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Abstract

Spoken language understanding, usually in-
cluding intent detection and slot filling, is a
core component to build a spoken dialog sys-
tem. Recent research shows promising results
by jointly learning of those two tasks based
on the fact that slot filling and intent detection
are sharing semantic knowledge. Furthermore,
attention mechanism boosts joint learning to
achieve state-of-the-art results. However, cur-
rent joint learning models ignore the following
important facts: 1. Long-term slot context is
not traced effectively, which is crucial for fu-
ture slot filling. 2. Slot tagging and intent
detection could be mutually rewarding, but bi-
directional interaction between slot filling and
intent detection remains seldom explored. In
this paper, we propose a novel approach to
model long-term slot context and to fully uti-
lize the semantic correlation between slots and
intents. We adopt a key-value memory net-
work to model slot context dynamically and
to track more important slot tags decoded be-
fore, which are then fed into our decoder for
slot tagging. Furthermore, gated memory in-
formation is utilized to perform intent detec-
tion, mutually improving both tasks through
global optimization. Experiments on bench-
mark ATIS and Snips datasets show that our
model achieves state-of-the-art performance
and outperforms other methods, especially for
the slot filling task.

1 Introduction

Task-oriented dialogue systems have attracted sig-
nificant attention, which have been greatly ad-
vanced by deep learning techniques. Traditionally,
these dialog systems have been built as a pipeline,
with modules including spoken language under-
standing (SLU), dialog state tracking, action se-
lection and language generation. Among these
problems, SLU, including intention detection and
slot filling (Tur and Mori, 2011), is a key yet chal-
lenging problem to parse users’ utterances into se-

Sentence Flights from Irvine to Seattle
Intent Flight
Slots O O B-fromloc O B-toloc

Table 1: An example utterance annotated with its intent
and semantic slots (IOB format).

mantic frames in order to capture a conversation’s
core meaning. Traditionally, intention detection
is treated as a classification problem, whereas slot
filling is usually defined as sequence labeling prob-
lem, where In-Out-Begin (IOB) format is applied
for representing slot tags as illustrated in Table 1.
Given an utterance, SLU determines users’ inten-
tion and maps it into predefined semantic slots. The
input is a sequence of words, and the output is a
sequence of predefined slot IDs. A specific intent
is assigned for the whole sentence.

In the traditional pipeline approach, intent de-
tection and slot filling are implemented separately.
However, separate modeling of those two tasks
is insufficient to take full advantage of all su-
pervised signals, as they share semantic knowl-
edge. For example, if the intent of an utterance is
"find_a_flight", it is more likely to contain slots "de-
parture_city" and "arrival_city" rather than "restau-
rant_name". Another drawback of the pipeline
method is that errors made in upper stream mod-
ules may propagate and be amplified in down-
stream components, which however could possibly
be eased in joint model (Zhang and Wang, 2016).

Recently, joint model for intent detection and
slot filling has been proposed and achieved promis-
ing results (Liu and Lane, 2016; Goo et al., 2018;
Li et al., 2018). Though achieving promising per-
formance, their models suffer from two major is-
sues: 1) Modeling of slot context. Though the
latent memory of RNNs can model history in-
formation, they are inherently unstable over long
time sequences because the memories are the RNN
hidden states. (Weston et al., 2014) observes that
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RNNs tend to focus more on short-term memories
and forcefully compress historical records into one
hidden state vector. Thus, simple RNNs cannot
preserve long-term slot context of the conversa-
tion, which is crucial to future slot tagging. 2)
Bi-directional interaction between slot filling and
intent detection. The majority of joint modeling
work has studied how to utilize intent information
to improve slot filling performance. However, the
beneficial impact of slot information on intent de-
tection is mostly ignored. In fact, slots and intents
are closely correlative, thus mutually reinforcing
each other.

In this paper, we propose a new framework to
jointly model intent detection and slot filling in
order to achieve a deeper level of semantic model-
ing. Specifically, our model is distinguished from
previous work primarily in two ways.

• Model slot context dynamically with Key-
Value Memory Networks (KV-MNs). The
majority of existing work use RNNs to track
slot values mentioned in previous utterances.
However, RNNs tend to focus more on short-
term memories. We propose to use a mem-
ory network to model slot context informa-
tion as external knowledge which is acting a
global information to guide slot tagging. In-
stead of relying on the compressed vector in
RNN, KV-MNs store different historical slot
tag information separately in different mem-
ory slots, which enriches the representation
capacity compared with RNNs. Furthermore,
slot values mentioned in the utterance are dy-
namically tracked, which is beneficial for sub-
sequent slot tagging at each timestamp. Lastly,
slot-level attention can model more accurately
the contribution of each word in an utterance
to slot tagging.

• Model the mutual interaction between in-
tent detection and slot filling. The fact that
intent detection and slot filling are seman-
tically related is well-observed and how to
use intent information to boost slot filling is
widely explored. However, slot filling is ben-
eficial to intent detection as well, and these
benefits are yet to be explored. We propose a
gating mechanism between intents and slots
based on KV-MNs in order to model the inter-
action between intent detection and slot fill-
ing.

2 Related Works

Since intent detection can be treated as an utter-
ance classification problem, different classification
methods, such as support vector machines (SVM)
and RNNs (Haffner et al., 2003; Sarikaya et al.,
2011), have proposed to solve it. On the other hand,
for slot filling, hidden markov models (HMM) and
conditional random fields (CRF) (Lee et al., 1992;
Ye-Yi Wang et al., 2005; Raymond and Riccardi,
2007) were used to solve slot filling problem. Later
RNN based methods had become popular. For
example, Yao et al. (2013); Mesnil et al. (2015)
employed RNNs for sequence labeling in order to
perform slot filling.

Alternatively, intent detection and slot filling
can be done jointly to overcome the error prop-
agation. Zhang and Wang (2016) first proposed
joint work using RNNs for learning the correla-
tion between intent and slots. Hakkani-Tür et al.
(2016) adopted a RNN for slot filling and the last
hidden state of the RNN was used to predict the
utterance intent. Liu and Lane (2016) introduced
an attention-based RNN encoder decoder model
to jointly perform intent detection and slot filling.
An attention weighted sum of all encoded hidden
states was used to predict the utterance intent. All
those models outperform the pipeline models via
mutual enhancement between two tasks.

Most recently, some work tries to model the in-
tent information for slot filling explicitly in the joint
model. Goo et al. (2018); Li et al. (2018) proposed
the gate mechanism to explore incorporating the
intent information for slot filling. However, as the
sequence becomes longer, it is risky to simply rely
on the gate function to sequentially summarize and
compress all slots and context information in a sin-
gle vector (Cheng et al., 2016). Wang et al. (2018)
proposed the bi-model to consider the cross-impact
between the intent and slots and achieve state-of-
the-art results. Zhang et al. (2018) proposed a hier-
archical capsule neural network to model the hierar-
chical relationship among word, slot, and intent in
an utterance. Niu et al. (2019) introduces a SF-ID
network to establish the interrelated mechanism for
slot filling and intent detection tasks. Compared
with their work, our method explicitly models the
long-term slot context knowledge which is benefi-
cial to both slot filling and intent detection.

Memory network provides a principled approach
for modeling long-range dependency which has ad-
vanced many NLP tasks such as machine transla-
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tion (Wang et al., 2016) and question answering
(Sukhbaatar et al., 2015). The initial framework of
memory networks was proposed by Weston et al.
(2014). Following the idea, Sukhbaatar et al. (2015)
proposed an end-to-end memory augmented model
that significantly reduced the requirement of super-
vision during training. Key-value memory network
(Miller et al., 2016) encoded prior knowledge by
introducing a key memory structure which storeed
facts to address to the relevant memory value.

None of them is to model slot context informa-
tion dynamically especially in single turn conversa-
tional systems. In this paper, we demonstrate how
memory networks can be used to model long-term
slot context knowledge and the interaction between
intent detection and slot filling.

3 Proposed Model

Memory networks show promising results on learn-
ing long-range dependency, but they are insensi-
tive to represent temporal dependencies between
memories (Wu et al., 2018). RNNs tend to be oppo-
site. Thus, it makes sense for us to combine those
networks together to model long-term slot context
information. In this section, we present a specific
key-value dynamic memory module to collect and
remember slot clues in the dialog context. Then
context memory is used to enhance the Encoder-
Decoder based model to perform slot filling and
intent detection.

Figure 1: Framework of the proposed model

As illustrated in Figure 1, our proposed model
is composed of an Encoder-Decoder, and a Key-
Value Memory Module including KEY-MEMORY,
VALUE-MEMORY, a memory read unit, and a
memory write unit. Given a single-turn dialog,
the Encoder transforms a word in user utterances
into a dense vector by using a shared self-attentive
encoder. Then the memory network encodes long-
term slot context information by incorporating his-
torical slot tags through memory attention and
WRITE operations of the memory network. The
slot decoder integrates short-term hidden state of
self-attention encoder and the long-term slot con-
text generated by attentively reading the VALUE-
MEMORY to generate slot tagging at each times-
tamp. Later, intent decoder performs token level
intent detection, which is seen as a coarse-grained
intent detection result. Finally, a fine-grained intent
detection is produced by gating memory modules.
Both intent detection and slot filling are optimized
simultaneously via a joint learning scheme.

3.1 Self-Attentive Encoder
Given an input utterance X = (x1, x2, . . . , xT ) of
T words, where each word is initially represented
by a vector of dimension d, the BiLSTM (Hochre-
iter and Schmidhuber, 1997) is applied to learn
representations of each word by reading the input
utterance forward and backward to produce context
sensitive hidden states H = (h1, h2, . . . , hT ):

ht = BiLSTM(xt, ht−1) (1)

Then, we use self-attention mechanism to cap-
ture the contextual information for each token. We
adopt the method proposed by (Vaswani et al.,
2017), where we first map the matrix of input vec-
tors X ∈ RT×d to queries (Q), keys (K̃) and values
(Ṽ) matrices by using different linear projections
and the self-attention output C ∈ RT×d1 is:

C = softmax

(
QK̃>√
d2

)
Ṽ (2)

where d1 and d2 represents self-attention dimen-
sion and keys’dimension. We concatenate the out-
put of self-attention and BiLSTM as the final en-
coding representation as shown in Qin et al. (2019):

E = H⊕ C (3)

where E = (e1, . . . , eT ) ∈ RT×(d+d1) and ⊕ is a
concatenation operation.
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3.2 Slot Decoder

Our slot deocder consists of two components: 1)
the key-value memory-augmented attention model
which generates slot context representation of
users’ utterance, and 2) the unidirectional LSTM
decoder, which predicts the next slot tag step by
step.

3.2.1 Dynamic Key Value Memory Network
To overcome the shortcomings of RNNs in captur-
ing semantic clues over the long-term, we design
a memory network that can preserve fine-grained
semantic information of long-term slot context. We
adopt a key-value memory network, which memo-
rizes information by using a large array of external
memory slots. The external memories enrich the
representation capability compared with hidden
vectors of RNNs and enable the KV-MNs to cap-
ture long-term data characteristics (Liu and Perez,
2017). We aim to incorporate the knowledge con-
tained in the historical slot tags into the memory
slots. The KV-MNs decompose slot semantics in
an utterance into different slot categories and thus
preserves more fine-grained information. In KV-
MNs, a memory slot is represented by a key vector
and an associated value vector.

• KEY-MEMORY: The KEY-MEMORY K ∈
Rdk×n learns latent correlation between ut-
terance words and slot tags, where n is the
number of memory slots and dk is the dimen-
sion of each slot. Each column vector, that
is, i-th key vector ki ∈ Rdk is set to the i-
th column of the KEY-MEMORY K, which
is shared by all conversation turns and fixed
during the processing of word sequences.

• VALUE-MEMORY: Both the KEY-
MEMORY and VALUE-MEMORY have
the same number of memory slots. Each
value memory vector stores the value of slot
tag mentioned in the utterance. We form
a value memory matrix Vt ∈ Rdv×n by
combining all n value slots. Different from
KEY-MEMORY K, VALUE-MEMORY Vt

is word-specific and is continuously updated
according to the input word sequence. During
the conversation, the value of a new slot tag
may be added into the VALUE-MEMORY,
and an old value can be erased. In this way,
we can adequately capture the slot context
information on each mentioned slot. Two

types of operations, READ and WRITE, are
designed to manipulate the value memories.

3.2.2 Memory-augmented Decoder
As shown in Figure 1, the decoder uses the aligned
BiLSTM hidden state ht as a query to address the
KEY-MEMORY looking for an attention vector
at, and attentively reads the VALUE-MEMORY to
generate slot context representation ct.

First, we use ht to address the KEY-MEMORY
to find an accurate attention vector at.

at = Address (ht,K) (4)

at is subsequently used as the guidance for reading
the VALUE-MEMORY Vt−1 to get the slot context
representation ct.

ct = Read(at,Vt−1) (5)

ct works together with the aligned encoder hidden
state et to generate the new decoder state at the
decoding step t,

hSt = LSTM
(
hSt−1, y

S
t−1, et ⊕ ct

)
(6)

where hSt−1 is the previous slot decoder state and
ySt−1 is the previous emitted slot lable distribution.
After that, we use the slot decoder hidden state hSt
to update Vt:

Vt = Write
(
hSt ,Vt−1

)
(7)

Finally, the decoder state hSt is utilized for slot
filling:

ySt = softmax
(
WS
hh

S
t

)
(8)

oSt = argmax
(
ySt
)

(9)

where WS
h are trainable parameters and oSt is the

slot label of the word at timestamp t in the utter-
ance.

3.3 Intent Detection Decoder

Different than most existing work where intent in-
formation is used to do slot filling, our framework
is directly leveraging the explicit slot context in-
formation to help intent detection. Furthermore,
a gated mechanism is used in order to effectively
incorporate slot memory information into intent
detection. By performing gated intent detection,
there are two advantages:
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1. Sharing slot context information with intent
detection improves intent detection perfor-
mance since those two tasks are related. Fur-
thermore, a gating mechanism which com-
bines the intent detection information and slot
context retrieved from key-value memory, reg-
ulates the degree of enhancement of intent
detection to prevent information overload.

2. Through shared key-value memory, the inter-
action between intent detection and slot filling
can be effectively modeled and executed. Plus,
by jointly training those two tasks, not only
can intent detection performance be improved
by slot context knowledge, but also slot filling
is enhanced by minimizing intent detection ob-
jective function. In other words, by learning
optimal parameters of shared key-value mem-
ory, slot filling and intent detection interact in
a more effective and deeper way.

Intent Detection Decoder: For intent detection,
we use another uni-directional LSTM as the intent
detection network. At each decode step t, the de-
coder state hIt is generated by the previous decoder
state hIt−1, the previous emitted intent label distri-
bution yIt−1 and the aligned encoder hidden et.

hIt = LSTM
(
hIt−1, y

I
t−1, et

)
(10)

Then the intent decoder state hIt together with the
slot context ct is utilized for final intent detection.

Gated Memory: We propose a gated mechanism
to integrate slot context with intent detection. The
gate regulates the degree of slot context information
to feed into the intent detection task and prevent
information from overloading. As shown in Figure
2, the gate G is a trainable fully connected network
with sigmoid activation.

Figure 2: Intent detection with gated memory

h′
I
t = gt · hIt + (1− gt) · ct (11)

where gt = sigmoid
(
Wt[h

I
t

⊕
ct] + bt

)
. Then,

the output of gated decoder state h′It is utilized for
intent detection:

yIt = softmax
(
W I
hh
′I
t

)
(12)

oIt = argmax(yIt ) (13)

where yIt is the intent output distribution of the t-th
token in the utterance, oIt represents the intent lable
of t-th token and W I

h are trainable parameters of
the model.

The final utterance result OI is generated by
voting from all token intent results as illustrated in
Qin et al. (2019).

3.4 Memory Access Operation
In this section, we detail how to access key-value
memory at the decoding time step t.

KEY-MEMORY Address: K ∈ Rdk×n denotes
the KEY-MEMORY at decoding time step t. The
addressed attention vector is given by

at = Address (ht,K) (14)

where at ∈ Rn specifies the normalized weights
assigned to the slots in K, with j-th slot being kj .
The attention weights at,j are calculated based on
the correlation between ht and kj :

at,j =
exp(et,j)∑n
i=1 exp(et,i)

(15)

where et,j = k>j (Waht + ba)

VALUE-MEMORY Read: Vt ∈ Rdv×n de-
notes the VALUE-MEMORY at decoding time step
t. The output of reading the value memory Vt is
given by

ct =

n∑
j=1

at,jvt,j (16)

VALUE-MEMORY Write: Similar to the atten-
tive writing operation of neural turing machines
(Graves et al., 2014), we define two types of oper-
ation for updating the VALUE-MEMORY: FOR-
GET and ADD.

FORGET determines the content to be removed
from memory slots. More specifically, the vector
Ft ∈ Rdv specifies the values to be forgotten or re-
moved on each dimension in memory slots, which
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is then assigned to each memory slot through nor-
malized weights at. We use the slot decoder hidden
state hSt to update Vt−1. Formally, the memory af-
ter FORGET operation is given by

ṽt,i = vt−1,i(1− at,i · Ft), i = 1, 2, . . . , n (17)

where

• Ft = σ(WF , h
S
t ) is parameterized with

WF ∈ Rdv×dh , and δ stands for the Sigmoid
activation function, and Ft ∈ Rdv ;

• at ∈ Rn specifies the normalized weights as-
signed to the key memory slots in K, and at,i
represents the weight associated with the i-th
memory slot.

ADD decides how much current information
should be written to the memory as the added con-
tent:

vt,i = ṽt,i + at,i · At, i = 1, 2, . . . , n (18)

where At = σ(WA, h
S
t ) is parameterized with

WA ∈ Rdv×dh and At ∈ Rdv . By learning
the parameters of FORGET and ADD layers, our
model can automatically determine which signal
to weaken or strengthen based on input utterance
words.

3.5 Joint Training
The loss function for intent detection is L1, and
that for slot filling is L2, which are defined as cross
entropy:

L1 , −
m∑
j=1

nI∑
i=1

ŷI,ij log
(
yI,ij

)
(19)

and

L2 , −
m∑
j=1

nS∑
i=1

ŷS,ij log
(
yS,ij

)
(20)

where ŷI,ij and ŷS,ij are the gold intent label and
gold slot label respectively, m is the number of
words in a word sequence, and nI and nS are the
number of intent label types and the number of slot
tag types, respectively.

Finally the joint objective is formulated as
weighted-sum of these two loss functions using
hyper-parameters α and β:

Lθ = αL1 + βL2 (21)

Through joint training, the key-value memory
shared by those two tasks can learn the shared repre-
sentations and interactions between them, thus fur-
ther promoting each other’s performance and eas-
ing the error propagation compared with pipeline
models.

4 Experiments

4.1 Setup

To evaluate our proposed model, we conduct exper-
iments on two widely used benchmark datasets,
ATIS (Airline Travel Information System) and
Snips. Both datesets used in our paper follow the
same format and partition as in Goo et al. (2018).
ATIS dataset (Hemphill et al., 1990) contains au-
dio recordings of people making flight reservations.
The training set has 4,478 utterances and the test
set contains 893 utterances. We use another 500
utterances for the development set. There are 120
slot labels and 21 intent types in the training sets.

To justify the generalization of our proposed
mode, we also execute our experiment on another
NLU dataset collected by Snips (Coucke et al.,
2018) 1. This data is collected from the Snips per-
sonal voice assistant, where the number of samples
for each intent is approximately the same. The
training set contains 13,804 utterances and the test
set contains 700 utterances. We use another 700
utterances as the development set. There are 72
slot labels and 7 intent types. Compared to single-
domain ATIS dataset, Snips is more complicated
mainly due to the intent diversity and large vocabu-
lary (Goo et al., 2018). For example, GetWeather
and BookRestaurant in Snips are from different top-
ics, resulting in a larger vocabulary. On the other
hand, intents in ATIS are all about flight informa-
tion with similar vocabularies.

In our experiments, we set the dimension of
word embedding to 256 for ATIS and 200 for Snips
dataset. L2 reularization used in our model is
1×10−6 and dropout ratio is set to 0.4 for reducing
overfit. The number of memory columns is set to
20 for both datasets, and the dimensions of memory
column vectors are set to 64 for ATIS, and to 200
for Snips. The optimizer is Adam (Kingma and
Ba, 2014). During our experiments, we select the
model which works the best on the development
set, and then evaluate it on the test set.

1https://github.com/snipsco/
nlu-benchmark/tree/master/
2017-06-custom-intent-engines

https://github.com/snipsco/nlu-benchmark/tree/master/2017-06-custom-intent-engines
https://github.com/snipsco/nlu-benchmark/tree/master/2017-06-custom-intent-engines
https://github.com/snipsco/nlu-benchmark/tree/master/2017-06-custom-intent-engines
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We carefully choose some representative works,
for example, Joint Seq. (Hakkani-Tür et al., 2016),
Attention BiRNN (Liu and Lane, 2016), Sloted-
Gated (Goo et al., 2018), CAPSULE-NLU (Zhang
et al., 2019), SF-ID Network (Niu et al., 2019)
and Stack-Propagation (Qin et al., 2019) as our
baselines. When doing the comparison, we adopt
the reported results from those papers directly.

4.2 Results

In order to have fair comparison with others’ work,
we adopt the same metrics to evaluate our model.
That is, we evaluate slot filling using F1 score, in-
tent prediction using accuracy, and sentence-level
semantic frame parsing using whole frame accu-
racy.

Table 2 shows the experiment results of the pro-
posed model on ATIS and Snips datasets. From the
table, we can see that our model outperforms all
the baselines in all three aspects: slot filling (F1),
intent detection (Acc) and setence accurancy (Acc),
demonstrating that explicitly modeling slot context
and strong relationships between slots and intent
can benefit SLU effectively from the key-value
memory. In the ATIS dataset, compared with the
best prior joint work Stack-Propagation (Qin et al.,
2019), we achieve F1 score as 96.13 which is even
slightly better than Stack-propagation’s F1 score
(96.10) with BERT model. This signifies that our
key-value memory can not only capture long-term
slot context, but also model correlation between
slot filling and intent detection, which can be fur-
ther optimized by joint training. What’s more, in
the Snips dataset, our model achieves good results
in both slot filling and overall sentence. Specif-
ically, slot filling was improved by almost 1.0%,
and sentence accuracy by 1.4%. Generally, ATIS
dataset is a simpler SLU task than Snips, and so
the room to be improved is relatively small. On the
other hand, Snips is more complex so that it needs
more complicated model to capture long-term con-
text and share the knowledge across different top-
ics.

4.3 Analysis

From Section 4.2, we can see good improvements
on both datasets, but we want to know how each
component impacts SLU performance.

4.3.1 Ablation Study
In this section, we explore how each component
contributes to our full model. Specifically, we ab-

late three important scenarios and conduct them in
this experiment. Note that all the variants are based
on joint learning.

• Without key-value memory and gating archi-
tecture for integrating slot context information
with intent detection. This is the model similar
to Qin et al. (2019).

• Only with key-value memory, but without
sharing slot context information with intent
detection.

• With key-value memory and sharing, but with-
out gating architecture, where only key-value
memory is applied to model slot context and
that information is directly fed into intent de-
tection.

Table 3 shows the joint learning performance of
our model on ATIS and Snips datasets by remov-
ing one component at one time. First, if we re-
move key-value memory and gating architecture,
the performance drops dramatically compared with
our proposed model. This is expected as it does
not have any of our improvements. Then we only
consider key-value memory to model slot context.
From Table 3, we can see that key-value memory
does improve performance in a large scale. The re-
sult can be interpreted as indicating that key-value
memory learns long-term slot context representa-
tion effectively, which does compensate the weak-
ness of RNN. In the following, we apply key-value
memory and also share it with intent detection with-
out gating. It is noticeable that SLU performance
is enhanced further. Sharing slot context informa-
tion with intent detection not only improves intent
accuracy, but also betters slot filling through joint
optimization. Finally, when we add gating mech-
anism, the performance improves further. We at-
tribute this to gating mechanism that regulates the
degree of slot context information to feed into in-
tent detection task and prevent information from
overloading.

We also study how the number of memory slots
and the dimension of memory slots impacts SLU
performance. Figure 3 shows the performance
change with different hyper-parameters. We found
that the optimal size of memory slots for ATIS and
Snips dataset is 20, whereas the optimal dimension
of memory slots is 64 for ATIS and 200 for Snips
respectively.
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Model ATIS Dataset Snips Dataset
Slot(F1) Intent(Acc) Sent.(Acc) Slot(F1) Intent(Acc) Sent.(Acc)

Joint Seq.(Hakkani-Tür et al., 2016) 94.30 92.60 80.70 87.30 96.90 73.20
Attention BiRNN(Liu and Lane, 2016) 94.20 91.10 78.90 87.80 96.70 74.10
Sloted-Gated(Goo et al., 2018) 95.42 95.41 83.73 89.27 96.86 76.43
CAPSULE-NLU(Zhang et al., 2019) 95.20 95.0 83.40 91.80 97.30 80.90
SF-ID Network(Niu et al., 2019) 95.58 96.58 86.00 90.46 97.0 78.37
Stack-Propagation(Qin et al., 2019) 95.90 96.90 86.50 94.20 98.0 86.90
Our model 96.13 97.20 87.12 95.13 98.14 88.14

Table 2: SLU Performance comparison on ATIS and Snips datasets (%). The improved results are written in bold.

Model ATIS Dataset Snips Dataset
Slot(F1) Intent(Acc) Sent.(Acc) Slot(F1) Intent(Acc) Sent.(Acc)

Without K-V memory and sharing 95.72 96.64 85.78 94.08 97.42 86.42
With K-V memory without sharing with intent 95.95 96.66 86.56 94.46 98.09 87.0
With K-V memory and sharing without gate 96.08 96.86 87.0 94.76 98.0 87.28
Full Model 96.13 97.20 87.12 95.13 98.14 88.14

Table 3: Feature ablation study on our proposed model on ATIS and Snips datasets (%)

Figure 3: SLU performance on different hyper-
parameters in key-value memory networks

4.3.2 Memory Attention

Analyzing the attention weights has been fre-
quently used to show the memory read-out, since
it is an intuitive way to understand the model dy-
namics. Figure 4 shows the attention vector for
each decoded slot, where each row represents atten-
tion vector at. Our model has a sharp distribution
over the memory, which implies that it is able to
select the most related memory slots from the value
memory. For example, when decoding "san", our
model selects memory slot 1, 7, 8,15 from the value
memory to read context information, where mem-
ory slot 7 and 15 are representing word "from" and
memory slot 1 representing word "flight". In other
words, words "flight" and "from" contribute more
than other previous words in order to decode "san"
to B-fromloc.city_name.

Figure 4: Key memory attention visualization from the
ATIS dataset

5 Conclusion

In this paper, we propose a joint model to perform
spoken language understanding with an augmented
key-value memory to model slot context in order to
capture long-term slot information. In addition, we
adopt a gating mechanism to incorporate slot con-
text information for intent classification to improve
intent detection performance. Reciprocally, joint
optimization promotes slot filling performance fur-
ther by memory sharing between those two tasks.
Experiments on two public datasets show the effec-
tiveness of our proposed model and achieve state-
of-the-arts results.
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