construct the previously speci-
fied template and assign it a binary label indicat-
ing whether the patient have that condition or not.
Since the negative class is over-represented by a
large amount in this training set, we use down-
sampling to balance our data. We map each of
these templates to their corresponding CLS token
embedding. We use the embeddings for templates
associated with training set patients to train a MLP
classifier implemented in Scikit-Learn (Pedregosa
et al., 2011) (Note we did not use on a validation
set here). We used a hidden layer size of 128 with
default hyperparameters.

At test time, for each of the 5000 patients in
test set and each condition, we calculate the score
using this MLP probe and compute our metrics
with respect to the true label associated with that
patient-condition pair.

A.6 Probing for Individual Conditions

In this experiment, we samples 50 conditions from
each of the 4 frequency bins. For each condition,
we trained a probe to distinguish between patients
that have that condition vs those that do not. This
experiment differs from the preceding fill-in-the-
blank and probing experiments: Here we compute
an AUC for each condition (indicating whether the
probe discriminates between patients that have a
particular condition and those that do not),whereas
in the fill-in-the-blank experiments we computed
AUCs per patient.

For probing individual conditions, we used an
MLP classifier implemented in Scikit-Learn (Pe-
dregosa et al., 2011). We did not evaluate on a
validation set. We used a hidden layer size of 128
with default hyperparameters. All experiments
were only run once. For the Regular BERT model,
we additionally experimented with backpropagat-
ing through the BERT weights, but found that this
made no difference in predictive performance.

A.7 Cosine Similarities

All versions of Skipgram and CBoW (Mikolov
et al., 2013) were trained for 10 epochs using gen-
sim library (Řehůřek and Sojka, 2010), used a
vector size of 200, and a window size of 6. We
only trained one variant of each W2V model. For
BERT models, we used the last layer wordpiece
embeddings. For word embedding models, we ran
this experiment on whole reidentified patient set,
whereas for BERT models, we sampled 10K pa-
tients. We report averages over the patients. In ad-
dition to the mean-pool collapsing of conditions,
we also try ‘Max-Pooling’ and a variant we la-
bel as ‘All Pairs Pooling’. We present results from
all cosine-similarity experiments in Appendix Ta-
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Model Mean Std.
ICD9

Max Pooling
Regular Base -0.0093 0.017
Regular Large -0.020 0.029
SkipGram Base -0.004 0.039
CBoW Base -0.009 0.051
Name Insertion -0.008 0.018
SkipGram Name Insertion 0.004 0.038
CBoW Name Insertion -0.009 0.058
All Pairs Pooling
Regular Base -0.006 0.014
Regular Large -0.029 0.042
SkipGram Base 0.006 0.044
CBoW Base 0.005 0.044
Name Insertion -0.001 0.013
SkipGram Name Insertion 0.019 0.039
CBoW Name Insertion 0.010 0.036

MedCAT
Max Pooling
Regular Base -0.065 0.030
Regular Large -0.092 0.033
SkipGram Base -0.032 0.039
CBoW Base -0.071 0.059
Name Insertion -0.070 0.030
SkipGram Name Insertion -0.021 0.035
CBoW Name Insertion -0.087 0.059
All Pairs Pooling
Regular Base -0.012 0.012
Regular Large -0.043 0.028
SkipGram Base -0.005 0.020
CBoW Base -0.012 0.020
Name Insertion -0.011 0.009
SkipGram Name Insertion 0.015 0.026
CBoW Name Insertion 0.004 0.024

Table 12: Similarity for Positive Conditions - Nega-
tive Conditions. All experiments are performed using
ICD-9 codes. Max and Average refer to max-pooling
and average-pooling over multiple embeddings, re-
spectively. “All” entails the following: For every word
piece in the name, find the cosine similarity for every
word piece in the condition; then, use the largest cosine
similarity. All word embedding models are trained for
10 epochs, with dimensionality 200.

ble 12. The mean pooling results in Table 6 seem
to outperform the alternative pooling mechanisms
presented here.

A.8 Probing for Names

To see if our BERT models are able to recog-
nize the patient names that appear in training data,
we train a linear probe on top of names encoded
via BERT. We train this Linear Regression classi-
fier using all default parameters from Scikit-Learn
(10,000 max steps) (Pedregosa et al., 2011). We
did not evaluate on a validation set. Each experi-
ment was only run once.

Model AUC
First Name
Regular Base++ 0.505
Regular Large++ 0.502
Regular Pubmed-base 0.501
Last Name
Regular Base++ 0.504
Regular Large++ 0.502
Regular Pubmed-base 0.504

Table 13: We compute the perplexity of the masked
parts of names for all 46,520 patients and measure
whether the (27,906) reidentified patients receive lower
perplexity, compared to remaining patients.

A.9 Does observing part of a name reveal
more information?

Similar to the results in Table 8, we report results
on the Base++, Large++, and Pubmed-Base mod-
els (Appendix Table 13). We find no significant
difference between these results and the ones re-
ported in Table 8.


