
Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 5856–5865

June 6–11, 2021. ©2021 Association for Computational Linguistics

5856

Designing a Minimal Retrieve-and-Read System
for Open-Domain Question Answering

Sohee Yang1˚and Minjoon Seo1,2

1KAIST AI 2NAVER Corp.
{sohee.yang,minjoon}@kaist.ac.kr

Abstract

In open-domain question answering (QA),
retrieve-and-read mechanism has the inherent
benefit of interpretability and the easiness of
adding, removing, or editing knowledge com-
pared to the parametric approaches of closed-
book QA models. However, it is also known
to suffer from its large storage footprint due
to its document corpus and index. Here, we
discuss several orthogonal strategies to dras-
tically reduce the footprint of a retrieve-and-
read open-domain QA system by up to 160x.
Our results indicate that retrieve-and-read can
be a viable option even in a highly constrained
serving environment such as edge devices, as
we show that it can achieve better accuracy
than a purely parametric model with compara-
ble docker-level system size.1

1 Introduction

Open-domain question answering (QA) is the task
of finding answers to generic factoid questions. In
recent literature, the task is largely approached in
two ways, namely retrieve & read and paramet-
ric. The former solves the problem by first re-
trieving documents relevant to the question from
a large knowledge source and then reading the re-
trieved documents to find out the answer (Lee et al.,
2019; Guu et al., 2019; Karpukhin et al., 2020;
Lewis et al., 2020; Izacard and Grave, 2021). The
latter, also known as closed-book QA, generates
the answer in a purely parametric end-to-end man-
ner (Brown et al., 2020; Roberts et al., 2020).

While a parametric model enjoys the benefit in
terms of system size that they do not require ad-
ditional knowledge source like a retrieve & read
system does, its fundamental limitations are that
their predictions are not so interpretable and they
are not suitable for dynamic knowledge source as

˚Most of the work was done while the author was work-
ing at NAVER Corp.

1Our code and model weights are available in
https://github.com/clovaai/minimal-rnr-qa.

End-to-End QA Accuracy (EM)

DPR
§2.1 Passage

Filtering

§2.2.1 128D Embedding

§2.2.1 MobileBERT

§2.2.2 Retriever
Encoder Sharing

§2.2.3 Unified Retriever-
Reader Through KD

§2.2.4 Iterative Finetuning

§2.3 Post-Training Compression
(Minimal R&R)

T5-1.1-small+SSM

T5-1.1-XL+SSM
T5-1.1-XXL+SSM

15

20

25

30

35

40

012345678

En
d-

to
-E

nd
 Q

A
 A

cc
ur

ac
y

(E
M

)

System Footprint (GB)

Minimal R&R

T5 w/ Compression

78

Figure 1: System footprint vs. Exact Match (EM) accuracy
on EfficientQA dev set. System footprint is measured by the
command du -h / inside the standalone docker container as
stated in the EfficientQA competition guideline. The red plot
from left to right shows a path of reducing the size of an open-
domain QA system with DPR from 77.5GB to 484.68MB
by successively applying each of the strategies in Section 2.
The storage footprints of the baseline systems with T5 are
calculated assuming the use of the lightweight docker image
and post-training compression methods applied to our system.

it is difficult to add, remove, or edit knowledge in
the parametric model. These limitations are well-
addressed by the retrieve & read mechanism, which
makes it often more suitable for real-world prod-
ucts. However, it is known to suffer from its large
storage footprint due to its document corpus and in-
dex, especially compared to the parametric model
that only needs to store the parameters (Izacard
et al., 2020; Fajcik et al., 2021; Lewis et al., 2021).

Building an interpretable and flexible open-
domain QA system and reducing its system size are
both important in real-world scenarios; the system
must be able to quickly adapt to the changes of
the world and be deployed in a highly constrained
serving environment such as edge devices. Hence,
to get the best of both worlds, it is worthwhile to
explore the trade-off between the storage budget
and the accuracy of a retrieve & read system.

Well-known approaches for reducing the size of
a neural network include pruning (Han et al., 2016),

https://github.com/clovaai/minimal-rnr-qa

5857

quantization (Zafrir et al., 2019), and knowledge
distillation (Hinton et al., 2014). In this paper, we
utilize some of these generic approaches and com-
bine them with problem-specific techniques to size
down a conventional retrieve & read system. We
first train a passage filter and use it to reduce the
corpus size (Section 2.1). We further apply parame-
ter sharing strategies and knowledge distillation to
make a single-encoder lightweight model that can
perform both retrieval and reading (Section 2.2). In
addition, we adopt multiple engineering tricks to
make the whole system even smaller (Section 2.3).

We verify the effectiveness of our methods on
the dev set and test set of EfficientQA2 (Min et al.,
2021). By applying our strategies to a recent ex-
tractive retrieve & read system, DPR (Karpukhin
et al., 2020), we reduce its size by 160x with little
loss of accuracy, which is still higher than the per-
formance of a purely parametric T5 (Roberts et al.,
2020) baseline with a comparable docker-level stor-
age footprint. In Appendix A.5, we also report
the performance on two more open-domain QA
datasets, Natural Questions (Kwiatkowski et al.,
2019) and TriviaQA (Joshi et al., 2017), to test
the generalizability of our methods and suggest a
future research direction.

2 Method

In this section, we discuss three techniques for re-
ducing the storage footprint of a generic retrieve &
read system, namely passage filtering (Section 2.1),
unifying retriever and reader into a single model
through parameter sharing (Section 2.2), and post-
training compression (Section 2.3). We assume that
the initial system takes the conventional composi-
tion of a trainable (neural) retriever with a question
encoder and a passage encoder that create dense
vectors used for search, a neural extractive reader
(possibly with passage ranking), and a text cor-
pus and the corresponding index that serve as the
knowledge source. Figure 1 shows how we start
from one such retrieve & read system and apply
each of the methods, in the order they are intro-
duced in this section, to successively reduce its sys-
tem footprint without sacrificing much accuracy.

2.1 Passage Filtering
Index and corpus files can take up a significant por-
tion of the storage footprint of a retrieve & read

2A recently-hosted open-domain QA challenge at NeurIPS
2020 in which 18 teams participated.
https://efficientqa.github.io

system if a large text corpus is utilized as the knowl-
edge source. Therefore, to drastically reduce the
system size, we train a binary classifier and use it
to exclude passages that are relatively unlikely to
be useful for question answering.

Let the set of indices of all passages in the cor-
pus be Jtotal. To create the training data, we split
Jtotal into two disjoint sets, J`train and J´train, such
that the former contains the indices of the passages
we would like to include in the minimal retrieve &
read system.3 Denoting Ep¨q as a trainable dense
encoder which maps a passage to a d-dimensional
embedding, such that vj “ Eppjq P Rd, the score
sj “ vJj w, wherew P Rd as a learnable vector, rep-
resents how likely a passage pj would hold the an-
swer to an input question. The classifier is trained
with binary cross entropy on the minibatches of
half-positive and half-negative passages, J`

1

train and
J´

1

train drawn from J`train and J´train, respectively.
During training, we sample several checkpoints

and evaluate them using the hit ratio on a validation

set: hitval “ |J
r1:|J`val|s

val XJ`val|{|J
`
val|, where J`val is a

set of indices of the ground truth passages that hold
the answer for the questions in the validation set

and J r1:|J
`
val|s

val is the set of indices j of the passages
whose inferred score sj is in the top-|J`val| scores
sorted in descending order, among all sj such that
j P J`val Y J´val. J´val is a disjoint set randomly
sampled from J´train.

We select the checkpoint with the highest hitval
and calculate sj for all pj , where j P Jtotal, us-
ing the selected checkpoint. Then, we retrieve
Jsubset “ J

r1:ns
total , the set of indices of the n top-

scoring passages, to indicate the passages to in-
clude in our minimal retrieve & read system.

2.2 Retriever-Reader with Single Encoder

In this subsection, we introduce how to obtain a uni-
fied retriever-reader with a single encoder (which
results in a smaller system footprint) that can per-
form both retrieval and reading without much drop
in accuracy. The unified retriever-reader is trained
by successively applying (1) retriever encoder shar-
ing, (2) distilling a reader into the retriever-reader
network, and (3) iterative finetuning.

2.2.1 Lightweight Encoder and Embedding Di-
mension Reduction To make the system small,
we utilize a lightweight pretrained encoder. Specifi-

3All the details, including how we split the data, are in
Appendix A.1.

https://efficientqa.github.io

5858

cally, MobileBERT (Sun et al., 2020) (4.3x smaller
than BERT-base (Devlin et al., 2019)) is employed
as the encoder of our retriever-reader model.

We use the dense embedding vectors of the pas-
sages in the knowledge source as the index. There-
fore, reducing the embedding dimension results in
a linear decrease in the index size. We use only
the first 128 dimensions (out of 512) to encode the
questions and passages.

2.2.2 Retriever Encoder Sharing Let Eψp¨q
and Eφp¨q be the the question encoder and passage
encoder of a retriever, where each of the encoders
produces a vector for question q and passage p.

We share the parameters of the encoders, so
that ψ “ φ “ θ, and differentiate the question
inputs from passages inputs using an additional
input signal: different token type ids of 0 for ques-
tions and 1 for passages. The retrieval score for a
pair of question q and passage p is calculated as
simθpq, pq “ Eθpq, 0q ¨ Eθpp, 1q.

We minimize the negative log-likelihood of se-
lecting the passage which holds the answer, namely
the positive passage, while training on mini-batches
that consist of questions that are each paired with
one positive passage and several negative passages.
This procedure creates a retriever with a single
encoder of parameters θ that can encode both ques-
tions and passages.4

2.2.3 Unified Retriever-Reader Through
Knowledge Distillation The previous subsec-
tion describes how to make a retriever that holds
only one encoder. Here, we further train the
parameters of the retriever θ so that it can also
acquire the ability of a reader; we make a unified
retriever-reader model that shares all the encoder
parameters and eliminate the need for a separate
reader. Specifically, using a fully trained reader of
parameters ξ as the teacher, we adopt knowledge
distillation to transfer its reading ability to the
unified retriever-reader network. The training
starts after initializing the parameters of the
retriever-reader as θ, which is obtained from the
retriever encoder sharing procedure described in
the previous subsection.

Let Jread Ă Jsubset be the set of indices of the pas-
sages whose retrieval score simωpq, pjq, calculated

4In a setting where the index is frozen (addition or editing
of index items does not occur), the system does not need a
passage encoder. However, we assume a self-contained system
with the full ability to update the index, so the passage encoder
is considered in the system composition.

for question q using a retriever with parameters ω5,
is among the top-k1 scores for all j P Jsubset. Jread
serves as the candidate pool of the indices of the
training set passages.

During training, for question q, a set of passages
Pq “ tpi|1 ď i ď mu where m ě 2 is sampled
from tpj |j P Jreadu to construct a part of the train-
ing batch, such that only p1 contains the answer to
question q among pi P Pq.

Then, we train the unified retriever-reader net-
work with parameters θ using a multitask loss
Lread ` Lret, such that the former is used to train
the reader part of the network, and the latter is used
to keep training the retriever part. The resulting
retriever-reader model has the ability to perform
both retrieval and reading.
Lread is designed to distill the knowledge of a

reader teacher into the reader part of the retriever-
reader student; the KL divergence between the
sharpened and softmaxed answer span scores of
the teacher and the student, DKLpPspan

ξ,q ||P
span
θ,q q. If

the teacher reader additionally contains a passage
ranker, distillation is also jointly done on the pas-
sage ranking scores (m-dim vector outputs).

Retrieval loss Lret is jointly optimized in a
multitask-learning manner to prevent the retriever
part of the unified network from forgetting the re-
trieval ability while training the reader part. The
loss can either be the negative log-likelihood de-
scribed in the previous subsection or another knowl-
edge distillation objective function with a fully
trained retriever teacher. If the reader teacher used
for Lread has a passage ranker, the passage ranking
score of the teacher can serve as the distillation
target (Yang and Seo, 2020).

2.2.4 Iterative Finetuning of Unified Retriever-
Reader We have observed that finetuning the uni-
fied retriever-reader for a few more epochs leads to
better retrieval and reading performance. While the
most simple method is to jointly train the model
on the standard reader loss and retriever loss6, we
additionally try iterative finetuning of each of the re-
triever and reader part as described in Algorithm 1.
The motivation here is to apply a loose reconstruc-
tion constraint Lrecon to keep the retrieval score as it
is before and after the model is optimized for read-
ing, with an assumption that this would be helpful

5The retriever with parameters ω is the retriever used with
the teacher reader of parameters ξ.

6The marginal negative log-likelihood of all the correct
answer spans in the positive passage and the negative log-
likelihood of positive passage p1 being selected, respectively.

5859

to alleviate the train-inference discrepancy in the
input distribution of the reader, created because
the unified retriever-reader is not trained using a
pipelined manner (training the reader on top of the
retrieval result of a fixed retriever).

Algorithm 1 A single iterative finetuning step on the uni-
fied retriever-reader with parameters θ at time t

Input θptq (parameters of the model at time t), knowledge
distillation temperature τ , and training batch of question q
and passages Pq “ tpi|1 ď i ď mu drawn from Jread such
that m ě 2, Y pq, p1q “ 1, and Y pq, piq “ 0,@2 ď i ď m.
(batch size of 1 is assumed here for a simple presentation)

Output Updated parameters θpt`1q

1: `ptq Ð rE
ptq
θ pp1, 1q, ¨ ¨ ¨ , E

ptq
θ ppm, 1qs

JE
ptq
θ pq, 0q

2: θ̂ptq Ð GradientUpdatepLreadpq, p1, ¨ ¨ ¨ , pmq; θ
ptq
q

3: ˆ̀ptq Ð rE
ptq

θ̂
pp1, 1q, ¨ ¨ ¨ , E

ptq

θ̂
ppm, 1qs

JE
ptq

θ̂
pq, 0q

4: Lrecon Ð DKL

´

softmaxp`ptq{τq||softmaxpˆ̀ptq{τq
¯

5: Lnll Ð CrossEntropypsoftmaxpˆ̀ptqq, Y q
6: θpt`1q

Ð GradientUpdatepLrecon ` Lnll; θ̂
ptq
q

2.3 Post-Training Compression Techniques

In addition to the training methods to decrease the
corpus, index, and model size, several post-training
engineering tricks are applied to compress the sys-
tem footprint further: (1) INT8 quantization of
index items, (2) saving model weights as FP16, (3)
resource compression, and (4) utilizing token IDs
as the corpus instead of raw texts.

INT8 Quantization of Index Items The dense
embeddings that serve as the items in the search
index are of type FP32 in the default state. INT8
quantization can be applied to reduce the index size
by four times with a little bit of drop in the accu-
racy. We make use of the quantization algorithm
implemented in FAISS (Johnson et al., 2019) In-
dexScalarQuantizer7. During inference, the embed-
dings are de-quantized, and the search is performed
on the restored FP32 vectors.

Saving Model Weights as FP16 Half precision
can be used to size down the model weights of origi-
nally FP32 tensors with almost no drop in accuracy.
In PyTorch, this can be done by calling .half()
on each FP32 tensor in the model checkpoint.

In TensorFlow, model graphs saved as the data
type of FP16 may result in unacceptably slow in-
ference according to the used hardware. We have
found out that keeping the tensor types of the graph
as FP32 but making the actual assigned values as

7https://github.com/facebookresearch/faiss/blob/v1.5.2/
IndexScalarQuantizer.cpp

FP16 enables a higher compression ratio when the
model weights are compressed as described below.

Resource Compression Data compressors with
a high compression ratio are effective at reducing
the initial system footprint. Our observation is
that bzip2 is better for binary files such as model
weights or index of embedding vectors, whereas
lzma is better for human-readable text files. System
resources can also be compressed if necessary. We
use -9 option for both compressors.

Utilizing Token IDs as the Corpus A corpus
file must be included in the system to get the actual
text of the item retrieved by search (an embedding
vector in our case). We have found out that using
the file of the encoded token ids of the tokenized
texts as the corpus, instead of the raw texts, is ben-
eficial not only because it reduces the inference
latency by preprocessing the texts, but also the
compressed output size is often slightly smaller.

3 Experiments

Experimental Setup We apply our storage re-
duction methods to a recent extractive retrieve &
read system, DPR (Karpukhin et al., 2020), which
consists of three different BERT-base encoders:
question encoder of the retriever, passage encoder
of the retriever, and encoder of the reader with a
ranker. All experiments are done on Naver Smart
Machine Learning (NSML) Platform (Sung et al.,
2017; Kim et al., 2018). The training and evalua-
tion details are in Appendix A.1, A.2, and A.3.

Experimental Results Figure 1 shows how each
of the discussed strategies changes DPR’s system
size and Exact Match (EM) score on the Efficien-
tQA dev set (see Table 3 and Table 4 in Appendix
for details). Our starting point is a standalone open-
domain QA system with DPR whose estimated
size is 77.5 GB: 1.4 (system) + 0.8 (retriever) + 0.4
(reader) + 61 (index) + 13 (text) GB. The red plot
shows from left to right one path to successively ap-
ply each strategy to reduce the system footprint to
484.69MB, which is 160 times smaller. Although
the methods are described as sequential for easier
presentation, the methods with filled markers and
dotted lines are orthogonal to each other and thus
can be applied in any other order. The methods
with unfilled markers and solid lines are built on
top of the previous method for each.

Sizing down the corpus from 21,015,325 to
1,224,000 (5.8%) passages (§2.1) decreases the sys-

https://github.com/facebookresearch/faiss/blob/v1.5.2/\IndexScalarQuantizer.cpp
https://github.com/facebookresearch/faiss/blob/v1.5.2/\IndexScalarQuantizer.cpp

5860

tem footprint by a large margin of about 70.5GB
with only 2.72% of drop in EM. Using a smaller
passage embedding dimension of 128D (§2.2.1),
changing the encoder to MobileBERT (§2.2.1), and
sharing the encoders of the retriever (§2.2.2) save
further 4.1GB of storage with little drop in accu-
racy of 1.28%. The process of unifying the retriever
and reader into a single model (§2.2.3) drops EM
by 1.11, but the accuracy increases by 2.77% (to
34.44%) with iterative finetuning (§2.2.4). In ab-
lation studies on the three-step training procedure,
omitting the knowledge distillation step drops EM
by 1.5%, and omitting Lrecon drops EM by 0.38%.

Applying post-training compression techniques
further reduces the system footprint by a large mar-
gin while sacrificing little accuracy. EM changes
to 34.39% with INT8 quantization, and the rest of
the tricks do not affect the accuracy. Converting
the PyTorch checkpoint to a binary for TensorFlow
Serving to reduce system library dependency and
applying bzip2 compression on some of the system
resources creates the final system of 484.69MB
with an accuracy of 34.33%. Figure 1 shows that
this accuracy is higher than the performance of the
parametric T5 (Roberts et al., 2020) baseline with
a comparable docker-level system footprint.8

In Table 1, we show the test set accuracy of our
final system and other baselines. In summary, the
performance of our system is higher than all of the
parametric baselines, and the accuracy drop from
DPR is only 2.45% on the EfficientQA dev set and
about 4% on the test set while reducing the system
footprint to about 0.6% of the original size.

Our final system achieves the first place in the
human (manual) evaluation and the second place
in the automatic evaluation on “Systems Under
500MB Track” of the EfficientQA competition.
While the accuracy of our system is 32.06% on
the EfficientQA test set in the automatic evalua-
tion, which is 1.38% behind the top-performing
system (Lewis et al., 2021), its accuracy is 42.23%
in the human evaluation which is 2.83% higher
than the other system. Interestingly, when possi-
bly correct answers are also counted as correct, the
accuracy rises to 54.95% (7.58% higher than the
other system). Please refer to Table 2 of Min et al.
(2021) for more details.

In addition to the EfficientQA dataset, we also

8The accuracy of the T5 baselines are calculated
using the SSM models finetuned on Natural Questions:
https://github.com/google-research/google-research/tree/
master/t5_closed_book_qa#released-model-checkpoints.

Table 1: System size and Exact Match (EM) score of several
standalone open-domain QA systems, reported on the test set
of EfficientQA. The value of the baseline systems except for
DPR are reported in the EfficientQA leaderboard9. The system
size of DPR is estimated as described in Section 3.

Model EM System Size Mechanism

T5-1.1-small+SSM 18 486.61 MB parametric
T5-1.1-XL+SSM 28 5.65 GB parametric
REALM 35 27.19 GB retrieve & read

DPR 36 77.5 GB retrieve & read
+ Our Methods 32 484.69 MB retrieve & read

perform experiments on open-domain Natural
Questions (NQ) (Kwiatkowski et al., 2019) and
TriviaQA (Joshi et al., 2017) to test the generaliz-
ability of the proposed methods. The results and
detailed analysis are presented in Appendix A.5.

4 Related Works

There has recently been a line of work that tar-
gets to create storage-efficient open-domain QA
systems, especially following the EfficientQA com-
petition. Here, we introduce several approaches
concurrent to ours that interested readers may refer
to. Izacard et al. (2020) and Fajcik et al. (2021)
explore the trade-off between storage budget and
accuracy, and their retrieve & read systems take up
only about 6GB with state-of-the-art performance.
Lewis et al. (2021) propose a QA-pair retrieval
system for open-domain QA, which enjoys the ben-
efits of high flexibility and low latency. Their re-
triever answers 1100 questions per second with
41.2% accuracy on NQ, which rises to 47.7% when
equipped with a reranker. The variants optimized
for small system footprint are the winning systems
of two storage-constrained tracks at EfficientQA.
Min et al. (2021) review the EfficientQA compe-
tition with detailed analysis and summarize all of
the top-performing systems.

5 Conclusion

We discuss several orthogonal approaches to reduce
the system footprint of a retrieve-and-read-based
open-domain QA system. The methods together
reduce the size of a reference system (DPR) by 160
times with an accuracy drop of 2.45% and 4% on
EfficientQA dev and test, respectively. We hope
that the presented strategies and results can be help-
ful for designing future retrieve-and-read systems
under a storage-constrained serving environment.

9https://ai.google.com/research/NaturalQuestions/
efficientqa

https://github.com/google-research/google-research/tree/master/t5_closed_book_qa#released-model-checkpoints
https://github.com/google-research/google-research/tree/master/t5_closed_book_qa#released-model-checkpoints
https://ai.google.com/research/NaturalQuestions/efficientqa
https://ai.google.com/research/NaturalQuestions/efficientqa

5861

Acknowledgements

The authors would like to thank the members of
NAVER Clova for proofreading this paper. This
work was supported by Institute of Information &
communications Technology Planning & Evalua-
tion (IITP) grant funded by the Korea government
(MSIT) (No. 2019-0-00075, Artificial Intelligence
Graduate School Program (KAIST)).

References
Tom B Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. In NeurIPS.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL.

Martin Fajcik, Martin Docekal, Karel Ondrej, and
Pavel Smrz. 2021. Pruning the index contents for
memory efficient open-domain qa. arXiv preprint
arXiv:2102.10697.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2019. Realm: Retrieval-
augmented language model pre-training. In ICML.

Song Han, Huizi Mao, and William J Dally. 2016.
Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huff-
man coding. In ICLR.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2014.
Distilling the knowledge in a neural network. In
NIPS Deep Learning Workshop.

Gautier Izacard and Edouard Grave. 2021. Leveraging
passage retrieval with generative models for open do-
main question answering. EACL.

Gautier Izacard, Fabio Petroni, Lucas Hosseini, Nicola
De Cao, Sebastian Riedel, and Edouard Grave. 2020.
A memory efficient baseline for open domain ques-
tion answering. arXiv preprint arXiv:2012.15156.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with gpus. In IEEE
Transactions on Big Data.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke
Zettlemoyer. 2017. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In ACL.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Ledell
Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
2020. Dense passage retrieval for open-domain
question answering. In EMNLP.

Hanjoo Kim, Minkyu Kim, Dongjoo Seo, Jinwoong
Kim, Heungseok Park, Soeun Park, Hyunwoo Jo,
KyungHyun Kim, Youngil Yang, Youngkwan Kim,
Nako Sung, and Jung-Woo Ha. 2018. Nsml: Meet
the mlaas platform with a real-world case study.
arXiv preprint arXiv:1712.05902.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Matthew Kelcey,
Jacob Devlin, Kenton Lee, Kristina N. Toutanova,
Llion Jones, Ming-Wei Chang, Andrew Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: a benchmark for question answering
research. In TACL.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised open
domain question answering. In ACL.

Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. In EMNLP.

Patrick Lewis, Yuxiang Wu, Linqing Liu, Pasquale
Minervini, Heinrich Küttler, Aleksandra Piktus, Pon-
tus Stenetorp, and Sebastian Riedel. 2021. Paq: 65
million probably-asked questions and what you can
do with them. arXiv preprint arXiv:2102.07033.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Sewon Min, Jordan Boyd-Graber, Chris Alberti,
Danqi Chen, Eunsol Choi, Michael Collins, Kelvin
Guu, Hannaneh Hajishirzi, Kenton Lee, Jenni-
maria Palomaki, Colin Raffel, Adam Roberts, Tom
Kwiatkowski, Patrick Lewis, Yuxiang Wu, Hein-
rich Küttler, Linqing Liu, Pasquale Minervini, Pon-
tus Stenetorp, Sebastian Riedel, Sohee Yang, Min-
joon Seo, Gautier Izacard, Fabio Petroni, Lu-
cas Hosseini, Nicola De Cao, Edouard Grave,
Ikuya Yamada, Sonse Shimaoka, Masatoshi Suzuki,
Shumpei Miyawaki, Shun Sato, Ryo Takahashi, Jun
Suzuki, Martin Fajcik, Martin Docekal, Karel On-
drej, Pavel Smrz, Hao Cheng, Yelong Shen, Xi-
aodong Liu, Pengcheng He, Weizhu Chen, Jian-
feng Gao, Barlas Oguz, Xilun Chen, Vladimir
Karpukhin, Stan Peshterliev, Dmytro Okhonko,
Michael Schlichtkrull, Sonal Gupta, Yashar Mehdad,
and Wen tau Yih. 2021. Neurips 2020 efficientqa
competition: Systems, analyses and lessons learned.
arXiv preprint arXiv:2101.00133.

Adam Roberts, Colin Raffel, and Noam Shazeer. 2020.
How much knowledge can you pack into the param-
eters of a language model? In EMNLP.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. Mobilebert:

5862

a compact task-agnostic bert for resource-limited de-
vices. In ACL.

Nako Sung, Minkyu Kim, Hyunwoo Jo, Youngil Yang,
Jingwoong Kim, Leonard Lausen, Youngkwan Kim,
Gayoung Lee, Donghyun Kwak, Jung-Woo Ha, and
Sunghun Kim. 2017. Nsml: A machine learning
platform that enables you to focus on your models.
In NeurIPS Systems for ML Workshop.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Fun-
towicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Can-
wen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush.
2019. Huggingface’s transformers: State-of-the-
art natural language processing. ArXiv preprint
arXiv:1910.03771.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,
Jialin Liu, Paul Bennett, Junaid Ahmed, and Arnold
Overwijk. 2021. Approximate nearest neighbor neg-
ative contrastive learning for dense text retrieval. In
ICLR.

Sohee Yang and Minjoon Seo. 2020. Is retriever
merely an approximator of reader? arXiv preprint
arXiv:2010.10999.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. 2019. Q8bert: Quantized 8bit bert. In
NeurIPS EMC2 Workshop.

A Appendix

A.1 Training Details of the Passage Filter
Jtotal is the set of all 21M passages that serve as the
knowledge source of DPR. J`train consists of the top-
200 passages retrieved for each of the questions in
Natural Questions (Kwiatkowski et al., 2019) train,
dev, test set, and EfficientQA dev set. To retrieved
the passages, we use the retriever of Yang and Seo
(2020) trained on Natural Questions. Smoothed
frequency tlog10pfreqpj q ` 1u is considered to cre-
ate a candidate pool of the positive passages, and
oversampling from the pool is done to make J`

1

train,
whereas J´

1

train is randomly and uniformly sampled
from J´train. The objective function is defined as
follows:

´

ř

jPJ`
1

train
log σpsjq `

ř

jPJ´
1

train
log r1´ σpsjqs

|J`
1

train| ` |J
´1

train|
.

We finetune a RoBERTa-base (Liu et al., 2019) clas-
sifier with a batch size of 18 (|J`

1

train| “ |J
´1

train| “ 9),
learning rate of 1e-5, dropout rate of 0.1, max norm
gradient clipping of 2.0, and warmup steps of 1000,
using one V100 GPU. We use the code of Hugging-
Face Transformers (Wolf et al., 2019), and no addi-
tional preprocessing is used on the data other than
the tokenization for RoBERTa-base. We train the
model for one epoch until all the positive passages
oversampled according to the smoothed frequency
are seen by the model at least once.

We evaluate the model on the validation set after
every 2000 steps of gradient update. We compose
J`val as a set of indices of the passages that hold the
answer for one of the questions in the EfficientQA
dev set and are retrieved by an existing retriever
as the most relevant passage to the question. We
use |J`val| “ 893 positive passages and |J´val| “

10000 ´ 893 “ 9107 randomly selected negative
passages. n “ 1, 224, 000 passages are selected
for use in our minimal retrieve & read system to fit
in the storage budget of 500MB.

A.2 Training Details of the Retriever-Reader
with Single Encoder

We have not searched for hyperparameters in al-
most all experiments on parameter sharing and
mainly followed the training setup of DPR.10

For the experiments on EfficientQA, the train-
ing set of Natural Questions (Kwiatkowski et al.,
2019) is used to train the models. The checkpoints

10https://github.com/facebookresearch/DPR

https://github.com/facebookresearch/DPR

5863

Table 2: Statistics of the number of questions in each dataset.
The values in parenthesis denote the number of questions
filtered by DPR preprocessing and used for actual training.
There is no training data for EfficientQA, so we use the train-
ing set of Natural Questions to train the model for EfficientQA.

Dataset Train Dev Test

EfficientQA - 1,800 1,800
Natural Questions 79,168 (58,880) 8,757 3,610
TriviaQA 78,785 (60,413) 8,837 11,313

that report the best result on the EfficientQA dev
set11 are selected. Our code is built on top of the
official implementation of DPR, so the datasets
are preprocessed as done in the code of DPR. Ta-
ble 2 shows the statistics of the datasets including
Natural Questions and TriviaQA used for the ex-
periments in Appendix A.5. We train the models
using four to eight P40 or V100 GPUs.

Retriever Encoder Sharing We use Mobile-
BERT (Sun et al., 2020) as the pretrained encoder.
The encoder output vector is what corresponds to
the [CLS] token in the input, and only the first 128
out of 512 dimensions are utilized to calculate the
retrieval score. Following the setup of Karpukhin
et al. (2020), we use a learning rate of 2e-5, max
norm gradient clipping of 2.0, warmup of 1237, se-
quence length of 256, in-batch negative training of
1 positive and 127 negatives, and training epochs
of 40 to 70, applying early stopping if there is a
lack of resource. The models are evaluated on the
dev set after every epoch.

Unified Retriever-Reader Through Knowledge
Distillation k1 “ 200 and m “ 24 is used to
create the training dataset. To train the unified
retriever-reader, we use a learning rate of 1e-5, max
norm gradient clipping of 2.0, no warmup steps, se-
quence length of 350, batch size of 16, knowledge
distillation temperature τ of 3, and training epochs
of 16 to 30, applying early stopping when the score
seems to be converged.

Since the reader teacher (DPR reader) has a
ranker, Lread is defined as the sum of the KL di-
vergence between the span scores and the KL di-
vergence between the ranking scores of the teacher
and the student. Lret also takes the passage ranking
score from the ranker as the distillation target.

The model is evaluated at every 2000 steps, and
we select the checkpoint with the highest aver-

11https://github.com/google-research-datasets/natural-
questions/blob/master/nq_open/NQ-open.efficientqa.dev.
1.1.jsonl

age EM on m1 retrieved passages, where m1 P
t1, 10, 20, 30, 40, 50u, along with an acceptable
reranking accuracy (how many times the positive
passage is ranked at the top among 50 candidates).

Iterative Finetuning of Unified Retriever-
Reader We finetune the model for at most six
epochs. The rest of the hyperparameters are the
same as described in the previous paragraphs.

A.3 Evaluation Details

The reported EM is the highest EM on m1 retrieved
passages where m1 P t1, 10, 20, ¨ ¨ ¨ , 100u. The
original code of DPR searches the answer only
in the passage scored the highest by the passage
ranker, and thus the answer span with the highest
span score in the single passage is selected as the
final answer. All of the EM scores presented in this
work are also calculated this way.

On the other hand, we have found out that the
end-to-end QA accuracy can be slightly increased
by using the weighted sum of the passage ranking
score Prank and the answer span scores, Pstart and
Pend for the start and end positions, respectively, to
compare the answer candidates at inference time.
Therefore, we have used this scoring method for the
model submitted to the EfficientQA leaderboard.
Specifically, we use p1´λqplogPstart` logPendq`

2λ logPrank as the score. The answer spans with
the top five weighted sum scores in each retrieved
passage are selected as the candidate answers, and
the one with the highest score is chosen as the
final answer. We select λ “ 0.8 based on the
performance on the dev set. This method increases
the dev set accuracy after the iterative finetuning
stage (§2.2.3) from 34.44 to 34.61.

Due to the discrepancy between the validation ac-
curacy during and after training (described in detail
in Appendix A.5), we select up to five checkpoints
based on the dev set accuracy observed during train-
ing and evaluate them to obtain the one with the
actual highest dev set accuracy after the iterative
finetuning is done.

A.4 System Footprint

System footprint is measured by the command du
-h / inside the standalone docker container right
after its launching as stated in the EfficientQA com-
petition guideline. The system footprint at runtime
may be larger when the resources are initially com-
pressed at the time of launching the container.

Table 3 shows from the top to bottom the detailed

https://github.com/google-research-datasets/natural-questions/blob/master/nq_open/NQ-open.efficientqa.dev.1.1.jsonl
https://github.com/google-research-datasets/natural-questions/blob/master/nq_open/NQ-open.efficientqa.dev.1.1.jsonl
https://github.com/google-research-datasets/natural-questions/blob/master/nq_open/NQ-open.efficientqa.dev.1.1.jsonl

5864

Table 3: Detailed ablations on how the system size changes from 77.5 GB to 484.69 MB by applying
each of the discussed methods from the top to bottom. The values in the table use MB as the unit.
Decreased values are marked in red and increased values are marked in blue.

Docker Retriever Reader Index Text File Total

DPR 1,270 836 418 61,919 13,065 77,508
§2.1 Passage Filtering (21,015,325Ñ 1,224,000 passages) 1,270 836 418 3,681 756 6,961
§2.2.1 Embedding Dimension Reduction (768DÑ 128D) 1,270 836 418 614 756 3,894
§2.2.1 Lightweight Encoder (BERTÑMobileBERT) 1,270 188 94 614 756 2,922
§2.2.2 Retriever Encoder Sharing 1,270 94 94 614 756 2,828
§2.2.3 Unified Retriever-Reader Through Knowlege Distillation 1,270 94 0 614 756 2,734
§2.2.4 Iterative Finetuning of Unified Retriever-Reader 1,270 94 0 614 756 2,734
§2.3 INT8 Quantization of Index Items 1,270 94 0 170 756 2,290
§2.3 Saving Model Weights as FP16 1,270 47 0 170 756 2,243
§2.3 Resource Compression 1,270 42 0 145 187 1,644
§2.3 Utilizing Token IDs as the Corpus 1,270 42 0 145 177 1,634
§3 TF Serving, Minimizing Library Dependencies,

Fusing Index into Model Graph 312 177 0 0 177 666

§2.3 System Resource Compression 130 177 0 0 177 484

ablations on how the system size changes from 77.5
GB to 484.69 MB by applying each of the methods
discussed in Section 2. The values in the table use
MB as the unit. Decreased values are marked in
red and increased values are marked in blue.

The docker image is initially assumed to
be bitnami/pytorch:1.4.012, and it changes to
python:3.6.11-slim-buster13 after adopting Tensor-
Flow (TF) Serving that does not require heavy
system libraries as PyTorch does. The most
lightweight docker image with python uses Alpine,
but TF Serving does not run on an Alpine docker
container due to the lack of support of system li-
brary requirements.

A.5 Experiments: NQ and TriviaQA

Experimental Setup Most of the details to train
the models on Natural Questions (NQ) and Triv-
iaQA (Trivia) follow what is written in Ap-
pendix A.1 and Appendix A.2, and here we de-
scribe only the differences. To train the passage
filter, we use log with base 2 instead of 10 for Trivia
due to its higher validation set accuracy. The ques-
tions used to create the training data are from the
train and dev set of the datasets which correspond
to the targets of the filter models. To train the uni-
fied retriever-reader through knowledge distillation,
a batch size of 8 with gradient accumulation steps
of 2 is used to train the models using only four
V100 GPUs. The maximum number of training
epochs is set to 30, but training is stopped around
the 16th epoch to shorten the training time even
when the scores do not seem to be fully converged.

12https://hub.docker.com/r/bitnami/pytorch
13https://hub.docker.com/_/python

For iterative finetuning, a batch size of 8 with gradi-
ent accumulation steps of 2 is again used with four
V100 GPUs. The maximum number of training
epochs is also set to 30, but the training is stopped
before the 10th epoch.

Experimental Results Figure 2 shows the EM
and docker-level system footprint when each of the
discussed strategies is applied to DPR. In the case
of the EfficientQA dataset, the step-wise evaluation
result on the test set cannot be reported because
the answer set is not publicly available. On the
other hand, for NQ and Trivia, we present the step-
wise accuracy on the test set along with that on the
dev set to show how the strategies affect the actual
performance on the test set. The evaluation results
of all the cases are presented in Table 4.

Let us define the relative performance drop at
step t as the percentage of EMt´1´EMt

EMt´1
where EMt

is the EM score at the t-th phase. As shown in the
figures and the table, applying the methods to dif-
ferent datasets does not show consistent trends. Be-
cause the EfficientQA dataset is constructed in the
same way as NQ (Min et al., 2021), the trends on
these two datasets are similar except that changing
the backbone from BERT to MobileBERT (§2.2.1)
results in a significant relative performance drop
of 8.21% on the dev set of NQ while the value is
only 0.18% on EfficientQA. On the other hand, the
same change results in about 4% of relative per-
formance gain on Trivia. A different phenomenon
also appears when the retriever encoders are shared
(§2.2.2) that the accuracy rises on EfficientQA and
NQ while it drops on Trivia.

The percentage of the final accuracy to the ac-

https://hub.docker.com/r/bitnami/pytorch
https://hub.docker.com/_/python

5865

(a) Natural Questions

End-to-End QA Accuracy (EM)

DPR

§2.1 Passage
Filtering

§2.2.1 128D Embedding

§2.2.1 MobileBERT

§2.2.2 Retriever Encoder Sharing

§2.2.3 Unified Retriever-
Reader Through KD

§2.2.4 Iterative
Finetuning

§2.3 Post-Training Compression
(Minimal R&R)

30

32

34

36

38

40

42

012345678

En
d-

to
-E

nd
 Q

A
 A

cc
ur

ac
y

(E
M

)

System Footprint (GB)

NQ dev

NQ test

78

(b) TriviaQA

End-to-End QA Accuracy (EM)

DPR

§2.1 Passage
Filtering

§2.2.1 128D
Embedding

§2.2.1 MobileBERT

§2.2.2 Retriever Encoder Sharing

§2.2.3 Unified Retriever-
Reader Through KD

§2.2.4 Iterative Finetuning

§2.3 Post-Training
Compression (Minimal R&R)

47

49

51

53

55

57

012345678

En
d-

to
-E

nd
 Q

A
 A

cc
ur

ac
y

(E
M

)

System Footprint (GB)

TriviaQA dev

TriviaQA test

78

Figure 2: System footprint vs. Exact Match (EM) accuracy on Natural Questions and TriviaQA.

Table 4: Detailed ablations on how the Exact Match (EM) score on each dataset changes by applying
each of the discussed methods from the top to bottom.

EfficientQA Dev NQ Dev NQ Test TriviaQA Dev TriviaQA Test

DPR 36.78 40.20 41.52 56.84 57.10
§2.1 Passage Filtering 34.06 37.14 36.51 52.65 52.19
§2.2.1 128D Embedding 32.67 36.52 35.73 50.23 49.97
§2.2.1 MobileBERT 32.61 33.52 31.66 52.20 52.02
§2.2.2 Retriever Encoder Sharing 32.78 34.03 31.99 52.11 51.66
§2.2.3 Unified Retriever-Reader Through KD 31.67 32.88 30.72 48.40 47.51
§2.2.4 Iterative Finetuning 34.44 35.19 32.63 50.23 49.06
§2.3 Post-Training Compression 34.33 35.22 32.60 49.76 48.75

curacy at the start also differs among the datasets:
93.3% and 89.0%14 on the EfficientQA dev and test
set, 87.6%, 87.5%, and 85.4% on the NQ dev set,
Trivia dev set, and Trivia test set, respectively, but
78.5% on the NQ test set. While the gap between
the percentages on the dev and test set is small on
Trivia, the value is considerably large on NQ. Also,
the gap between the dev and test set accuracy di-
vided by the latter is about 7% on EfficientQA and
NQ, while it is only 2% on Trivia.

Meanwhile, a common observation is that pas-
sage filtering (§2.1), embedding dimension reduc-
tion (§2.2.1), and unifying the retriever and the
reader through knowledge distillation (§2.2.3) con-
sistently result in the drop of accuracy. The rel-
ative performance drop of each of the methods
is 7.40%, 4.08%, and 3.39% on the EfficientQA
dev set, 7.61%, 1.67%, and 3.38% on the NQ dev
set, 12.07%, 2.14%, and 3.97% on the NQ test set,
7.37%, 4.60%, 7.12% on the Trivia dev set, and
8.60%, 4.25%, 8.03% on the Trivia test set.15

1436.0 is used as an approximation for the accuracy
of DPR on the EfficientQA test set, which is reported
as 36 in https://github.com/google-research-datasets/natural-
questions/tree/master/nq_open.

15Figure 1 of Izacard et al. (2020) also shows the trade-off
between the index size and system accuracy. Note that the im-

In the case of unifying the retriever and the
reader into one model, one possible cause of the
accuracy drop might have come from its currently
suboptimal checkpoint selection method. From the
moment the retriever and reader are unified into one
model and jointly trained, the validation accuracy
reported during training uses the outputs of the ini-
tial retriever parameters while the actual evaluation
must use outputs of the updated retriever parame-
ters at the time of validation. Due to this discrep-
ancy, checkpoint selection based on the validation
accuracy at training does not lead to the model with
the actual highest dev set accuracy. The discrep-
ancy may further necessitate measuring the true dev
set accuracy at several different checkpoints (possi-
bly with high validation accuracy during training)
to choose the final model after iterative finetuning.
To deal with this issue and fairly compare the best
checkpoints, future research may be conducted to
refresh the retrieval index during training as in the
work of Guu et al. (2019); Xiong et al. (2021), so
that the evaluation (and training) may not be done
on the stale retrieval outputs.

plementation details of their passage filtering and embedding
dimension reduction are different from ours.

https://github.com/google-research-datasets/natural-questions/tree/master/nq_open
https://github.com/google-research-datasets/natural-questions/tree/master/nq_open

