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Abstract

Frame-based state representation is widely
used in modern task-oriented dialog systems
to model user intentions and slot values. How-
ever, a fixed design of domain ontology makes
it difficult to extend to new services and APIs.
Recent work proposed to use natural language
descriptions to define the domain ontology in-
stead of tag names for each intent or slot, thus
offering a dynamic set of schema. In this
paper, we conduct in-depth comparative stud-
ies to understand the use of natural language
description for schema in dialog state track-
ing. Our discussion mainly covers three as-
pects: encoder architectures, impact of sup-
plementary training, and effective schema de-
scription styles. We introduce a set of newly
designed bench-marking descriptions and re-
veal the model robustness on both homoge-
neous and heterogeneous description styles in
training and evaluation.

1 Introduction

From early frame-driven dialog system GUS (Bo-
brow et al., 1977) to virtual assistants (Alexa, Siri,
and Google Assistant et al.), frame-based dialog
state tracking has long been studied to meet various
challenges. In particular, how to support an ever-
increasing number of services and APIs spanning
multiple domains has been a focal point in recent
years, evidenced by multi-domain dialog model-
ing (Budzianowski et al., 2018; Byrne et al., 2019;
Shah et al., 2018a) and transferable dialog state
tracking to unseen intent/slots (Mrkšić et al., 2017;
Wu et al., 2019; Hosseini-Asl et al., 2020).

Recently, Rastogi et al. (2019) proposed a new
paradigm called schema-guided dialog for trans-
ferable dialog state tracking by using natural lan-
guage description to define a dynamic set of service
schemata. As shown in Figure 1, the primary moti-
vation is that these descriptions can offer effective

∗∗Work done when Jie Cao was an intern at Amazon

Figure 1: An example dialog from Restaurant_1 ser-
vice, along with its service/intent/slot descriptions and
dialog state representation.

knowledge sharing across different services, e.g.,
connecting semantically similar concepts across
heterogeneous APIs, thus allowing a unified model
to handle unseen services and APIs. With the pub-
licly available schema-guided dialog dataset (SG-
DST henceforward) as a testbed, they organized a
state tracking shared task composed of four sub-
tasks: intent classfication (Intent), requested slot
identification (Req), categorical slot labeling (Cat),
and noncategorical slot labeling (NonCat) (Rastogi
et al., 2020). Many participants achieved promising
performance by exploiting the schema description
for dialog modeling, especially on unseen services.

Despite the novel approach and promising re-
sults, current schema-guided dialog state tracking
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task only evaluates on a single dataset with lim-
ited variation in schema definition. It is unknown
how this paradigm generalizes to other datasets and
other different styles of descriptions. In this paper,
we focus our investigation on the study of three
aspects in schema-guided dialog state tracking:
(1) schema encoding model architectures (2) sup-
plementary training on intermediate tasks (3) vari-
ous styles for schema description. To make a more
general discussion on the schema-guided dialog
state tracking, we perform extensive empirical stud-
ies on both SG-DST and MULTIWOZ 2.2 datasets.
In summary, our contributions include:

• A comparative study on schema encoding
architectures, suggesting a partial-attention
encoder for good balance between inference
speed and accuracy.

• An experimental study of supplementary train-
ing on schema-guided dialog state tracking,
via intermediate tasks including natural lan-
guage inference and question answering.

• An in-depth analysis of different schema de-
scription styles on a new suite of benchmark-
ing datasets with variations in schema descrip-
tion for both SG-DST and MULTIWOZ 2.2.

2 Schema-Guided Dialog State Tracking

A classic dialog state tracker predicts a dialog state
frame at each user turn given the dialog history and
predefined domain ontology. As shown in Figure 1,
the key difference between schema-guided dialog
state tracking and the classic paradigm is the newly
added natural language descriptions. In this section,
we first introduce the four subtasks and schema
components in schema-guided dialog state tracking,
then we outline the research questions in our paper.
Subtasks. As shown in Figure 1, the dialog state
for each service consists of 3 parts: active intent, re-
quested slots, user goals (slot values). Without loss
of generality, for both SG-DST and MULTIWOZ
2.2 datasets, we divide their slots into categorical
and non-categorical slots by following previous
study on dual-strategies (Zhang et al., 2019). Thus
to fill the dialog state frame for each user turn,
we solve four subtasks: intent classification (In-
tent), requested slot identification (Req), categor-
ical slot labeling (Cat), and non-categorical slot
labeling (NonCat). All subtasks require matching
the current dialog history with candidate schema
descriptions for multiple times.

Schema Components. Figure 1 shows three main
schema components: service, intent, slot. For each
intent, the schema also describes optional or re-
quired slots for it. For each slot, there are flags
indicating whether it is categorical or not. Cate-
gorical means there is a set of predefined candi-
date values (Boolean, numeric or text). For in-
stance, has_live_music in Figure 1 is a categorical
slot with Boolean values. Non-categorical, on the
other hand, means the slot values are filled from
the string spans in the dialog history.
New Questions. These added schema descriptions
pose the following three new questions. We discuss
each of them in the following sections.

Q1. How should dialogue and schema be encoded? §5

Q2. How do different supplementary trainings impact each
subtask? §6

Q3. How do different description styles impact the state
tracking performance? §7

3 Related Work

Our work is related to three lines of research: multi-
sentence encoding, multi-domain and transferable
dialog state tracking. However, our focus is on
the comparative study of different encoder archi-
tectures, supplementary training, and schema de-
scription style variation. Thus we adopt existing
strategies from multi-domain dialog state tracking.
Multi-Sentence Encoder Strategies. Similar to
the recent study on encoders for response selec-
tion and article search tasks Humeau et al. (2019),
we also conduct our comparative study on the two
typical architectures Cross-Encoder (Bordes et al.,
2014; Lowe et al., 2015) and Dual-Encoder (Wu
et al., 2017; Yang et al., 2018). However, they only
focus on sentence-level matching tasks. All sub-
tasks in our case require sentence-level matching
between dialog context and each schema, while
the non-categorical slot filling task also needs to
produce a sequence of token-level representation
for span detection. Hence, we study multi-sentence
encoding for both sentence-level and token-level
tasks. Moreover, to share the schema encoding
across subtasks and turns, we also introduce a sim-
ple Fusion-Encoder by caching schema token em-
beddings in §5.1, which improves efficiency with-
out sacrificing much accuracy.
Multi-domain Dialog State Tracking. Recent
research on multi-domain dialog system have
been largely driven by the release of large-scale
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multi-domain dialog datasets, such as Multi-
WOZ (Budzianowski et al., 2018), M2M (Shah
et al., 2018a), accompanied by studies on key is-
sues such as in/cross-domain carry-over (Kim et al.,
2019). In this paper, our goal is to understanding
the design choice for schema descriptions in dia-
log state tracking. Thus we simply follow the in-
domain cross-over strategies used in TRADE (Wu
et al., 2019). Additionally, explicit cross-domain
carryover (Naik et al., 2018) is difficult to general-
ize to new services and unknown carryover links.
We use longer dialog history to inform the model
on the dialog in the previous service. This simpli-
fied strategy does impact our model performance
negatively in comparison to a well-designed dialog
state tracking model on seen domains. However, it
helps reduce the complexity of matching extra slot
descriptions for cross-service carryover. We leave
the further discussion for future work.
Transferable Dialog State Tracking. Another
line of research focuses on how to build a transfer-
able dialog system that is easily scalable to newly
added intents and slots. This covers diverse top-
ics including e.g., resolving lexical/morphological
variabilities by symbolic de-lexicalization-based
methods (Henderson et al., 2014; Williams et al.,
2016), neural belief tracking (Mrkšić et al., 2017),
generative dialog state tracking (Peng et al., 2020;
Hosseini-Asl et al., 2020), modeling DST as a ques-
tion answering task (Zhang et al., 2019; Lee et al.,
2019; Gao et al., 2020, 2019). Our work is similar
with the last class. However, we further investigate
whether the DST can benefit from NLP tasks other
than question answering. Furthermore, without rich
description for the service/intent/slot in the schema,
previous works mainly focus on simple format on
question answering scenarios, such as domain-slot-
type compounded names (e.g., “restaurant-food"),
or simple question template “What is the value for
slot i?". We incorporate different description styles
into a comparative discussion on §7.1.

4 Datasets

To the best of our knowledge, at the time of our
study, SG-DST and MULTIWOZ 2.2 are the only
two publicly available corpus for schema-guided
dialog study. We choose both of them for our study.
In this section, we first introduce these two repre-
sentative datasets, then we discuss the generaliz-
ibility in domain diversity, function overlapping,
data collecting methods.

Schema-Guided Dialog Dataset. SG-DST

dataset 1 is especially designed as a test-bed
for schema-guided dialog, which contains well-
designed heterogeneous APIs with overlapping
functionalities between services (Rastogi et al.,
2019). In DSTC8 (Rastogi et al., 2020), SG-
DST was introduced as the standard benchmark
dataset for schema-guided dialog research. SG-
DST covers 20 domains, 88 intents, 365 slots.2

However, previous research are mainly conducted
based on this single dataset and the provided single
description style. In this paper, we further extended
this dataset with other benchmarking description
styles as shown in §7, and then we perform both
homogenous and hetergenous evalution on it.
Remixed MultiWOZ 2.2 Dataset. To elim-
inate potential bias from the above single
SG-DST dataset, we further add MULTIWOZ
2.2 (Zang et al., 2020) to our study. Among various
extended versions for MultiWOZ dataset (2.0-2.3,
Budzianowski et al., 2018; Eric et al., 2020; Zang
et al., 2020; Han et al., 2020) , besides rectify-
ing the annotation errors, MULTIWOZ 2.2 also
introduced the schema-guided annotations, which
covers 8 domains, 19 intents, 36 slots. To evaluate
performance on seen/unseen services with Multi-
WOZ, we remix the MULTIWOZ 2.2 dataset to in-
clude as seen services dialogs related to restaurant,
attraction and train during training, and eliminate
slots from other domains/services from training
split. For dev, we add two new domains hotel and
taxi as unseen services. For test, we add all remain-
ing domains as unseen, including those that have
minimum overlap with seen services, such as hos-
pital, police, bus. The statistics of data splits are
shown in Appendix A.2. Note that this data split
is different from the previous work on zero-shot
MultiWOZ DST which takes a leave-one-out ap-
proach in Wu et al. (2019). By remixing the data in
the way described above, we can evaluate the zero-
shot performance on MultiWOZ in a way largely
compatible with SG-DST.
Discussion. First, the two datasets cover diverse
domains. MULTIWOZ 2.2 covers various possible
dialogue scenarios ranging from requesting basic
information about attractions through booking a
hotel room or travelling between cities. While SG-
DST covers more domains, such as ‘Payments’,
‘Calender’, ‘DoctorServices’ and so on.

1https://github.com/google-research-datasets/
dstc8-schema-guided-dialogue

2Please refer to the original paper for more details.

https://github.com/google-research-datasets/dstc8-schema-guided-dialogue
https://github.com/google-research-datasets/dstc8-schema-guided-dialogue
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Datasets Splits Dialog Domains Services Zero-shot Zero-shot Function Collecting
Domains Services Overlapp Method

SG-DST
Train 16142 16 26 - -

Across-domain
Within-domain

M2MDev 2482 16 17 1 8
Test 4201 18 21 3 11

MULTIWOZ 2.2
Train 9617 3 3 - -

Across-domain H2HDev 2455 5 5 2 2
Test 2969 8 8 5 5

Table 1: Summary of characteristics of SG-DST MULTIWOZ 2.2 datasets, in domain diversity, function overlap,
data collecting methods

Second, they include different levels of over-
lapping functionalities. SG-DST allows frequent
function overlapping between multiple services,
within the same domain (e.g. BookOneWayTicket
v.s. BookRoundTripTicket), or across different do-
mains (BusTicket v.s. TrainTicket). However, the
overlapping in MULTIWOZ 2.2 only exists across
different domains, e.g., ‘destination’, ‘leaveat’ slots
for Taxi and Bus services, ‘pricerange’, ‘bookday’
for Restaurant and Hotel services.

Third, they are collected by two different ap-
proaches which are commonly used in dialog col-
lecting. SG-DST is firstly collected by machine-to-
machine self-play (M2M, Shah et al., 2018b) with
dialog flows as seeds, then paraphrased by crowd-
workers. While MULTIWOZ 2.2 are human-to-
human dialogs (H2H, Kelley, 1984), which are
collected with the Wizard-of-Oz approach.

We summarize the above discussion in Table
1. We believe that results derived from these two
representative datasets can guide future research in
schema guided dialog.

5 Dialog & Schema Representation and
Inference (Q1)

In this section, we focus on the model architec-
ture for matching dialog history with schema de-
scriptions using pretrained BERT (Devlin et al.,
2019) 3. To support four subtasks, we first extend
Dual-Encoder and Cross-Encoder to support both
sentence-level matching and token-level prediction.
Then we propose an additional Fusion-Encoder
strategy to get faster inference without sacrificing
much accuracy. We summarize different architec-
tures in Figure 2. Then we show the classification
head and results for each subtask.

3We use BERT-base-cased for all main experiments. Other
pretrained language models can be easily adapted to our study

Figure 2: Dual-Encoder, Cross-Encoder and Fusion
Encoder, shaded block will be cached during training

5.1 Encoder Architectures
Dual-Encoder. It consists of two separate BERTs
to encode dialog history and schema description
respectively, as Figure 2 (a). We follow the set-
ting in the official baseline provided by DSTC8
Track4 (Rastogi et al., 2020). We first use a
fixed BERT to encode the schema description once
and cached the encoded schema CLSS . Then
for sentence-level representation, we concatenate
dialog history representation CLSD and candi-
date schema representation CLSS as the whole
sentence-level representation for the pair, denoted
as CLSDE . For token-level representation, we
concatenate the candidate schema CLSS with each
token embedding in the dialog history, denoted
as TOKDE .4 Because the candidate schema em-
beddings are encoded independently from the di-

4A schema-aware dialog token embedding can also be com-
puted by attention or other method for span-based detection
tasks (Humeau et al., 2019; Noroozi et al., 2020)
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alog context, they can be pre-computed once and
cached for fast inference.
Cross-Encoder. Another popular architecture as
Figure 2 (b) is Cross-Encoder, which concatenates
the dialog and schema as a single input, and en-
codes jointly with a single self-attentive encoder
spanning over the two segments. When using
BERT to encode the concatenated sentence pair,
it performs full (cross) self-attention in every trans-
former layers, thus offer rich interaction between
the dialog and schema. BERT naturally produces
a summarized representation with [CLS] embed-
ding CLSCE and each schema-attended dialog to-
ken embeddings TOKCE . Since the dialog and
schema encoding always depend on each other, it
requires recomputing dialog and schema encoding
for multiple times, thus much slower in inference.
Fusion-Encoder. In Figure 2 (c), similar to Dual-
Encoder, Fusion-Encoder also encodes the schema
independently with a fixed BERT and finetuning
another BERT for dialog encoding. However, in-
stead of caching a single [CLS] vector for schema
representation, it caches all token representation
for the schema including the [CLS] token. What’s
more, to integrate the sequences dialog token rep-
resentation with schema token representation, an
extra stack of transformer layers are added on top
to allow token-level fusion via self-attention, simi-
lar to Cross-Encoder. The top transformer layers
will produce embeddings for each token TOKFE

including a schema-attended CLSFE of the input
[CLS] from the dialog history. With cached schema
token-level representations, it can efficiently pro-
duce schema-aware sentence- and token-level rep-
resentation for each dialog-schema pairs.

5.2 Model Overview

All the above 3 encoders will produce both
sentence- and token-level representations for a
given sentence pair. In this section, we abstract
them as two representations CLS and TOK, and
present the universal classification heads to make
decisions for each subtask.
Active Intent. To decide the intent for current
dialog turn, we match current dialog history D
with each intent descriptions I0...Ik. For each
dialog-intent pair (D, Ik), we project the final
sentence-level CLS representation to a single num-
ber P active

Ik
with a linear layer follows a sigmoid

function. We predict "NONE" if the P active
Ik

of all
intents are less than a threshold 0.5, which means

no intent is active. Otherwise, we predict the in-
tent with largest P active

Ik
. We predict the intent for

each turn independently without considering the
prediction on previous turns.

Requested Slot. As in Figure 1, mulitple requested
slots can exist in a single turn. We use the same
strategy as in active intent prediction to predict a
number P active

req . However, to support the multi-
ple requested slots prediction. We predict all the
requested slots with P active

req > 0.5.

Categorical Slot. Categorical slots have a set of
candidate values. We cannot predict unseen values
via n-way classification. Instead, we do binary clas-
sification on each candidate value. Besides, rather
than directly matching with values, we also need to
check that whether the corresponding slot has been
activated. For Cross-Encoder and Fusion-Encoder,
we use typical two-stage state tracking to incre-
mentally build the state: Step 1. Using CLS to
predict the slot status as none, dontcare or active.
When the status is active, we use the predicted slot
value; Otherwise, it will be assigned to dontcare
meaning no user preference for this slot, or none
meaning no value update for the slot in current turn;
Step 2. If Step 1 is active, we match the dialog his-
tory with each value and select the most related
value by ranking. We train on cross entropy loss.
Two-stage strategy is efficient for Dual-Encoder
and Fusion-Encoder, where cached schema can
be reused, and get efficiently ranked globally in a
single batch. However, it is not scalable for Cross-
Encoder, especially for large number of candidate
values in MultiWOZ dataset. Hence, during train-
ing, we only use a binary cross-entropy for each
single value and postpone the ranking only to the
inference time.

Noncategorical Slot. The slot status prediction for
noncategorical slot use the same two-stage strategy.
Besides that, we use the token representation of di-
alog history TOK to compute two softmax scores
f i
start and f i

end for each token i, to represent the
score of predicting the token as start and end po-
sition respectively. Finally, we find the valid span
with maximum sum of the start and end scores.

5.3 Experiments on Encoder Comparison

To fairly compare all three models, we follow the
same schema input setting as in Table 2. We trained
separate models for SG-DST and the remixed Mul-
tiWOZ datasets for all the experiments in our pa-
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Intent service description, intent description
Req service description, slot description
Cat slot description, cat value
NonCat service description, slot description

Table 2: Schema description input used for different
tasks to compare Dual-Encoder, Cross-Encoder, and
Fusion-Encoder. In the appendix A.3, we also stud-
ies other compositions of description input. We found
that service description will not help for Intent , Req
and Cat tasks, while the impact on NonCat task also
varies from SG-DST and MULTIWOZ 2.2 dataset.

Method/Task
SG-DST MULTIWOZ 2.2

Acc F1 Joint Acc Joint Acc
Intent Req Cat NonCat All Cat NonCat All

Seen Services
Dual-Encoder 94.51 99.62 87.92 47.77 43.20 79.20 79.34 65.64
Fusion-Encoder 94.90 99.69 88.94 48.78 58.52 81.37 80.58 67.43
Cross-Encoder 95.55 99.59 93.68 91.85 87.58 85.99 81.02 71.93

Unseen Services
Dual-Encoder 89.73 95.20 42.44 31.62 19.51 56.92 50.82 31.83
Fusion-Encoder 90.47 95.95 48.79 35.91 22.85 57.01 52.23 33.64
Cross-Encoder 93.84 98.26 71.55 74.13 54.54 59.85 59.62 38.46

Table 3: Test set results on SG-DST and MULTIWOZ
2.2. The Dual-Encoder model is a re-implementation
of official DSTC8 baseline from Rastogi et al. (2019).
Other models are trained with the architecture de-
scribed in our paper.

pers5. Because there are very few intent and re-
quested slots in MULTIWOZ 2.2 dataset, we ig-
nore the intent and requested slots tasks for MUL-
TIWOZ 2.2 in our paper.
Results. As shown in Table 3, Cross-Encoder per-
forms the best over all subtasks. Our Fusion-
Encoder with partial attention outperforms the
Dual-Encoder by a large margin, epsecially on cat-
egorical and noncategorical slots predictions. Ad-
ditionally, on seen services, we found that Dual-
Encoder and Fusion-Encoder can perform as good
as Cross-Encoder on Intent and Req tasks. How-
ever, they cannot generalize well on unseen ser-
vices as Cross-Encoder.
Inference Speed. To test the inference speed, we
conduct all the experiments with a maximum af-
fordable batch size to fully exploit 2 V100 GPUs
(with 16GB GPU RAM each). During training,
we log the inference time of each evaluation on
dev set. Both Dual-Encoder and Fusion-Encoder
can do joint inference across 4 subtasks to obtain
an integral dialog state for a dialog turn example.
Dual-Encoder achieves the highest inference speed
of 603.35 examples per GPU second, because the

5Appendix A.1 shows the detailed experiment setup

encoding for dialog and schema are fully separated.
A dialog only needed to be encoded for once dur-
ing the inference of a dialog state example while
the schema are precomputed once. However, for
Cross-Encoder, to predict a dialog state for a single
turn, it need to encode more than 300 sentence pairs
in a batch, thus only processes 4.75 examples per
GPU second. Fusion-Encoder performs one time
encoding on dialog history, but it needs to jointly
encode the same amount of dialog-schema pair ws
Cross-Encoder, instead, however, with a two-layer
transformer encoder. Overall it achieves 10.54 ex-
amples per GPU second, which is 2.2x faster than
Cross-Encoder. With regarding to the accuracy
in Table 3, Fusion-Encoder performs much better
than Dual-Encoder, especially on unseen services.

6 Supplementary Training (Q2)

Besides the pretrain-fintune framework used in §5,
Phang et al. (2018) propose to add a supplemen-
tary training phase on an intermediate task after the
pretraining, but before finetuning on target task. It
shows significant improvement on the target tasks.
Moreover, large amount pretrained and finetuned
transformer-based models are publicly accessible,
and well-organized in model hubs for sharing, train-
ing and testing6. Given the new task of schema-
guided dialog state tracking, in this section, we
study our four subtasks with different intermediate
tasks for supplementary training.

6.1 Intermediate Tasks

As described in § 5.2, all our 4 subtasks take a pair
of dialog and schema description as input, and pre-
dict with the summerized sentence-pair CLS repre-
sentation. While NonCat also requires span-based
detection such as question answering. Hence, they
share the similar problem structure with the follow-
ing sentence-pair encoding tasks.
Natural Language Inference. Given a hypothe-
sis/premise sentence pair, natural language infer-
ence is a task to determine whether a hypothesis is
entailed, contradicted or neutral given that premise.
Question Answering. Given a passage/question
pairs, the task is to extract the span-based answer
in the passage.

Hence, when finetuning BERT on our subtaks,
instead of directly using the originally pretrained
BERT, we use the BERT finetuned on the above

6e.g., Huggingface(https://huggingface.co/models) and
ParlAL(https://parl.ai/docs/zoo.html), etc.

https://huggingface.co/models
https://parl.ai/docs/zoo.html
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SG-DST MULTIWOZ 2.2
intent req cat noncat cat noncat

all seen unseen all seen unseen all seen unseen all seen unseen all seen unseen all seen unseen
∆SNLI +0.51 +0.02 +0.68 -0.19 +0.38 -0.38 -1.63 -2.87 -1.23 -4.7 -0.1 -6.25 +2.05 +0.6 –0.7 +3.64 +1.05 +4.84
∆SQuAD -1.81 -0.17 -1.32 -0.25 -0.01 -0.33 -2.87 -3.02 -5.17 +1.99 -1.79 +3.25 +0.04 -0.71 +0.41 +1.93 -2.21 +4.27

Table 4: Relative performance improvement of different supplementary training on SG-DST and MULTIWOZ
2.2 dataset

two tasks for further finetuning. Due to better pefor-
mance of Cross-Encoder in §5, we directly use the
finetuned Cross-Encoder version of BERT models
on SNLI and SQuAD2.0 dataset from Huggingface
model hub. We add extra speaker tokens [user:]
and [system:] into the vocabulary for encoding the
multi-turn dialog histories.

6.2 Results on Supplementary Training

Table 4 shows the performances gain when fine-
tuning 4 subtasks based on models with the above
SNLI and SQuAD2.0 supplementary training.

We mainly find that SNLI helps on Intent task,
SQuAD2 mainly helps on NonCat task, while nei-
ther of them helps much on Cat task. Recently,
Namazifar et al. (2020) also found that when mod-
eling dialog understanding as question answering
task, it can benefit from a supplementary training
on SQuAD2 dataset, especially on few-shot scenar-
ios, which is a similar findings as our NonCat task.
Result difference on Req task is minor, because it
is a relatively easy task, adding any supplementary
training did n’t help much. Moreover, for Cat task,
the sequence 2 of the input pair is the slot descrip-
tion with a categorical slot value, thus the meaning
overlapping between the full dialog history and the
slot/value is much smaller than SNLI tasks. On
the other side, CLS token in SQuAD BERT is fine-
tuned for null predictions via start and end token
classifers, which is different from the the single
CLS classifer in Cat task.

7 Impact of Description Styles (Q3)

Previous work on schema-guided dialog (Rastogi
et al., 2020) are only based on the provided de-
scriptions in SG-DST dataset. Recent work on
modeling dialog state tracking as reading compre-
hension (Gao et al., 2019) only formulate the de-
scriptions as simple question format with existing
intent/slot names, it is unknown how it performs
when compared to other description styles. More-
over, they only conduct homogeneous evaluation
where training and test data share the same descrip-

tion style. In this section, We also investigate how a
model trained on one description style will perform
on other different styles, especially in a scenario
where chat-bot developers may design their own
descriptions. We first introduce different styles of
descriptions in our study, and then we train models
on each description style and evaluate on tests with
corresponding homogeneous and heterogeneous
styles of descriptions. Given the best performance
of Cross-Encoder shown in the previous section
and its popularity in DSTC8 challenges, we adopt
it as our model architecture in this section.

7.1 Benchmarking Styles
For each intent/slot, we describe their functionali-
ties by the following different descriptions styles:
Identifer . This is the least informative case of
name-based description: we only use meaning-
less intent/slot identifiers, e.g. Intent_1, Slot_2.
It means we don’t use description from any schema
component. We want to investigate how a simple
identifier-based description performs in schema-
guided dialog modeling, and the performance
lower-bound on transferring to unseen services.
NameOnly . Using the original intent/slot names
in SG-DST and MULTIWOZ 2.2 dataset as de-
scriptions, to show whether name is enough for
schema-guided dialog modeling.
Q-Name . This is corresponding to previous work
by Gao et al. (2019). For each intent/slot, it gener-
ate a question to inquiry about the intent and slot
value of the dialog. For each slot, it simply follows
the template ’What is the value for slot i?’. Besides
that, our work also extend the intent description by
following the template “Is the user intending to
intent j ".
Orig . The original descriptions in SG-DST and
MULTIWOZ 2.2 dataset.
Q-Orig . Different from the Q-Name, firstly it
is based on the original descriptions; secondly,
rather than always use the “what is" template to in-
quiry the intent/slot value, We add “what", “which",
“how many" or “when" depending on the entity type
required for the slot. Same as Q-Name , we just add
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prefixes as “Is the user intending to. . . ” in front of
the original description. In a sum, this description
is just adding question format to original descrip-
tion. The motivation of this description is to see
whether the question format is helpful or not for
schema-guided dialog modeling.

To test the model robustness, we also create two
paraphrased versions Name-Para and Orig-Para for
NameOnly and Orig respectively. We first use
nematus (Sennrich et al., 2017) to automatically
paraphrase the description with back translation,
from English to Chinese and then translate back,
then we manually check the paraphrase to retain the
main meaning. Appendix A.5.1 shows examples
for different styles of schema descriptions.

7.2 Results on Description Styles
Unlike the composition used in Table 2, we don’t
use the service description to avoid its impact. For
each style, we train separate models on 4 sub-
tasks, then we evaluate them on different target
styles. First, Table 5 summarizes the performance
for homogeneous evaluation, while Table 6 shows
how the question style description can benefit from
SQuAD2 finetuning. Then we also conduct hetero-
geneous evaluation on the other styles7 as shown
in Table 7.

Style\Task SG-DST MULTIWOZ 2.2
Intent Req Cat NonCat Cat NonCat

Identifer 61.16 91.48 62.47 30.19 34.25 52.28
NameOnly 94.24 98.84 74.01 75.63 53.72 56.18
Q-Name 93.31 98.86 74.36 74.86 54.19 56.17

Orig 93.01 98.55 74.51 75.76 52.19 57.20
Q-Orig 93.42 98.51 76.64 76.60 53.61 57.80

Table 5: Homogeneous evaluation results of different
description style on SG-DST dataset and MULTIWOZ
2.2 datasets. The middle horizontal line separate the
two name-based descriptions and two rich descriptions
in our settings. All numbers in the table are mixed per-
formance including both seen and unseen services.

7.2.1 Homogeneous Evaluation
Is name-based description enough? As shown
in Table 5, Identifer is the worst case of using
name description, its extremely bad performance
indicates name-based description can be very un-
stable. However, we found that simple meaning-
ful name-based description actually can perform
the best in Intent and Req task, and they perform

7We don’t consider the meaningless Identifer style due to
its bad performance

worse on Cat and NonCat tasks comparing to the
bottom two rich descriptions. 8 After careful anal-
ysis on the intents in SG-DST datasets, we found
that most services only contains two kinds of in-
tents, an information retrieval intent with a name
prefix "Find-", "Get-", "Search-"; another trans-
action intent like "Add-", "Reserve-" or "Buy-".
Interestingly, we found that all the intent names in
the original schema-guided dataset strictly follows
an action-object template with a composition of
words without abbreviation, such as "FindEvents",
"BuyEventTickets". This simple name template
is good enough to describe the core functionality
of an intent in SG-DST dataset. 9 Additionally,
Req is a relaitively simper task, requesting infor-
mation are related to specifial attributes, such as
"has_live_music", "has_wifi", where keywords co-
occured in the slot name and in the user utterance,
hence rich explanation cannot help further. On the
other side, rich descriptions are more necessary for
Cat and NonCat task. Because in many cases, slot
names are too simple to represent the functionali-
ties behind it, for example, slot name "passengers"
cannot fully represent the meaning "number of pas-
sengers in the ticket booking".
Does question format help? As shown in Table 5,
when comparing row Q-Orig v.s. Orig, we found
extra question format can improve the performance
on Cat and NonCat task on both SG-DST and
MULTIWOZ 2.2 datasets, but not for Intent and
Req tasks. We believe that question format helps
the model to focus more on specific entities in
the dialog history. However, when adding a sim-
ple question pattern to NameOnly , comparing row
Q-Name and NameOnly, there is no consistent
improvement on both of the two datasets. Fur-
ther more, we are curious about whether BERT
finetuned on SQuAD2 (SQuAD2-BERT) can fur-
ther help on the question format. Because Non-
Cat are similar with span-based question answer-
ing, we focus on NonCat here. Table 6 shows
that, after applying the supplementary training on
SQuAD2 (§6), almost all models get improved on
unseen splits however slightly dropped on seen
services. Moreover, comparing to Q-Name, Q-

8Only exception happens in Cat on MULTIWOZ 2.2.
When creating MULTIWOZ 2.2 (Zang et al., 2020), the slots
with less than 50 different slot values are classified as cate-
gorical slots, which leads to inconsistencies. We put detailed
discuss about MULTIWOZ 2.2 in the supplementary material

9This action-object template has also been found efficient
for open domain intent induction task(e.g., Vedula et al., 2020,
OPINE).
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Style/Dataset SG-DST MULTIWOZ 2.2
all seen unseen all seen unseen

Orig +1.99 -1.79 +3.25 +1.93 -2.21 +4.27
Q-Orig +6.13 -2.01 +8.84 +1.06 -1.28 +3.06

NameOnly -0.45 -1.49 -0.11 +1.75 +0.58 +1.77
Q-Name +0.05 -2.98 +1.04 -0.04 -0.32 +1.25

Table 6: Performance changes when using BERT fine-
tuned on SQuAD2 dataset to further finetuning on our
NonCat task.

Orig is more similar to the natural questions in the
SQuAD2, we obverse that Q-Orig gains more than
Q-Name from pretrained model on SQuAD2.

7.2.2 Heterogeneous

In this subsection, we first simulate a scenario when
there is no recommended description style for the
future unseen services. Hence, unseen services
can follow any description style in our case. We
average the evaluation performance on three other
descriptions and summarized in Table 7. The ∆ col-
umn shows the performance change compared to
the homogeneous performance. It is not surprising
that almost all models perform worse on heteroge-
neous styles than on homogeneous styles due to
different distribution between training and evalu-
ation. The bold number shows the best average
performance on heterogeneous evaluation for each
subtask. The trends are similar with the analysis
in homogeneous evaluation 7.2.1, the name-based
descriptions perform better than other rich descrip-
tions on intent classification tasks. While on other
tasks, the Orig description performs more robust,
especially on NonCat task.

Furthermore, we consider another scenario
where fixed description convention such as Name-
Only and Orig are suggested to developers, they
must obey the basic style convention but still can
freely use their own words, such as abbreviation,
synonyms, adding extra modifiers. We train each
model on NameOnly and Orig, then evaluate on
the corresponding paraphrased version respectively.
In the last two rows of Table 7, the column ‘para’
shows performance on paraphrased schema, while
∆ shows the performance change compared to the
homogeneous evaluation. Orig still performs more
robust than NameOnly when schema descriptions
get paraphrased on unseen services.

Style\Task
SG-DST

Intent(Acc) Req(F1) Cat(Joint Acc) NonCat(Joint Acc)
mean ∆ mean ∆ mean ∆ mean ∆

NameOnly 82.47 -11.47 96.92 -1.64 61.37 -5.54 56.53 -14.68
Q-Name 93.27 +0.58 97.88 -0.76 68.55 +2.63 62.92 -6.30

Orig 79.47 -12.70 97.42 -0.74 68.58 -0.3 66.72 -3.11
Q-Orig 84.57 -8.24 96.70 -1.45 68.40 -2.89 56.17 -15.00

para ∆ para ∆ para ∆ para ∆
NameOnly 92.22 -1.74 97.69 -0.87 67.39 -0.7 67.17 -4.04

Orig 91.54 -0.63 98.42 +0.26 71.74 +2.86 67.68 -2.16

Table 7: Results on unseen service with heterogeneous
description styles on SG-DST dataset. More results and
qualitative analysis are in the appendix A.5

8 Conclusion

In this paper, we studied three questions on schema-
guided dialog state tracking: encoder architectures,
impact of supplementary training, and effective
schema description styles. The main findings are
as follows:

By caching the token embedding instead of the
single CLS embedding, a simple partial-attention
Fusion-Encoder can achieve much better perfor-
mance than Dual-Encoder, while still infers two
times faster than Cross-Encoder. We quantified the
gain via supplementary training on two interme-
diate tasks. By carefully choosing representative
description styles according to recent works, we
are the first of doing both homogeneous/hetero-
geneous evaluations for different description style
in schema-guided dialog. The results show that
simple name-based description performs well on
Intent and Req tasks, while NonCat tasks benefits
from richer styles of descriptions. All tasks suffer
from inconsistencies in description style between
training and test, though to varying degrees.

Our study are mainly conducted on two datasets:
SG-DST and MULTIWOZ 2.2, while the speed-
accuracy balance of encoder architectures and the
findings in supplementary training are expected to
be dataset-agnostic, because they depend more on
the nature of the subtasks than the datasets. Based
on our proposed benchmarking descriptions suite,
the homogeneous and heterogeneous evaluation
has shed the light on the robustness of cross-style
schema-guided dialog modeling, we believe our
study will provide useful insights for future re-
search.
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A Appendices

A.1 Experiment Setup
All models are based on BERT-base-cased model
with 2 V100 GPUs (with 16GB GPU RAM each).
We train each models for maximum 10 epoch, by
using AdamW to schedule the learning rate with a
warm-up portion of 0.1. During training, we eval-
uate checkpoints per 3000 steps on dev splits, and
select the model with best performance on dev split
on all seen and unseen services. In our experiments,
our model achieves the best performance on around
2-4 epochs on Intent , Req . and Cat , while NonCat
needs 5-8 epochs to get the best performance. For
all subtasks, as we model all of them as sentence
pair encoding during training, we use batch size
as 16 for each GPU, and gradient accumulate for 8
steps, in total 256 batch size on 2 GPUs.

A.2 Statistic on MultiWOZ 2.2 Remix
To evaluate performance on seen/unseen services
with MultiWOZ, we remix the MULTIWOZ 2.2
dataset to include as seen services dialogs related to
restaurant, attraction and train during training, and
eliminate slots from other domains/services from
training split. For dev, we add two new domains ho-
tel and taxi as unseen services. For test, we add all
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remaining domains as unseen, including those that
have minimum overlap with seen services, such as
hospital, police, bus. The statistics are as shown in
Table 8

Domain #dialogs/#turns

train dev test
restaurant 3900 37953 458 6979 451 7104
attraction 2716 28632 405 6198 400 6290

train 3001 29646 481 5897 491 6150
hotel 0 0 737 8509 718 7911
taxi 0 0 374 2692 364 2659

hospital 0 0 0 0 287 766
police 0 0 0 0 252 475

bus 0 0 0 0 6 132

Table 8: The total number of dialogs and turns related
to each domain in train, dev and test split of MultiWOZ

A.3 Composition of Descriptions
A.3.1 Composition Settings
For each subtask, the key description element must
be included, e.g., intent description for intent task,
and value for categorical slot tasks. To show how
each component helps schema-guided dialog state
tracking, we incrementally add richer schema com-
ponent one by one.
ID. This is the least informative case: we only use
meaningless intent/slot identifiers, e.g. Intent_4,
Slot_2. It means we don’t use description from
any schema component. We want to investigate
how a simple identifier-based description performs
in schema-guided dialog modeling, and the per-
formance lower-bound on transferring to unseen
services.
I/S Desc. Only using the original intent/slot de-
scription of intent/slot in SG-DST and MULTI-
WOZ 2.2 dataset for corresponding tasks.
Service + I/S Desc. Adding a service description
to the above original description. Service descrip-
tion summarize the functionalities of the whole
service, hence may offer extra background infor-
mation for intent and slots. For categorical slot
value detection, we simply add the value after each
of the above composition.

A.3.2 Results on Description Compositions
Table 9 shows the results of using different descrip-
tion compositions. First, there are consistent find-
ings across datasets and subtasks: (1) using mean-
ingless identifier as intent/slot description shows
the worse performance on all tasks of both datasets,
and can not generalize well to unseen services.
(2) using intent/slot descriptions can largely boost
the performance, especially on unseen services.

Model\Task SG-DST MultiWOZ
Intent Req Cat NonCat Cat NonCat

Seen Service
Identifer 92.76 99.70 87.86 88.38 58.46 77.29
I/S Desc 95.35 99.74 92.10 93.52 85.84 83.67
Service + I/S Desc 95.28 99.74 93.19 92.34 85.07 80.56

Unseen Service
Identifier 50.63 88.74 54.34 10.77 53.05 56.18
I/S Desc 92.17 98.16 68.88 69.84 56.49 61.39
Service + I/S Desc 86.95 97.99 67.08 71.30 60.58 59.63

Table 9: Models using different composition of
schema, results on test set of SG-DST and our remixed
MULTIWOZ 2.2

However, the impact of service description
varies by tasks. For example, it largely hurts per-
formance on intent classification task, but does not
impact requested slot and categorical slot tasks. Ac-
cording to manual analysis of SG-DST and MUL-
TIWOZ 2.2 dataset, we found that service descrip-
tion consists of the main functions of the service,
especially the meaning of the supported intents.
Hence, using service description for intent causes
confusion between the intent description informa-
tion and other supported intents. Moreover, in cate-
gorical slot value prediction task, the most impor-
tant information is the slot description and value.
When adding extra information from service de-
scription, it improves marginally on seen service
while not generalizing well on unseen services,
which indicates the model learns artifacts that are
not general useful for unseen services.

Finally, on non-categorical slot tasks, the impact
of service description may also varies on datasets.
On SG-DST, there are 16 domains and more than
30 services, the rich background context from ser-
vice description contains both domain and service-
specific information, which seems to help both seen
and unseen services. However, on MULTIWOZ
2.2, it hurts the performance on seen service restau-
rant the most, while improving the performance
on the unseen service hotel by 4 points. In this
case, it works like a regularizer rather than a defini-
tive clues. Because in MULTIWOZ 2.2, there are
only 8 domains, and one service per domain, thus
service descriptions just contain domain related in-
formation without much extra information, it will
not help the model to detect the span for the slot.

A.4 More Results of Supplementary Training

Table 10 shows the detailed performance when us-
ing different intermediate tasks as supplementary
training. For SNLI tasks, as the pretrained model is
uncased model (textattack/ bert-base-uncased-snli),
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sgd multiwoz
intent req cat noncat cat noncat

snli uncased 93.31 95.4 92.62 98.62 99.34 98.37 75.66 93.39 69.98 80.38 90.93 76.87 51.77 84.93 59.40 56.47 82.39 61.62
snli 93.82 95.42 93.3 98.43 99.72 97.99 74.03 90.52 68.75 75.68 90.83 70.62 53.82 85.53 58.70 60.11 83.44 66.46

∆SNLI +0.51 +0.02 +0.68 -0.19 +0.38 -0.38 -1.63 -2.87 -1.23 -4.7 -0.1 -6.25 +2.05 +0.6 –0.7 3.64 +1.05 +4.84

squad cased 93.01 95.51 92.2 98.59 99.59 98.26 74.51 92.1 71.23 75.76 93.52 69.84 52.19 85.74 56.49 57.2 83.67 61.39
squad 91.2 95.34 90.88 98.34 99.58 97.93 71.64 89.08 66.06 77.75 91.73 73.09 52.23 85.03 56.90 59.13 81.46 65.66

∆SQuAD -1.81 -0.17 -1.32 -0.25 -0.01 -0.33 -2.87 -3.02 -5.17 1.99 -1.79 3.25 +0.04 -0.71 +0.41 1.93 -2.21 +4.27

Table 10: Results of different supplementary training on SG-DST and MULTIWOZ 2.2 dataset

style Intent Description Slot Description
Identifer intent_1 slot_4
NameOnly CheckBalance account_type
Q-Name Is the user intending to CheckBalance? What is the value of acctount_type ?
Orig Check the amount of money in a user’s bank account The account type of the user
Q-Orig Does the user want to check the amount of money in the bank account ? What is the account type of the user ?
Name-Para CheckAccountBalance user_account_type
Orig-Para Check the balance of the user’s bank account Type of the user account

Table 11: Different extensions of schema descriptions

hence, we first train different models with BERT-
base-uncased, then compare the performance with
SNLI pretrained model. For SQuAD2, we use
deepset/bert-base-cased-SQuAD2 model, hence,
we compare it all cased model. To fairly com-
pare with our original Cross-Encoder, we add extra
speaker tokens [user:] and [system:] for encoding
the multi-turn dialog histories.

A.5 Homogeneous and Hetergenuous
Evaluation on Different Styles

A.5.1 Examples for Different Description
Styles

Table 11 shows examples for different styles of
schema descriptions.

A.5.2 More details on SQuAD2 Results on
Different Styles

For homogeneous evaluation, Table 12 shows the
detailed performance when we apply SQuAD2-
finetuned BERT on our models.

A.5.3 More Results On Homogeneous and
Heterogeneous Evalution

We list the detailed results for our evaluation across
different styles. We use italic to show the homoge-
neous evaluation, where the results are shown in the
diagonal of each table, and we underline the best
homogeneous results in the diagonal. We use bold
to show the best heterogeneous performance and
the best performance gap in the last two columns
Intent. The results on SG-DST dataset are shown
in Table 13. Because there are very few intents
in MULTIWOZ 2.2 dataset, we don’t conduct in-
tent classification on MULTIWOZ 2.2. All perfor-

Style/Dataset SG-DST MULTIWOZ 2.2
all seen unseen all seen unseen

Orig
75.76 93.52 69.84 57.2 83.67 61.39
77.75 91.73 73.09 59.13 81.46 65.66
+1.99 -1.79 +3.25 +1.93 -2.21 +4.27

Q-Orig
76.60 92.86 71.18 57.80 82.45 62.45
82.73 90.85 80.02 58.86 81.17 65.51
+6.13 -2.01 +8.84 +1.06 -1.28 +3.06

NameOnly
75.63 88.90 71.21 56.18 81.68 61.30
75.18 87.41 71.10 57.93 82.26 63.07
-0.45 -1.49 –0.11 +1.75 +0.58 +1.77

Q-Name
74.86 91.78 69.22 56.17 81.19 60.47
74.91 88.8 70.26 56.13 80.87 61.72
+0.05 -2.98 +1.04 -0.04 -0.32 +1.25

Table 12: Results on different description style on SG-
DST and MULTIWOZ 2.2 dataset, when performing
SQuAD2 supplementary training

mance get dropped when evaluating on heteroge-
neous descriptions styles. For both heterogeneous
and homogeneous evaluation, adding rich descrip-
tion on intent classification tasks seems not bring
much benefits than simply using the named-based
description. As the discussion in §7.2.1, we believe
the name template is good enough to describe the
core functionality of an intent in SG-DST dataset.
Requested Slot. Table 14 shows the results on SG-
DST dataset for the requested slots subtask. We ig-
nore the requested slots in MULTIWOZ 2.2 dataset
due to its sparsity. Overall, the requested slot sub-
task are relatively easy, performances on hetero-
geneous styles still drops but not much. For both
heterogeneous and homogeneous evaluation, the
performance are not sensible to rich description.
Categorical Slot. The results on SG-DST and
MULTIWOZ 2.2 dataset are shown in Table 15.
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Style NameOnly Q-Name Orig Q-Orig mean ∆
NameOnly 93.94 78.27 93.18 75.95 82.47 -11.47
Q-Name 93.18 92.69 93.26 93.36 93.27 +0.58

Orig 81.57 66.42 92.17 90.43 79.47 -12.70
Q-Orig 81.48 79.04 93.19 92.81 84.57 -8.24

Table 13: Accuracy of intent classification subtask
with different description styles on unseen services.
Train the model on SG-DST dataset for each descrip-
tion in each row, then evaluating on 4 different descrip-
tions styles. The mean are average performance of the
remaining 3 descriptions styles. The ∆ means the per-
formance gap between the mean and the homogeneous
performance

Style NameOnly Q-Name Orig Q-Orig mean ∆
NameOnly 98.56 96.01 97.2 97.54 96.92 -1.64
Q-Name 98.37 98.64 97.8 97.48 97.88 -0.76

Orig 97.95 95.78 98.16 98.52 97.42 -0.74
Q-Orig 97.24 95.85 97.00 98.15 96.70 -1.45

Table 14: F1 Score of requested slot classification
subtask with different description styles on unseen ser-
vices. We train the model on SG-DST dataset for the
description style in each row, then evaluate on 4 differ-
ent descriptions styles. The mean are average perfor-
mance of the remaining 3 descriptions styles. The ∆
means the performance gap between the mean and the
homogeneous performance

When creating MULTIWOZ 2.2 (Zang et al., 2020),
the slots with less than 50 different slot values are
classified as categorical slots. We noticed that this
leads inconsistent results with SG-DST dataset. It
is hard to draw a consistent conclusion on the two
datasets. According to the definition, we believe
SG-DST are more suitable for categorical slot sub-
tasks, we can further verify our guess when more
datasets are created for the research of schema-
guided dialog in the future.
Non-categorical Slot. We conduct non-
categorical slot identification sub-tasks on
both SG-DST and MULTIWOZ 2.2 dataset. The
results are shown in Table 16. Overall, the rich
description performs better on both homogeneous
and heterogeneous evaluations.

A.5.4 Qualitative Analysis On Heterogeneous
Evaluation

We conduct qualitative analysis on heterogeneous
evaluation on named-based description. Table 17
shows how paraphrasing the named-based descrip-
tion impact on the categorical and non-categorical
slot prediction tasks.

The first 3 rows at the top are showing the cases
of adding modifiers to the name. When the added

Style NameOnly Q-Name Orig Q-Orig mean ∆
SG-DST

NameOnly 68.09 58.41 63.49 62.21 61.37 -6.72
Q-Name 69.01 68.29 68.53 68.12 68.55 +0.26

Orig 70.19 65.91 68.88 69.64 68.58 -0.30
Q-Orig 69.98 65.97 69.26 71.29 68.40 -2.89

MULTIWOZ 2.2
NameOnly 59.24 59.32 59.12 59.29 59.24 0.00
Q-Name 58.64 59.74 58.49 59.43 58.85 -0.89

Orig 59.26 59.91 56.49 58.97 59.38 +2.89
Q-Orig 60.00 60.70 51.18 58.95 57.29 -1.66

Table 15: Joint accuracy of categorical slot Sub-
task with different description styles on unseen ser-
vices. Train the model on SG-DST and MULTIWOZ
2.2 datasets respectively for each description style in
each row, then evaluate on all 4 descriptions styles. The
mean are the average performance of the remaining 3
descriptions styles. The ∆ means the performance gap
between the mean and the homogeneous performance

Style NameOnly Q-Name Orig Q-Orig mean ∆
SG-DST

NameOnly 71.21 49.85 59.8 59.95 56.53 -14.68
Q-Name 66.32 69.22 61.67 60.77 62.92 -6.30

Orig 78.73 51.57 69.84 69.87 66.72 -3.12
Q-Orig 62.6 36.44 69.49 71.18 56.18 -15.00

MULTIWOZ 2.2
NameOnly 61.30 57.88 61.51 64.05 61.15 -0.15
Q-Name 60.62 60.47 60.6 62.58 61.27 +0.80

Orig 61.77 65.4 61.39 62.4 63.19 +1.80
Q-Orig 61.29 60.6 62.46 62.45 61.45 -1.00

Table 16: Joint accuracy of non-categorical slot Sub-
task with different description styles on unseen ser-
vices. We train the model on SG-DST and MULTI-
WOZ 2.2 datasets respectively for the description style
in each row, then evaluate on all 4 different descriptions
styles. The mean are the average performance of the
remaining 3 descriptions styles. The ∆ means the per-
formance gap between the mean and the homogeneous
performance

extra modifiers are keywords in other slots, e.g.
"attraction" are the keywords also used in "attrac-
tion_name". The first shows "attraction_location"
may wrongly predicted as "attraction_name". It
seems the model does not understand the com-
pound nouns well, and they seems just pay attention
to each key words "attraction" and "movie" here.

The 3 rows in the middle are showing the cases
of using synonyms. Changing "to" to "target", and
changing "movie" to "film" will cause extra confu-
sion, which shows the model may fail to the syn-
onyms.

The last 4 rows at the bottom is showing using
abbreviations. Changing "number" to "num" will
not impact the model, while changing "subtitle" to
"sub" may let the model miss the key meaning of
subtitle. The performance drop in the later case
may be due to the misuse of the "sub" prefix, in En-
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Service Name Original Name Paraphrased Name Extra impact by the paraphrased name
Travel_1 location attraction_location Confused with other "attraction" prefixed slots, e.g. attraction _name
Movies_1 genre movie_genre Confused with movie_name
Movies_1 price ticket_price, total_price No impact
Bueses_3 to_city target_city The synonyms "target" is not understood well by model, confused with from_city
Movies_1 movie_name film_name The synonyms "film" is not understood well, getting wrong with theather_name
Hotels_2 where_to house_loc Improved by specific "house" keywords
Flights_4 origin_airport orig_city_airport More frequently predicted to slot "destination_airport"
Flights_4 destination_airport dest_city_airport More frequently predicted to slot "origin_airport"
Media_3 subtitle_language sub_lang Missing keyword "subtitle" make the slot inactive
Flights_4 number_of_tickets num_of_tickets No impact

Table 17: We analyze the confusion matrix of above slots before and after using the paraphrased name. We
summarize the extra impact for using each paraphrased name.

glish, it usually means "secondary, less important,
parts". We also found the "orig" and "dest" abbrevi-
ations may also understand well by the model. The
above abbreviations seems reasonable paraphrases
people will use for naming, while the are not un-
derstood well in the given context. Hence, in the
design of schema-guided dialog, if using named-
based description, we should be careful for about
abbreviations used in the naming.


