
Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 734–749

June 6–11, 2021. ©2021 Association for Computational Linguistics

734

Few-shot Intent Classification and Slot Filling with Retrieved Examples

Dian Yu∗
University of California, Davis

dianyu@ucdavis.edu

Luheng He
Google Research

luheng@google.com

Yuan Zhang
Google Research

zhangyua@google.com

Xinya Du∗
Cornell University
xd75@cornell.edu

Panupong Pasupat
Google Research

ppasupat@google.com

Qi Li
Google Assistant

qilqil@google.com

Abstract

Few-shot learning arises in important practical
scenarios, such as when a natural language un-
derstanding system needs to learn new seman-
tic labels for an emerging, resource-scarce do-
main. In this paper, we explore retrieval-based
methods for intent classification and slot fill-
ing tasks in few-shot settings. Retrieval-based
methods make predictions based on labeled ex-
amples in the retrieval index that are similar
to the input, and thus can adapt to new do-
mains simply by changing the index without
having to retrain the model. However, it is non-
trivial to apply such methods on tasks with a
complex label space like slot filling. To this
end, we propose a span-level retrieval method
that learns similar contextualized representa-
tions for spans with the same label via a novel
batch-softmax objective. At inference time,
we use the labels of the retrieved spans to con-
struct the final structure with the highest ag-
gregated score. Our method outperforms pre-
vious systems in various few-shot settings on
the CLINC and SNIPS benchmarks.

1 Introduction

Few-shot learning is a crucial problem for practical
language understanding applications. In the few-
shot setting, the model (typically trained on source
domains with abundant data) needs to adapt to a
set of unseen labels in the target domain with only
a few examples. For instance, when developers
introduce a new product feature, a query under-
standing model has to learn new semantic labels
from a small dataset they manage to collect.

Few-shot learning is challenging due to the im-
balance in the amount of data between the source
and target domains. Traditional classification meth-
ods, even with the recent advancement of pre-
trained language models (Peters et al., 2018; Devlin
et al., 2019), could suffer from over-fitting (Snell

∗work done during internship at Google Research

et al., 2017; Triantafillou et al., 2019) or catas-
trophic forgetting (Wu et al., 2019) when incorpo-
rating the data-scarce target domain. On the other
hand, metric learning methods (Weinberger et al.,
2006; Vinyals et al., 2016; Snell et al., 2017) have
been shown to work well in few-shot scenarios.
These methods are based on modeling similarity be-
tween inputs, effectively allowing the model to be
decoupled from the semantics of the output space.
For example, a model would learn that the utter-
ance “I’d like to book a table at black horse tavern
at 7 pm” (from Figure 1) is similar to “make me a
reservation at 8” and thus are likely to have similar
semantic representations, even without knowing
the semantic schema in use. Unlike learning out-
put labels, which is difficult when examples are
scarce, learning a similarity model can be done
on the abundant source domain data, making such
models data-efficient even in few-shot settings.

While there are many instantiations of metric
learning methods (see Section 3), we focus on
retrieval-based methods, which maintain an ex-
plicit retrieval index of labeled examples. The most
basic setting of retrieval-based model for few-shot
learning is: after training a similarity model and
encoding target domain data into the index, we can
retrieve examples most similar to the given input,
and then make a prediction based on their labels.
Compared to methods that do not maintain an in-
dex, such as Prototypical Networks (Snell et al.,
2017), retrieval-based methods are less sensitive
to outliers with few data points, and are powerful
when we have abundant data in the source domain
(Triantafillou et al., 2019).

However, applying retrieval-based models on
tasks with a structured output space is non-trivial.
For example, even if we know that the utterance
in Figure 1 is similar to “make me a reservation
at 8”, we cannot directly use its slot values (e.g.,
the time slot has value “8” which is not in the
input), and not all slots in the input (e.g., “black

735

[CLS] I’d like to book a table at black horse tavern at 7 pm ...

[CLS] book a table at the
vertex bar & grill on
alaska day in …
slot name: restaurant_type

[CLS] book a taverna that
serves vichyssoise within
walking distance …
slot name: restaurant_type

[CLS] make me a
reservation at a bar for a
party of 7 in …
slot name: restaurant_type

examples in the support set

query

0.87 0.96 0.97
0.58

[CLS] book a taverna that
serves vichyssoise within
walking distance …
slot name: served_dish

Figure 1: Illustration of span-level retrieval for slot filling. For each span (including spans that are not valid slots
such as “book a table”) in the input utterance, we retrieve its most similar span from the retrieval index, and then
assign the slot name as the prediction with a similarity score. We use modified beam search to decode an output
that maximizes the average similarity score. The gold slots are “black horse tavern” and “7 pm” in this example.

horse tavern”) have counterparts in the retrieved
utterance. While previous works have exploited
token-level similarity methods in a BIO-tagging
framework, they had to separately simulate the la-
bel transition probabilities, which might still suffer
from domain shift in few-shot settings (Wiseman
and Stratos, 2019; Hou et al., 2020).

In this work, we propose Retriever, a
retrieval-based framework that tackles both classi-
fication and span-level prediction tasks. The core
idea is to match token spans in an input to the most
similar labeled spans in a retrieval index. For ex-
ample, for the span “7 pm” in the input utterance,
the model retrieves “8” as a similar span (given
their surrounding contexts), thus predicting that “7
pm” has the same slot name time as “8”. Dur-
ing training, we fine-tune a two-tower model with
BERT (Devlin et al., 2019) encoders, along with a
novel batch softmax objective, to encourage high
similarity between contextualized span represen-
tations sharing the same label. At inference time,
we retrieve the most similar span from the few-
shot examples for every potential input span, and
then decode a structured output that has the highest
average span similarity score.

We show that our proposed method is effec-
tive on both few-shot intent classification and slot-
filling tasks, when evaluated on CLINC (Larson
et al., 2019) and SNIPS (Coucke et al., 2018)
datasets, respectively. Experimental results show
that Retriever achieves high accuracy on few-
shot target domains without retraining on the target
data. For example, it outperforms the strongest
baseline by 4.45% on SNIPS for the slot-filling
task.

2 Benefits of Retriever

In addition to being more robust against overfit-
ting and catastrophic forgetting problems, which
are essential in few-shot learning settings, our pro-
posed method has multiple advantages overs strong
baselines. For instance, if the scheme is changed
or some prediction bugs need to be fixed, there
is minimum re-training required. More impor-
tantly, compared to classification or Prototypical
Networks which require adding arbitrary number
of instances to the training data and hope that the
model will predict as expected (Yu et al., 2019;
Liang et al., 2020), Retriever can guarantee
the prediction when a similar query is encoun-
tered. At the same time, Retriever is more in-
terpretable where the retrieved examples can serve
as explanations. In addition, different from the
simplified assumption that one utterance may only
have one intent (Bunt, 2009; Yu and Yu, 2019),
Retriever can be used to predict multiple la-
bels. Lastly, because Retriever does not need
to model transition probability, the decoding proce-
dure can be paralleled and potentially be modified
to be non-autoregressive for speedup. We can also
tune threshold (explained in Section 5.2) to change
precision and recall according to use case require-
ments.

3 Related Work

Few-shot metric learning Metric learning meth-
ods target at learning representations through dis-
tance functions. Koch et al. (2015) proposed
Siamese Networks which differentiated input ex-
amples with contrastive and triplet loss func-
tions (Schroff et al., 2015) on positive and negative
pairs. While they are more data efficient for new

736

classes than linear classifiers, Siamese Networks
are hard to train due to weak pairs sampled from
training batch (Gillick et al., 2019). In comparison,
Prototypical Networks (Snell et al., 2017) proposed
to compute class representations by averaging em-
beddings of support examples for each class. These
methods have been mostly explored in computer
vision and text classification (Geng et al., 2019; Yu
et al., 2018), and consistently outperform Siamese
Networks and retrieval-based methods such as k-
nearest-neighbors, especially when there are more
classes and fewer annotated examples (Triantafil-
lou et al., 2019; Sun et al., 2019). However, newly
added examples which are outliers may change
the prototypical representations dramatically that
can harm all predictions on the class. In addition,
these methods do not perform well when there are
more annotated data available per class (Triantafil-
lou et al., 2019).

Recently, Wang et al. (2019) showed that a sim-
ple nearest neighbor model with feature transfor-
mations can achieve competitive results with the
state-of-the-art methods on image classification. In-
spired by their work, we train our retrieval-based
model with a novel batch softmax objective.

Metric learning in language understanding
Utilizing relevant examples to boost model per-
formance has been applied to language modeling
(Khandelwal et al., 2020), question answering (Guu
et al., 2020; Lewis et al., 2020), machine transla-
tion (Zhang et al., 2018), and text generation (Peng
et al., 2019). Recently, metric learning has been
applied to intent classification (Sun et al., 2019;
Krone et al., 2020). Ren and Xue (2020) trained
Siamese Networks before learning a linear layer
for intent classification and showed competitive
results with traditional methods in the full-data set-
ting. Similar ideas are also extended to sequence
labeling tasks such as named entity recognition
(NER, Wiseman and Stratos, 2019; Fritzler et al.,
2019) by maximizing the similarity scores between
contextual tokens representations sharing the same
label. Krone et al. (2020) utilized Prototypical
Networks to learn intent and slot name prototype
representations and classified each token to its clos-
est prototype. They showed better results than
meta-learning, another prevalent few-shot learn-
ing method (Finn et al., 2017; Mishra et al., 2018).
In order to consider label dependencies that are
essential in slot tagging tasks (Huang et al., 2015),
Hou et al. (2020) proposed a collapsed dependency

transfer (CDT) mechanism by simulating transition
scores for the target domain from transition prob-
abilities among BIO labels in the source domain,
outperforming previous methods on slot filling by
a large margin. Yang and Katiyar (2020) further
explored the transition probability by evenly dis-
tributing the collapsed transition scores to the target
domain to maintain a valid distribution. However,
this simulation is noisy and the difference between
the source and target domains can result in biased
transition probabilities.

The most similar approach to ours is a concur-
rent work from Ziyadi et al. (2020), which learns
span boundaries and sentence similarities before re-
trieving the most similar span, inspired by question-
answering models. Even though this approach pre-
dicts spans before retrieving on the span level and
thus bypasses the problem of transition probability
in previous research, it only achieves unsatisfac-
tory results. Different from these researches, we
propose to learn span representations using a batch
softmax objective without having to explicitly learn
span boundaries. Our method achieves more accu-
rate slot and intent prediction than previous meth-
ods in the few-shot setting.

4 Setup

We consider two tasks where the input is an ut-
terance x with tokens x1, . . . , xn and the output
is some structure y. For the slot filling task, the
output y is a set of non-overlapping labeled spans
{(ri, `i)}mi=1 where ri is a span of x (e.g., “7 pm”)
and `i is a slot name (e.g., time). For the intent
classification task, the output y is simply an intent
label ` for the whole utterance x. For notational
consistency, we view intent classification as pre-
dicting a labeled span (r, `) where r = x1:n.

In the few-shot setup, examples (x,y) are di-
vided into source and target domains. Examples in
the target domain may contain some labels ` that
are unseen in the source domain. The model will be
given ample training data from the source domain,
but only a few training examples from the target do-
main. For instance, the model receives only K = 5
examples for each unseen label. The model can be
evaluated on test data from both domains.

5 Model

We propose a retrieval-based model, Retriever,
for intent classification and slot filling in the few-
shot setting. Figure 1 illustrates our approach. At

737

a high level, from examples (x,y) in the target
training data (and optionally the source training
data), we construct a retrieval index consisting of
labeled spans (r, `) from y. Given a test utterance
x, for each span of interest in x (all spans xi:j for
slot filling; only x1:n for intent classification), we
retrieve the most similar labeled spans (r, `) from
the index, and then use them to decode an output y
that maximizes the average span similarity score.

The use of retrieval provides several benefits.
For instance, we empirically show in Section 7.1
that the model does not suffer from catastrophic
forgetting because both source and target data are
present in the retrieval index. Class imbalance
can also be directly mitigated in the retrieval in-
dex. Additionally, since the trained model is non-
parametric, we could replace the retrieval index to
handle different target domains without having to
retrain the model. This also means that the model
does not need access to target data during training,
unlike traditional classification methods.

5.1 Retriever

The retriever is the only trainable component in our
model. Given a query span r′ = xi:j from the input
x, the retriever returns a set of labeled spans (r, `)
with the highest similarity scores s(z, z′), where
z = E(r) and z′ = E(r′) are the contextualized
embedding vectors of r and r′, respectively.

Similarity score To compute the contextualized
embeddings z and z′ of spans r and r′, we first
apply a Transformer model initialized with pre-
trained BERT on the utterances where r and r′

come from. For slot filling, we follow Toshniwal
et al. (2020) and define the span embedding as the
concatenated embeddings of the its first and last
wordpieces. For intent classification, we use the
embedding of the [CLS] token. We then define
s(z, z′) as the dot product1 between z and z′.

Training with batch softmax We use examples
from the source domain to train Retriever. Let
`1, . . . , `N be the N class labels (slot or intent la-
bels) in the source domain. To construct a train-
ing batch, for each class label `i, we sample B
spans r1i , . . . , r

B
i from the training data with that

label, and compute their embeddings z1i , . . . , z
B
i .

1We experimented with affine transformation as well as
cosine similarity but did not see any performance gain. For
intent classification, using the [CLS] token achieves better
results than averaging word embeddings.

Then, for each query span rji , we compute simi-
larity scores against all other spans in the batch to
form a B ×N similarity matrix:

Sj
i =


s(zji , z

1
1) s(zji , z

1
2) . . . s(zji , z

1
N)

s(zji , z
2
1) s(zji , z

2
2) . . . s(zji , z

2
N)

...
...

. . .
...

s(zji , z
B
1) s(zji , z

B
2) . . . s(zji , z

B
N)

 .
(1)

We now summarize the score between rji and each
label `i′ by applying a reduction function (defined
shortly) along each column to get a 1×N vector:

Ŝj
i =

[
s(zji , z

∗
1) s(zji , z

∗
2) . . . s(zji , z

∗
N)
]
(2)

We use the softmax of Ŝj
i as the model’s probability

distribution on the label of rji . The model is then
trained to optimize the cross-entropy loss on this
distribution against the gold label `i.

We experiment with three reduction functions,
mean (Eq. 3), max (Eq. 4), and min-max (Eq. 5):

s(zji , z
∗
i′) =

1

B

B∑
j′=1

s(zji , z
j′

i′) = s

(
zji ,

1

B

B∑
j′=1

zj
′

i′

)
(3)

s(zji , z
∗
i′) = max

1≤j′≤B;
j′ 6=j if i=i′

s(zji , z
j′

i′) (4)

s(zji , z
∗
i′) =

 min
1≤j′≤B

s(zji , z
j′

i′), if i = i′

max
1≤j′≤B

s(zji , z
j′

i′), otherwise
(5)

The mean reduction averages embeddings of the
spans with the same label and is equivalent to Pro-
totypical Networks. Similar to hard negative sam-
pling to increase margins among classes (Schroff
et al., 2015; Roth et al., 2020; Yang et al., 2019),
max takes the most similar span to the query (ex-
cluding the query itself) as the label representation,
while min-max takes the least similar span when
considering spans with the same label as the query.

5.2 Inference
After training, we build a dense retrieval index
where each entry (r, `) is indexed by z = E(r).
The entries (r, `) come from examples (x,y) in
the support set which, depending on the setting,
could be just the target training data or a mixture
of source and target data. For each query span r′ of
the input utterance x, we embed the span and com-
pute the similarity scores against all index entries.

738

Intent classification For intent classification,
both index entries and query spans are restricted to
the whole utterances. The entire process thus boils
down to retrieving the most similar utterance based
on the [CLS] token embedding. We simply output
the intent label of the retrieved utterance.

Slot filling In contrast to BIO decoding for token-
level similarity models (Hou et al., 2020), decoding
with span retrieval results poses unique challenges
as gold span boundaries are not known a priori.
Hence, we use a modified beam search procedure
with simple heuristics to compose the spans.

Specifically, for each of the n×m spans in an
utterance of length n (where the hyperparameter
m is the maximum span length), we retrieve the
most similar span from the retrieval index. Then we
normalize the similarity scores by L2-norm so that
they are within the range [0, 1]. Since we do not
explicitly predict span boundaries, all n×m spans,
including non-meaningful ones (e.g., “book a”),
will have a retrieved span. Such non-meaningful
spans should be dissimilar to any labeled span in
the retrieval index. We thus choose to filter the
spans with a score threshold to get a smaller set of
candidate spans. In addition, we adjust the thresh-
old dynamically (by reducing the threshold for a
few times) if no span is above the current threshold.

Once we get candidate spans with similarity
scores, we use beam search to decode a set of spans
with maximum average scores.2 We go through the
list of candidate spans in the descending order of
their similarity scores. For each candidate span,
we expand beam states if the span does not overlap
with the existing spans in the beam. The search
beams are pruned based on the average similarity
score of the spans included so far. Lastly, we add
spans in the filtered set which do not overlap with
the final beam.

Beam search can avoid suboptimal decisions
that a greedy algorithm would make. For instance,
if we greedily process the example in Figure 1,

“black” and “tavern” would become two indepen-
dent spans, even though their average similarity
score is lower than the correct span “black horse
tavern”. Nevertheless, beam search is prone to
mixing up span boundaries and occasionally pre-
dicts consecutive partial spans such as “black horse”
and “tavern” as individual slots. Since consecutive
spans of the same slot label are rare in slot filling

2We use beam search for simplicity. Other search methods
such as Viterbi algorithm (Forney, 1973) can also be used.

datasets, we merge the two spans if their retrieval
scores are within a certain range:

ri:j , rj:k =

{
ri:k if |s(zi:j , z′)− s(zj:k, z′′)| < λ

ri:j , rj:k otherwise

where ri:j and rj:k are two consecutive potential
spans sharing the same label, and z′ and z′′ are the
embeddings of their retrieved spans, respectively
(ri:k indicates merging the two spans into one span;
λ is the merge threshold where λ = 1 means al-
ways merge and λ = 0 means never merge).

6 Experiments and Results

We evaluate our proposed approach on two datasets:
CLINC (Larson et al., 2019) for intent classifica-
tion and SNIPS (Coucke et al., 2018) for slot filling.
Note that we use max (Eq. 4) as the reduction func-
tion for both tasks since it empirically yields the
best results. The effect of reduction functions will
be analyzed later in Section 7.1.

6.1 Intent Classification
The CLINC intent classification dataset (Larson
et al., 2019) contains utterances from 10 intent cat-
egories (e.g., “travel”), each containing 15 intents
(e.g., “flight_status”, “book_flight”). To simulate
the few-shot scenario where new domains and in-
tents are introduced, we designate nc categories
and ni intents per category as the source domain
(with all 100 training examples per intent), and use
the remaining 150 − nc × ni intents as the target
domain. We experiment with (nc, ni) = (10, 10),
(8, 10), and (5, 15). 3 The target training data con-
tains either 2 or 5 examples per target intent.

We compare our proposed method Retriever
with a classification model BERT fine-tune
and a Prototypical Network model Proto. The
former learns a linear classifier on top of BERT
embeddings (Devlin et al., 2019), and the latter
learns class representations based on Prototypical
Networks.4 We also show results with the ini-
tial BERT checkpoint without training (Protofrz,
Retrieverfrz). We use the same batch size for
all models, and tune other hyperparameters on the
development set before testing.

3(nc, ni) = (10, 10) simulates the situation where all the
categories are known, but we adapt to new intents in all 10
categories; (nc, ni) = (5, 15) simulates the situation where
we adapt to 5 entirely new intent categories.

4Previous work show that Prototypical Networks outper-
forms other optimization-based and metric-learning models
such as MAML in (intent) classification tasks (Triantafillou
et al., 2019; Krone et al., 2020).

739

support_set=all support_set=balance support_set=tgt

tgt src avg tgt src avg tgt

Initial BERT

Protofrz 14.07 25.02 21.37 - - - -
Retrieverfrz 8.24 54.76 39.25 22.09 25.29 24.22 37.93

Pre-train on src domain

BERT fine-tune - 96.51 - - - - -
Proto 75.02 95.73 88.83 - - - -
Retriever 62.69 97.08 85.62 75.93 95.44 88.94 88.53
Retriever min-max 66.00 96.64 86.43 71.82 95.14 87.37 86.38

Fine-tune on tgt domain

BERT fine-tune 78.89 43.91 55.57 - - - -
Proto 80.44 95.57 90.53 - - - 90.35
Retriever 66.76 96.95 86.89 79.20 95.50 90.07 91.16
Retriever min-max 67.64 96.84 87.11 77.60 95.35 89.43 89.56

Fine-tune on tgt domain with src data

BERT fine-tune 72.00 95.18 87.45 - - - -
Proto 83.33 94.82 90.99 - - - 90.22
Retriever 69.51 97.04 87.86 84.95 95.41 91.92 90.78
Retriever min-max 71.35 96.96 88.42 81.00 94.55 90.03 89.82

Table 1: Intent accuracy on CLINC for nc = 10, ni = 10 with 5-shots. Our retrieval-based method outperform
BERT fine-tune and Prototypical Networks in both target and source domains. We report results for our method
when the support set consists of all examples in the source and target domains (all), when the support set consists
of balanced few-shot number of examples for intents in both source and target domains (balance), and when the
support set consists of examples of the target domain only (tgt) which serves as an upper-bound.

Evaluation We sample domains and intents three
times for each (nc, ni) setting, and report average
prediction accuracy. We report accuracy on intents
from the target domain (tgt), source domain (src),
and the macro average across all intents (avg).

In addition to applying the model to the target do-
main after pre-training on the source domain with-
out re-training (Pre-train on src domain), we also
evaluate the model performance with fine-tuning.
We re-train the model with either target domain
data only (Fine-tune on tgt domain) or a combina-
tion of source and target domain data (Fine-tune on
tgt domain with src data).

Moreover, we evaluate the models with the
following support set variations: with target do-
main data and all data in the source domain (sup-
port_set=all), with equal number of examples
(same as the few-shot number) per intent (sup-
port_set=balance), and with only examples from
the target domain (support_set=tgt). The last one
serves as an upper-bound for the target domain
accuracy.

Results Table 1 shows the results for (nc, ni) =
(10, 10) and 5 examples per target intent; results
on other settings exhibit the same patterns (See
Appendix A.3). We observe that Retriever per-

forms the best on the source domain (97.08%) be-
fore fine-tuning. Retriever also achieves the
highest accuracy on the target domain (84.95%) af-
ter fine-tuning, while maintaining competitive per-
formance on the source domain (95.41%) among
all the methods.

6.2 Slot Filling

SNIPS (Coucke et al., 2018) is a slot filling
dataset containing 39 slot names from 7 dif-
ferent domains: GetWeather (GW), PlayMusic
(PM), AddToPlaylist (ATP), RateBook (RB), Find-
ScreeningEvent (FSE), BookRestaurant (BR), and
SearchCreativeWork (SCW). Following Hou et al.
(2020), we train models on five source domains,
use a sixth one for development, and test on the re-
maining domain. We directly use the K-shot split
provided by Hou et al. (2020), where the support
set consists of the minimum number of utterances
such that at least K instances exist for each slot
name. We also set K = 5 in our experiment. Ap-
pendix A.2 contains further details about the setup.

We compare against two baselines and three
models from the previous work. BERT Tagging
is a BERT-based BIO tagging model (Devlin
et al., 2019) fine-tuned on the testing domain

740

GW PM ATP RB FSE BR SCW Average F1

Classification-based

BERT Tagging 59.41 42.00 46.07 20.74 28.20 67.75 58.61 46.11

Token-level

SimilarTokenfrz 53.46 54.13 42.81 75.54 57.10 55.30 32.38 52.96
MatchingToken 36.67 33.67 52.60 69.09 38.42 33.28 72.10 47.98
ProtoToken 67.82 55.99 46.02 72.17 73.59 60.18 66.89 63.24
L-TapNet+CDT+Proto - - - - - - - 67.27
L-Proto+CDTpw* 74.68 56.73 52.20 78.79 80.61 69.59 67.46 68.58
L-TapNet+CDT+Protopw* 71.64 67.16 75.88 84.38 82.58 70.05 73.41 75.01

Span-level (ours)

Protofrz 39.47 38.35 47.68 69.36 38.60 42.39 19.90 42.25
Proto 64.47 53.97 54.64 73.37 42.89 62.48 27.76 54.23
Retrieverfrz 63.39 46.01 51.11 79.65 62.42 62.13 33.85 56.94
Retriever 82.95 61.74 71.75 81.65 73.10 79.54 51.35 71.72

Table 2: Results on SNIPS test data with 5-shot support sets. Our span-based retrieval model outperforms previous
classification-based and token-level retrieval models even without label semantics. Classification-based and token-
level results are reported in Hou et al. (2020). *Pair-wise embeddings (marked with pw) are expensive at inference
time, so we do not compare our method with these directly.

after training on the source domains, while
SimilarTokenfrz uses BERT embeddings to
retrieve the most similar token based on cosine sim-
ilarity without any training. MatchingToken
and ProtoToken are two token-level methods
that leveraged Matching Networks (Vinyals et al.,
2016) and Prototypical Networks (Snell et al.,
2017) respectively. L-TapNet+CDT+proto
(Hou et al., 2020) is an adaptation of TapNet (Yoon
et al., 2019) with label semantics, CDT transition
probabilities, and Prototypical Networks.

We experiment with several variants of our
proposed method. Proto trains Prototypical
Networks to compute span class representations.
Retriever retrieves the most similar slot exam-
ple for each span. Both methods use the same de-
coding method. Similar to SimilarTokenfrz,
Protofrz and Retrieverfrz use the original
BERT embeddings without any training. All mod-
els are trained on source domains and early stopped
based on performance on the development do-
mains.

Evaluation We report F1 scores for each testing
domain in a cross-validation episodic fashion. Fol-
lowing Hou et al. (2020), we evaluate each testing
domain by sampling 100 different support sets and
ten exclusive query utterances for each support set.
We calculate F1 scores for each episode and report
average F1 scores across 100 episodes.

Results Table 2 summarizes the experiment re-
sults on the SNIPS dataset. Our span-level method

(Retriever) achieves higher averaged F1 than
all five baselines, outperforming the strongest
token-level method (L-TapNet+CDT+proto)
by 4.45%. This shows that our model is effec-
tive at span-level predictions. More importantly,
the better performance suggests that our span-level
Retriever model is more efficient at capturing
span structures compared to simulated dependen-
cies as our method does not suffer from the po-
tential discrepancy in the transition probabilities
between the target and source domains.

Although Hou et al. (2020) showed that adding
pairwise embeddings with cross-attention yielded
much better performance, this method is expensive
both in memory and computation at inference time,
especially when the support set is large (Humeau
et al., 2019). For fair comparison, we do not di-
rectly compare with methods using pairwise em-
beddings (methods with pw in Table 2). Note that
our method with pre-computed support example
embeddings even outperforms L-Proto+CDTpw

with less memory and computation cost.

7 Analysis

7.1 Intent Classification

Models without re-training The pre-train on
src domain section in Table 1 shows the results
of models that are only pre-trained on the source
domains but not fine-tuned on the target domains.
Classification models such as BERT fine-tune
cannot make predictions on target domains in this

741

setting. In contrast, even without seeing any target
domain examples during training, retrieval-based
models can still make predictions on new domains
by simply including new examples in the support
sets. With support_set=all, Retriever achieves
97.08% on the source domain while Proto per-
forms worse than BERT fine-tune, consistent
with previous findings (Triantafillou et al., 2019).
Retriever achieves the best accuracy (75.93%)
on target domains with a balanced support set on
all intents (support_set=balance). More impor-
tantly, Retriever also achieves competitive ac-
curacy on source domains (95.44%), demonstrating
that our proposed model achieves the best of both
worlds even without re-training on new domains.

Varying the support set at inference time The
construction of the support set is critical to retrieval-
based methods. In Table 1, we present the model
performances under different support settings (all,
balance, tgt). The support_set=tgt setting serves as
an upper bound for the target domain accuracy for
both Retriever and Proto methods. In gen-
eral, Retriever achieve the best performance
on the source domain intents when we use full sup-
port sets (support_set=all). In comparison, if we
use a balanced support set (support_set=balance),
we can achieve much higher accuracy on the target
domain while having a slight degradation on the
source domain intents prediction. This is because
full support sets have more source domain exam-
ples to increase confusion over target domains.

Data for fine-tuning The Fine-tune on tgt do-
main section in Table 1 shows different model
behaviors when fine-tuned on the target domain
data directly. While BERT fine-tune achieves
high accuracy (78.89%) on the target domain, it
suffers from catastrophic forgetting on the source
domain (43.91%). On the other hand, Proto and
Retriever can get high accuracy on the target
domain (80.44% and 79.20%) while maintaining
high performance on the source domain.

When we combine data from the source domain,
we observe performance gains in all the models un-
der the Fine-tune on tgt domain with src data sec-
tion. Specifically, we add few-shot source domain
examples as contrastive examples for the models
to learn better utterance/class representations for
Retriever and Proto. Results show that ac-
curacy on the target domain increases by over 3%
compared to only using target domain data. This

tgt src avg

BERT fine-tune - - -
Proto +12.89 -0.51 +5.18
Retriever +14.60 -0.14 +6.11
Retriever min-max +10.79 -0.20 +4.47

Table 3: Improvement (%) over BERT fine-tune
on target (tgt), source (src), and average (avg), after
fine-tuning on the 5-shot support sets. Numbers are
averaged over different (nc, ni) data samples.

suggests that unlike other retrieval-based methods
such as kNN, Retriever does not require a large
support set to guarantee prediction accuracy.

Impact of reduction functions We compare the
reduction functions proposed in Section 5.1 and
found that max performs the best. Since mean is
equivalent to Prototypical Networks, we compared
to Proto directly in the experiments. min-max
is more intuitive in contrasting with least similar
examples within the same class compared to max.
However, its performance is worse than max. We
speculate the reason to be that we retrieve the ex-
ample with the maximum score at inference time
so that the boundary margin may not be utilized.

Performance over different settings Table 3
shows the average improvement of our methods
over the BERT fine-tune baseline, where all
models are fine-tuned on the target domain with
a balanced few-shot dataset after training on the
source domain (same as Fine-tune on tgt domain
with src data section in Table 1). Both Proto and
Retriever outperforms the baseline on the tar-
get domains with a large margin, and Retriever
has the best improvement on all intents on average.

7.2 Slot Filling

We note that Retriever outperforms the
strongest baselines but reaches a low score on the
SCW domain. This may be due to the bigger differ-
ence between the test (SCW) and the development
domain (GW) including the size of the support set
and their respective slot names. We also found that
from all the correctly predicted slot spans, 96.73%
predicted the correct slot names. This shows that
the majority of the errors come from querying with
invalid spans. We believe that span-based pre-
training such as Span-BERT (Joshi et al., 2020)
could make our proposed method achieve better
results.

742

beam size merge threshold avg. F1

1 0.99 70.10
5 0.99 71.47

10 0.99 71.72
10 0 70.43
10 1 72.10

Table 4: Ablation study on beam size and merge con-
dition. Merge threshold of 0 means never merge and 1
means always merge. Using larger beam and merging
consecutive spans improve F1 scores.

Analyzing Proto From Table 2, Retriever
outperforms Proto by 17% when training the
span representations. We conjecture that this is
caused by Proto learning noisy prototype. Com-
pared to Retriever, the similarity scores be-
tween the spans and their corresponding class rep-
resentations are low, indicating that the span-level
prototypes may not be clearly separated.

Ablation on decoding method Table 4 com-
pares beam search to greedy search. Results
suggest that beam search with larger beam sizes
achieve better F1 scores. As discussed in Sec-
tion 5.2, we merge same-label spans during in-
ference based on a score threshold. As shown in
Table 4, merging spans results in a 1.67% F1 gain
(70.43% vs 72.10%) under the same beam size.

Error Analysis We find that the main problem
of our proposed model is that tokens surrounding
the gold span may contain excessive contextual
information so that these surrounding invalid spans
retrieve corresponding spans with high similarities.
For instance, in the query “add my track to old
school metal playlist”, the token “playlist” retrieves
an actual playlist span with a high similarity score.
Another major issue is that the similarity score
retrieved by a partial of the gold span sometimes
is higher than that retrieved by the whole span.
Our ablation results on merge threshold shown in
Table 4 also suggest that partial spans may retrieve
complete spans individually so that if we merge
consecutive spans with the same slot name, we can
achieve higher F1 scores.

8 Conclusion

In this paper, we propose a retrieval-based method,
Retriever, for few-shot intent classification and
slot filling. We conduct extensive experiments to
compare different model variants and baselines,
and show that our proposed approach is effective

in the few-shot learning scenario. We believe that
our method can also work on open domain dialog
tasks where annotations may be more scarce and
other text classification tasks. In the future, we
plan to extend our method to predict more complex
structures with span-based retrieval.

9 Ethical Considerations

Our intended use case is few-shot domain adaption
to new classes. Our experiments are done on En-
glish data, but the method is not English-specific.
We use 8 Cloud TPUs V2 cores5 for training and
one V100 GPU for inference. Since our model
does not have to be retrained for the new domains,
it can reduce the resources needed when applying
such systems. We claim that our proposed method
outperforms baselines on few-shot slot filling and
intent classification examples. Our experiments
mainly focus on the 5-shot setting and the 2-shot
setting, which are typical testing scenarios applied
by previous work with the same claim.

Acknowledgments

We thank Terry Koo and Emily Pitler from Google
Research, and anonymous reviewers for their con-
structive suggestions.

References
Harry Bunt. 2009. The dit++ taxonomy for functional

dialogue markup. In AAMAS 2009 Workshop, To-
wards a Standard Markup Language for Embodied
Dialogue Acts, pages 13–24.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore
Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Calt-
agirone, Thibaut Lavril, Maël Primet, and Joseph
Dureau. 2018. Snips voice platform: an embedded
spoken language understanding system for private-
by-design voice interfaces.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of

5https://cloud.google.com/tpu

http://arxiv.org/abs/1805.10190
http://arxiv.org/abs/1805.10190
http://arxiv.org/abs/1805.10190
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://dl.acm.org/doi/10.5555/3305381.3305498
https://dl.acm.org/doi/10.5555/3305381.3305498

743

deep networks. In Proceedings of the 34th Interna-
tional Conference on Machine Learning, volume 70
of ICML’17, pages 1126–1135. JMLR.org.

G. D. Forney. 1973. The viterbi algorithm. Proc. of the
IEEE, 61:268 – 278.

Alexander Fritzler, Varvara Logacheva, and Maksim
Kretov. 2019. Few-shot classification in named en-
tity recognition task. In Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing,
SAC ’19, page 993–1000, New York, NY, USA. As-
sociation for Computing Machinery.

Ruiying Geng, Binhua Li, Yongbin Li, Xiaodan Zhu,
Ping Jian, and Jian Sun. 2019. Induction networks
for few-shot text classification. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3904–3913, Hong Kong,
China. Association for Computational Linguistics.

Daniel Gillick, Sayali Kulkarni, Larry Lansing,
Alessandro Presta, Jason Baldridge, Eugene Ie, and
Diego Garcia-Olano. 2019. Learning dense repre-
sentations for entity retrieval. In Proceedings of
the 23rd Conference on Computational Natural Lan-
guage Learning (CoNLL), pages 528–537, Hong
Kong, China. Association for Computational Lin-
guistics.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. Realm: Retrieval-
augmented language model pre-training.

Yutai Hou, Wanxiang Che, Yongkui Lai, Zhihan Zhou,
Yijia Liu, Han Liu, and Ting Liu. 2020. Few-shot
slot tagging with collapsed dependency transfer and
label-enhanced task-adaptive projection network. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1381–
1393, Online. Association for Computational Lin-
guistics.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-
rectional LSTM-CRF models for sequence tagging.
CoRR, abs/1508.01991.

Samuel Humeau, Kurt Shuster, Marie-Anne Lachaux,
and Jason Weston. 2019. Real-time inference in
multi-sentence tasks with deep pretrained transform-
ers. CoRR, abs/1905.01969.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S.
Weld, Luke Zettlemoyer, and Omer Levy. 2020.
SpanBERT: Improving pre-training by representing
and predicting spans. Transactions of the Associa-
tion for Computational Linguistics, 8:64–77.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2020. Generalization
through memorization: Nearest neighbor language
models. In International Conference on Learning
Representations.

Gregory R. Koch, Richard Zemel, and Ruslan Salakhut-
dinov. 2015. Siamese neural networks for one-shot
image recognition. In ICML Deep Learning work-
shop.

Jason Krone, Yi Zhang, and Mona Diab. 2020. Learn-
ing to classify intents and slot labels given a handful
of examples. In Proceedings of the 2nd Workshop
on Natural Language Processing for Conversational
AI, pages 96–108, Online. Association for Computa-
tional Linguistics.

Stefan Larson, Anish Mahendran, Joseph J. Peper,
Christopher Clarke, Andrew Lee, Parker Hill,
Jonathan K. Kummerfeld, Kevin Leach, Michael A.
Laurenzano, Lingjia Tang, and Jason Mars. 2019.
An evaluation dataset for intent classification and
out-of-scope prediction. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 1311–1316, Hong Kong,
China. Association for Computational Linguistics.

Patrick Lewis, Ethan Perez, Aleksandara Piktus,
Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen tau Yih,
Tim Rocktäschel, Sebastian Riedel, and Douwe
Kiela. 2020. Retrieval-augmented generation for
knowledge-intensive nlp tasks.

Kai-Hui Liang, Austin Chau, Yu Li, Xueyuan Lu, Dian
Yu, Mingyang Zhou, Ishan Jain, Sam Davidson, Josh
Arnold, Minh Nguyen, and Zhou Yu. 2020. Gunrock
2.0: A User Adaptive Social Conversational System.
Alexa Prize Proceedings.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and
Pieter Abbeel. 2018. A simple neural attentive meta-
learner. In International Conference on Learning
Representations.

Hao Peng, Ankur Parikh, Manaal Faruqui, Bhuwan
Dhingra, and Dipanjan Das. 2019. Text generation
with exemplar-based adaptive decoding. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 2555–2565, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

F. Ren and S. Xue. 2020. Intention detection based
on siamese neural network with triplet loss. IEEE
Access, 8:82242–82254.

https://dl.acm.org/doi/10.5555/3305381.3305498
https://doi.org/10.1145/3297280.3297378
https://doi.org/10.1145/3297280.3297378
https://doi.org/10.18653/v1/D19-1403
https://doi.org/10.18653/v1/D19-1403
https://doi.org/10.18653/v1/K19-1049
https://doi.org/10.18653/v1/K19-1049
http://arxiv.org/abs/2002.08909
http://arxiv.org/abs/2002.08909
https://doi.org/10.18653/v1/2020.acl-main.128
https://doi.org/10.18653/v1/2020.acl-main.128
https://doi.org/10.18653/v1/2020.acl-main.128
http://arxiv.org/abs/1508.01991
http://arxiv.org/abs/1508.01991
http://arxiv.org/abs/1905.01969
http://arxiv.org/abs/1905.01969
http://arxiv.org/abs/1905.01969
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://openreview.net/forum?id=HklBjCEKvH
https://openreview.net/forum?id=HklBjCEKvH
https://openreview.net/forum?id=HklBjCEKvH
https://doi.org/10.18653/v1/2020.nlp4convai-1.12
https://doi.org/10.18653/v1/2020.nlp4convai-1.12
https://doi.org/10.18653/v1/2020.nlp4convai-1.12
https://doi.org/10.18653/v1/D19-1131
https://doi.org/10.18653/v1/D19-1131
http://arxiv.org/abs/2005.11401
http://arxiv.org/abs/2005.11401
https://m.media-amazon.com/images/G/01/mobile-apps/dex/alexa/alexaprize/assets/challenge3/proceedings/UC-Davis-Gunrock.pdf
https://m.media-amazon.com/images/G/01/mobile-apps/dex/alexa/alexaprize/assets/challenge3/proceedings/UC-Davis-Gunrock.pdf
https://openreview.net/forum?id=B1DmUzWAW
https://openreview.net/forum?id=B1DmUzWAW
https://doi.org/10.18653/v1/N19-1263
https://doi.org/10.18653/v1/N19-1263
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.1109/ACCESS.2020.2991484
https://doi.org/10.1109/ACCESS.2020.2991484

744

Karsten Roth, Timo Milbich, Samarth Sinha, Prateek
Gupta, Björn Ommer, and Joseph Paul Cohen. 2020.
Revisiting training strategies and generalization per-
formance in deep metric learning.

Florian Schroff, Dmitry Kalenichenko, and James
Philbin. 2015. Facenet: A unified embedding for
face recognition and clustering. In Proceedings of
the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR).

Jake Snell, Kevin Swersky, and Richard Zemel. 2017.
Prototypical networks for few-shot learning. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems
30, pages 4077–4087. Curran Associates, Inc.

Shengli Sun, Qingfeng Sun, Kevin Zhou, and Tengchao
Lv. 2019. Hierarchical attention prototypical net-
works for few-shot text classification. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 476–485, Hong
Kong, China. Association for Computational Lin-
guistics.

Shubham Toshniwal, Haoyue Shi, Bowen Shi, Lingyu
Gao, Karen Livescu, and Kevin Gimpel. 2020. A
cross-task analysis of text span representations. In
Proceedings of the 5th Workshop on Representation
Learning for NLP, pages 166–176, Online. Associa-
tion for Computational Linguistics.

Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pas-
cal Lamblin, Kelvin Xu, Ross Goroshin, Carles
Gelada, Kevin Swersky, Pierre-Antoine Manzagol,
and Hugo Larochelle. 2019. Meta-dataset: A dataset
of datasets for learning to learn from few examples.
CoRR, abs/1903.03096.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, ko-
ray kavukcuoglu, and Daan Wierstra. 2016. Match-
ing networks for one shot learning. In D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 29, pages 3630–3638. Curran Asso-
ciates, Inc.

Yan Wang, Wei-Lun Chao, Kilian Q. Weinberger, and
Laurens van der Maaten. 2019. Simpleshot: Re-
visiting nearest-neighbor classification for few-shot
learning.

Kilian Q Weinberger, John Blitzer, and Lawrence Saul.
2006. Distance metric learning for large margin
nearest neighbor classification. In Advances in
Neural Information Processing Systems, volume 18,
pages 1473–1480. MIT Press.

Sam Wiseman and Karl Stratos. 2019. Label-agnostic
sequence labeling by copying nearest neighbors. In
Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages

5363–5369, Florence, Italy. Association for Compu-
tational Linguistics.

Chien-Sheng Wu, Andrea Madotto, Ehsan Hosseini-
Asl, Caiming Xiong, Richard Socher, and Pascale
Fung. 2019. Transferable multi-domain state gener-
ator for task-oriented dialogue systems. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 808–819, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Yi Yang and Arzoo Katiyar. 2020. Simple and effective
few-shot named entity recognition with structured
nearest neighbor learning. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6365–6375,
Online. Association for Computational Linguistics.

Yinfei Yang, Gustavo Hernandez Abrego, Steve Yuan,
Mandy Guo, Qinlan Shen, Daniel Cer, Yun-hsuan
Sung, Brian Strope, and Ray Kurzweil. 2019. Im-
proving multilingual sentence embedding using bi-
directional dual encoder with additive margin soft-
max. In Proceedings of the Twenty-Eighth In-
ternational Joint Conference on Artificial Intelli-
gence, IJCAI-19, pages 5370–5378. International
Joint Conferences on Artificial Intelligence Organi-
zation.

Sung Whan Yoon, Jun Seo, and Jaekyun Moon.
2019. TapNet: Neural network augmented with
task-adaptive projection for few-shot learning. In
Proceedings of Machine Learning Research, vol-
ume 97 of Proceedings of Machine Learning Re-
search, pages 7115–7123, Long Beach, California,
USA. PMLR.

Dian Yu, Michelle Cohn, Yi Mang Yang, Chun Yen
Chen, Weiming Wen, Jiaping Zhang, Mingyang
Zhou, Kevin Jesse, Austin Chau, Antara Bhowmick,
Shreenath Iyer, Giritheja Sreenivasulu, Sam David-
son, Ashwin Bhandare, and Zhou Yu. 2019. Gun-
rock: A social bot for complex and engaging long
conversations. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP): System Demonstrations, pages 79–84,
Hong Kong, China. Association for Computational
Linguistics.

Dian Yu and Zhou Yu. 2019. Midas: A dialog act an-
notation scheme for open domain human machine
spoken conversations.

Mo Yu, Xiaoxiao Guo, Jinfeng Yi, Shiyu Chang, Saloni
Potdar, Yu Cheng, Gerald Tesauro, Haoyu Wang,
and Bowen Zhou. 2018. Diverse few-shot text clas-
sification with multiple metrics. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 1206–1215, New Orleans, Louisiana.
Association for Computational Linguistics.

http://arxiv.org/abs/2002.08473
http://arxiv.org/abs/2002.08473
http://papers.nips.cc/paper/6996-prototypical-networks-for-few-shot-learning.pdf
https://doi.org/10.18653/v1/D19-1045
https://doi.org/10.18653/v1/D19-1045
https://doi.org/10.18653/v1/2020.repl4nlp-1.20
https://doi.org/10.18653/v1/2020.repl4nlp-1.20
http://arxiv.org/abs/1903.03096
http://arxiv.org/abs/1903.03096
http://papers.nips.cc/paper/6385-matching-networks-for-one-shot-learning.pdf
http://papers.nips.cc/paper/6385-matching-networks-for-one-shot-learning.pdf
http://arxiv.org/abs/1911.04623
http://arxiv.org/abs/1911.04623
http://arxiv.org/abs/1911.04623
https://proceedings.neurips.cc/paper/2005/file/a7f592cef8b130a6967a90617db5681b-Paper.pdf
https://proceedings.neurips.cc/paper/2005/file/a7f592cef8b130a6967a90617db5681b-Paper.pdf
https://doi.org/10.18653/v1/P19-1533
https://doi.org/10.18653/v1/P19-1533
https://doi.org/10.18653/v1/P19-1078
https://doi.org/10.18653/v1/P19-1078
https://doi.org/10.18653/v1/2020.emnlp-main.516
https://doi.org/10.18653/v1/2020.emnlp-main.516
https://doi.org/10.18653/v1/2020.emnlp-main.516
https://doi.org/10.24963/ijcai.2019/746
https://doi.org/10.24963/ijcai.2019/746
https://doi.org/10.24963/ijcai.2019/746
https://doi.org/10.24963/ijcai.2019/746
http://proceedings.mlr.press/v97/yoon19a.html
http://proceedings.mlr.press/v97/yoon19a.html
https://doi.org/10.18653/v1/D19-3014
https://doi.org/10.18653/v1/D19-3014
https://doi.org/10.18653/v1/D19-3014
http://arxiv.org/abs/1908.10023
http://arxiv.org/abs/1908.10023
http://arxiv.org/abs/1908.10023
https://doi.org/10.18653/v1/N18-1109
https://doi.org/10.18653/v1/N18-1109

745

Jingyi Zhang, Masao Utiyama, Eiichro Sumita, Gra-
ham Neubig, and Satoshi Nakamura. 2018. Guid-
ing neural machine translation with retrieved transla-
tion pieces. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 1325–
1335, New Orleans, Louisiana. Association for Com-
putational Linguistics.

Morteza Ziyadi, Yuting Sun, Abhishek Goswami, Jade
Huang, and Weizhu Chen. 2020. Example-based
named entity recognition.

https://doi.org/10.18653/v1/N18-1120
https://doi.org/10.18653/v1/N18-1120
https://doi.org/10.18653/v1/N18-1120
http://arxiv.org/abs/2008.10570
http://arxiv.org/abs/2008.10570

746

A Appendices

A.1 Implementation details
We use the public uncased BERT-base
model from https://github.com/
google-research/bert for em-
bedding spans. Our implementation is
adapted from https://github.com/
google-research/bert/blob/master/
run_classifier.py. Since the span embed-
der in the retriever is the only trainable component
in our model, the number of parameters is the same
as the initial BERT model.

On SNIPS, we set the initial learning rate to
be 2 × 10−5 with 10% data for warmup. We set
per-class batch size to be 5 for 5-shot experiments.
We use F1 score on the development domain as
the metric for early stopping. For decoding, we
set m = 7 to be the maximum span length and
λ = 0.99 as the merging threshold. For dynamic
threshold, we decrease the threshold by 0.05
each time for 10 times until at least one span
is above the current threshold. We also use the
development domain results to choose individual
threshold for each target domain to filter invalid
spans. We use grid search between [0.85, 0.97]
with a step of 0.05 to search for the best threshold
on the development domain. Our span-level
evaluation is modified from conlleval script:
https://www.clips.uantwerpen.be/
conll2000/chunking/conlleval.txt.

On CLINC, we set the initial learning rate to
be 5 × 10−5 and 1 × 10−5 for fine-tuning on the
target domain. We set per-class batch size to be 8
for training on the source domain, and 5 and 2 for
5-shot and 2-shot fine-tuning.

A.2 SNIPS Data Details

Test Domain Dev. Domain Avg. |S|

GetWeather PlayMusic 28.91
PlayMusic AddToPlaylist 34.43

AddToPlaylist RateBook 13.84
RateBook FindScreeningEvent 19.83

FindScreeningEvent BookRestaurant 19.27
BookRestaurant SearchCreativeWork 41.58

SearchCreativeWork GetWeather 5.28

Table 5: Corresponding development domain and av-
erage support set size for each testing domain.

A.3 CLINC Results on Different Data
Constructions

https://github.com/google-research/bert
https://github.com/google-research/bert
https://github.com/google-research/bert/blob/master/run_classifier.py
https://github.com/google-research/bert/blob/master/run_classifier.py
https://github.com/google-research/bert/blob/master/run_classifier.py
https://www.clips.uantwerpen.be/conll2000/chunking/conlleval.txt
https://www.clips.uantwerpen.be/conll2000/chunking/conlleval.txt

747

support_set=all support_set=balance support_set=tgt

tgt src avg tgt src avg tgt

Initial BERT

Protofrz 14.07 25.02 21.37 - - - -
Retrieverfrz 8.24 54.76 39.25 22.09 25.29 24.22 37.93

Pre-train on src domain

BERT fine-tune - 96.51 - - - - -
Proto 75.02 95.73 88.83 - - - -
Retriever 62.69 97.08 85.62 75.93 95.44 88.94 88.53
Retriever min-max 66.00 96.64 86.43 71.82 95.14 87.37 86.38

Fine-tune on tgt domain

BERT fine-tune 78.89 43.91 55.57 - - - -
Proto 80.44 95.57 90.53 - - - 90.35
Retriever 66.76 96.95 86.89 79.20 95.50 90.07 91.16
Retriever min-max 67.64 96.84 87.11 77.60 95.35 89.43 89.56

Fine-tune on tgt domain with src data

BERT fine-tune 72.00 95.18 87.45 - - - -
Proto 83.33 94.82 90.99 - - - 90.22
Retriever 69.51 97.04 87.86 84.95 95.41 91.92 90.78
Retriever min-max 71.35 96.96 88.42 81.00 94.55 90.03 89.82

Table 6: Intent accuracy on CLINC for nc = 10, ni = 10 with 5-shots.

support_set=all support_set=balance support_set=tgt

tgt src avg tgt src avg tgt

Initial BERT

Protofrz 8.70 24.06 18.94 - - - -
Retrieverfrz 3.91 54.96 37.94 17.38 16.83 17.01 27.96

Pre-train on src domain

BERT fine-tune - 96.51 - - - - -
Proto 76.40 95.70 89.27 - - - -
Retriever 53.73 97.02 82.59 73.13 94.32 87.26 86.47
Retriever min-max 53.47 96.87 82.40 68.47 95.29 86.35 81.76

Fine-tune on tgt domain

BERT fine-tune 75.57 50.91 59.13 - - - -
Proto 76.36 95.06 88.82 - - - 86.67
Retriever 55.20 97.05 83.10 74.89 94.57 88.01 87.74
Retriever min-max 55.96 96.92 83.27 71.09 95.25 87.19 83.91

Fine-tune on tgt domain with src data

BERT fine-tune 64.97 95.15 85.09 - - - -
Proto 77.02 95.29 89.20 - - - 86.31
Retriever 56.36 97.17 83.56 76.87 94.11 88.36 88.18
Retriever min-max 58.82 96.85 84.17 74.31 94.32 87.56 83.98

Table 7: Intent accuracy on CLINC for nc = 10, ni = 10 with 2-shots.

748

support_set=all support_set=balance support_set=tgt

tgt src avg tgt src avg tgt

Initial BERT

Protofrz 12.57 21.67 17.42 - - - -
Retrieverfrz 9.46 56.96 34.79 23.37 25.87 24.70 32.72

Pre-train on src domain

BERT fine-tune - 96.92 - - - - -
Proto 73.17 94.96 84.79 - - - -
Retriever 66.56 96.76 82.67 76.56 94.99 86.39 83.72
Retriever min-max 66.08 96.64 82.38 73.14 95.13 84.87 79.52

Fine-tune on tgt domain

BERT fine-tune 76.92 44.17 59.45 - - - -
Proto 77.53 94.88 86.78 - - - 85.21
Retriever 68.35 97.11 83.69 77.54 95.67 87.21 85.72
Retriever min-max 70.65 96.76 84.58 76.74 94.90 86.43 85.41

Fine-tune on tgt domain with src data

BERT fine-tune 70.48 95.11 83.61 - - - -
Proto 79.89 94.32 87.59 - - - 85.41
Retriever 71.46 96.88 85.02 79.90 94.61 87.75 89.67
Retriever min-max 71.73 96.86 85.13 78.43 95.31 87.43 85.32

Table 8: Intent accuracy on CLINC for nc = 8, ni = 10 with 5-shots.

support_set=all support_set=balance support_set=tgt

tgt src avg tgt src avg tgt

Initial BERT

Protofrz 7.24 20.99 14.57 - - - -
Retrieverfrz 4.76 57.24 32.75 17.64 18.29 17.99 24.17

Pre-train on src domain

BERT fine-tune - 96.92 - - - - -
Proto 70.59 94.42 83.30 - - - -
Retriever 54.46 97.22 77.27 68.06 93.90 81.84 78.89
Retriever min-max 56.36 96.79 77.92 65.43 94.46 80.91 74.19

Fine-tune on tgt domain

BERT fine-tune 68.94 56.41 62.25 - - - -
Proto 73.19 94.70 84.66 - - - 79.83
Retriever 57.58 97.01 78.61 70.98 93.56 83.02 80.35
Retriever min-max 58.71 96.89 79.07 68.71 94.64 82.54 76.51

Fine-tune on tgt domain with src data

BERT fine-tune 61.53 95.10 79.43 - - - -
Proto 73.57 94.59 84.78 - - - 80.08
Retriever 59.06 97.07 79.33 72.33 93.11 83.42 80.14
Retriever min-max 60.49 96.89 79.91 70.92 94.68 83.59 79.21

Table 9: Intent accuracy on CLINC for nc = 8, ni = 10 with 2-shots.

749

support_set=all support_set=balance support_set=tgt

tgt src avg tgt src avg tgt

Initial BERT

Protofrz 15.02 17.58 16.30 - - - -
Retrieverfrz 10.65 55.97 33.31 21.16 25.85 23.51 26.71

Pre-train on src domain

BERT fine-tune - 96.87 - - - - -
Proto 67.05 96.37 81.71 - - - -
Retriever 64.19 97.18 80.69 68.40 95.85 82.13 72.02
Retriever min-max 61.79 96.71 79.25 65.11 95.85 80.48 68.21

Fine-tune on tgt domain

BERT fine-tune 69.32 64.76 67.04 - - - -
Proto 73.63 96.09 84.86 - - - 77.45
Retriever 68.65 97.05 82.85 74.59 96.24 85.42 77.96
Retriever min-max 67.94 97.04 82.49 71.88 96.27 84.07 75.93

Fine-tune on tgt domain with src data

BERT fine-tune 67.93 95.95 81.94 - - - -
Proto 74.43 95.63 85.03 - - - 76.61
Retriever 71.51 96.91 84.21 76.37 95.81 86.09 78.62
Retriever min-max 70.50 96.92 83.71 73.76 95.79 84.78 76.65

Table 10: Intent accuracy on CLINC for nc = 5, ni = 15 with 5-shots.

support_set=all support_set=balance support_set=tgt

tgt src avg tgt src avg tgt

Initial BERT

Protofrz 9.39 16.19 12.79 - - - -
Retrieverfrz 5.18 56.25 30.72 14.99 18.36 16.68 19.63

Pre-train on src domain

BERT fine-tune - 96.87 - - - - -
Proto 63.50 95.72 79.61 - - - -
Retriever 56.19 97.14 76.67 63.75 95.36 79.55 67.82
Retriever min-max 55.88 96.94 76.41 60.32 95.50 77.91 63.60

Fine-tune on tgt domain

BERT fine-tune 61.91 77.11 69.51 - - - -
Proto 66.38 95.72 81.05 - - - 70.40
Retriever 58.83 97.01 77.92 66.90 95.30 81.10 71.26
Retriever min-max 57.97 97.07 77.52 63.23 95.78 79.50 66.44

Fine-tune on tgt domain with src data

BERT fine-tune 60.32 96.16 78.24 - - - -
Proto 66.98 95.77 81.38 - - - 70.28
Retriever 59.88 96.96 78.42 67.23 94.85 81.04 70.52
Retriever min-max 60.08 97.08 78.58 65.45 95.73 80.59 68.06

Table 11: Intent accuracy on CLINC for nc = 5, ni = 15 with 2-shots.

