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Abstract

Recently Graph Neural Network (GNN) has
been used as a promising tool in multi-hop
question answering task. However, the un-
necessary updations and simple edge construc-
tions prevent an accurate answer span extrac-
tion in a more direct and interpretable way.
In this paper, we propose a novel model of
Breadth First Reasoning Graph (BFR-Graph),
which presents a new message passing way
that better conforms to the reasoning process.
In BFR-Graph, the reasoning message is re-
quired to start from the question node and pass
to the next sentences node hop by hop until all
the edges have been passed, which can effec-
tively prevent each node from over-smoothing
or being updated multiple times unnecessarily.
To introduce more semantics, we also define
the reasoning graph as a weighted graph with
considering the number of co-occurrence enti-
ties and the distance between sentences. Then
we present a more direct and interpretable
way to aggregate scores from different levels
of granularity based on the GNN. On Hot-
potQA leaderboard, the proposed BFR-Graph
achieves state-of-the-art on answer span pre-
diction.

1 Introduction

Typical Question Answering (QA) or Reading
Comprehension (RC) task aims at exploring a de-
sired answer through a single evidence document or
paragraph. Recently, a more challenging multi-hop
QA task, where we need to reason over multiple
paragraphs to find the answer, is gradually catching
attention. One example from HotpotQA dataset
(Yang et al., 2018) is shown in Fig. 1.

One method for achieving multi-hop QA is to
concatenate all the paragraphs together and treat it
as a typical single-hop QA task (Yang et al., 2018),
then existing QA techniques can be applied. Al-
though multi-hop QA can be solved to some extent,
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Figure 1: One example from HotpotQA dataset. “s1”,
“s2”, ... denote the sentences in paragraphs. The model
needs to find the answer and supporting sentences by
reasoning over multiple sentences and paragraphs. It’s
obvious that the reasoning is in a ordered process from
the question to “s1”, “s2” and finally to “s4”.

this method lacks interpretation of the reasoning
process from one hop to the next hop.

Graph Neural Networks (GNN) is a natural way
to represent the solving procedure of multi-hop
QA. For instance, nodes in GNN represent sen-
tences/entities in the paragraphs, and from the up-
dation through edges we can get interactive mes-
sage between them, which is similar to the process
of reasoning. Thus, a more reasonable method is to
construct GNN to simulate the reasoning process
among multiple paragraphs (Ding et al., 2019; Qiu
et al., 2019; Tu et al., 2020). Promising perfor-
mance has been reported in methods that designed
different type of nodes or edges for GNN(De Cao
et al., 2019; Tu et al., 2019, 2020; Fang et al., 2020)
and the features generated from GNN has also been
combined with those from the context encoder in a
latent way (Qiu et al., 2019; Fang et al., 2020).
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Despite of the success that GNN achieves in
multi-hop QA, new problems associated to GNN
arise. Firstly, current approaches update all the
nodes, including some unnecessary ones, together
within each layer, which may lead the nodes to
converge to similar values and lose the discrimi-
nating ability for GNN with more layers (Kipf and
Welling, 2017). Secondly, although different types
of edges have been designed for GNN, there is no
more fine-grained distinction between edges of the
same type, without considering the other relational
information between sentences. Thirdly, existing
methods only latently fuse the hidden representa-
tions of GNN and context encoder, without con-
tributing to the answer span extraction in a direct
and interpretable way.

To solve the aforementioned issues, we proposed
a novel model of Breadth First Reasoning Graph
(BFR-Graph) to effectively adapt GNN to multi-
hop QA. The proposed BFR-Graph is a weighted
graph in which the weight of an edge is computed
based on other relational information (e.g., co-
occurrence entities and distance) of the connected
sentences. Inspired by the Human reasoning mech-
anism and the Breadth First Search algorithm, in
BFR-Graph the reasoning message starts from the
question and passes to the next sentence nodes hop
by hop until all the edges have been passed, effec-
tively preventing each node from updating multiple
times or being updated unnecessarily. Then the rea-
soning result from BFR-Graph is converted to the
sentence scores and paragraph scores, contributing
to the answer span extraction. Specifically, the final
answer span probability is the sum of the score of
answer span, the sentence and the paragraph, in
both of which the answer is located. Experiment
results shows that our methods make GNN more
powerful in multi-hop QA and achieves state-of-
the-art on answer span prediction of HotpotQA.

The contributions of this paper are summarized
as follows:

• We propose BFR-Graph for multi-hop QA,
which is more in line with reasoning process
than existing GNNs. The reasoning message
starts at the question and then reasons to the
next sentences hop by hop.

• Our BFR-Graph is a weighted graph, consider-
ing the number of co-occurrence entities and
the distance between sentences.

• To take advantage of the reasoning result from

BFR-Graph, multi-score mechanism is used
for answer span extraction in a more direct
and interpretable way.

2 Related Work

2.1 Multi-hop QA

Serval multi-hop QA datasets have been proposed
such as WikiHop (Welbl et al., 2018) and Hot-
potQA (Yang et al., 2018). WikiHop provides can-
didate answers for selection while HotpotQA needs
to find an answer span over all paragraphs. Based
on these datasets, several categories of multi-hop
QA approaches were proposed.

Yang et al. (2018) proposed a baseline method
based on RNNs and Min et al. (2019) decomposed
the multi-hop question into simpler single-hop sub-
question that can be answered by existing single-
hop RC models. To better utilize multiple para-
graphs, Nishida et al. (2019) proposed Query Fo-
cused Extractor to sequentially summarize the con-
text and Asai et al. (2020) used a recurrent retrieval
approach that learns to sequentially retrieve evi-
dence paragraphs. Moreover, reasoning has also
been conducted in multi-hop QA. Jiang and Bansal
(2019) designed a neural modular network to per-
form unique types of reasoning; Chen et al. (2020)
presented extra hop attention that can naturally
hops across the connected text sequences. Qiu et al.
(2019) regards the task as a two-stage task includ-
ing paragraph selection and downstream model.
and Tu et al. (2020) further proposed a pairwise
learning-to-rank loss for better interaction between
paragraphs. Although the aforementioned methods
are specifically designed for multi-hop QA with
different structures, they lack an explicit scheme to
show the reasoning process.

2.2 GNNs for Multi-hop QA

Recently GNNs such as Graph Convolution Net-
works (Kipf and Welling, 2017) and Graph At-
tention Networks (Veličković et al., 2018) show
enhancement in multi-hop QA because the GNN-
based methods are more intuitive and explicit.

Entity-GCN (De Cao et al., 2019) considered
different type of edges and Tu et al. (2019) further
built a heterogeneous graph with multiple types
of nodes and edges for different granularity levels
of information. Besides, Ding et al. (2019) coor-
dinated implicit extraction and explicit reasoning
through a GNN inspired by the dual process theory
in cognitive science, and Tu et al. (2020) built a
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Figure 2: Diagram of our system. Each node in the graph represents a sentence. The dotted line in light blue means
the sentences are from the same paragraph.

GNN model for reasoning over sentence, which is
summarized over token representations based on a
mixed attentive pooling mechanism. Furthermore,
more complex graphs is also designed. Qiu et al.
(2019) proposed a Dynamically Fused Graph Net-
work to explore along the entity graph dynamically
and finds supporting entities from the context. Fang
et al. (2020) created a hierarchical graph for dif-
ferent levels of granularity to aggregate clues from
scattered texts across multiple paragraphs. How-
ever, GNNs in these methods update all the nodes
together, including some unnecessary ones.

3 Model

To solve the aforementioned issues, we propose
a novel model of Breadth First Reasoning Graph
(BFR-Graph) for multi-hop QA. Different from
existing GNN-based methods, BFR-Graph intro-
duces new restrictions on the message passing: the
message only starts from the question and then
passes to the latter sentence nodes hop by hop.
Besides, our graph is constructed as a weighted
graph considering the co-occurrence entities and
distance between sentences. Moreover, multi-score
answer prediction is designed to take advantage
of the reasoning result from BFR-Graph. In short,
we propose breadth first reasoning on the weighted
graph and then combine multi-level scores for an-
swer prediction in the framework of multi-task joint
training.

The diagram of our system is shown in Fig. 2.
Given multiple paragraphs, we first filter out
irrelevant paragraph with paragraph selection
(Sec. 3.1) and then use a BERT for context en-
coding (Sec. 3.2). A weighted graph is constructed

(Sec. 3.3) to reason over sentences (Sec. 3.4) and
calculate the sentence score and paragraph score.
Finally, we use multi-score mechanism to predict
the answer span (Sec. 3.5).

3.1 Paragraph Selection

Although multiple candidate paragraphs are given
for answering the question, not all of them are use-
ful (i.e., relevant to the question). Following Qiu
et al. (2019), we retrieve N useful paragraphs for
each question through a straightforward way. Each
candidate paragraph is concatenated with the ques-
tion (“[CLS]” + question + “[SEP]” + paragraph +
“[SEP]”) and fed into a BERT (Devlin et al., 2019)
for binary classification. After training procedure,
we select paragraphs with top-N score as the useful
paragraphs, which are then concatenated together
as context C.

3.2 Context Encoding

Following Qiu et al. (2019), we concatenate each
question Q and its corresponding context C, and
feed them into a BERT followed by a bi-attention
layer (Seo et al., 2017) to obtain the encoded repre-
sentations of question and context. The output is
denoted as:

H = {h0, · · · ,hL−1} ∈ RL×d, (1)

where L is the length of the input sequence (con-
catenating question and context), and d is the out-
put dimension of bi-attention layer (also the dimen-
sion of BERT).

To achieve sentence-level representations, we
first obtain token-level representation of each sen-
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Figure 3: Message passing procedure of BFR-Graph and typical GNN. Active node is the node that is reachable
for its neighbors while the quiet one is on the contrary. Active edge is the passable edge while the quiet one is on
the contrary.

tence:

Sseq
i = H[sstarti : sendi , :] ∈ RLsi×d, (2)

where sstarti , sendi are the start and end position
of the sentence i respectively, Lsi is the length of
sentence i. Note that the question is also a sentence.
Then using the method in Rei and Søgaard (2019),
we get sentence representation:

si =

Ls∑
k=0

αi
kS

seq
i [k, :] ∈ Rd, (3)

where αi
k is the weight on the k-th token of sen-

tence i, obtained from a two-layer MLP (Multi-
Layer Perceptron) with output size = 1.

3.3 Weighted Graph Construction

The nodes in our weighted graph represent ques-
tionQ and sentences in contextC. To better exploit
complex relational information between sentences,
two types of correlation are defined: positive corre-
lation and negative correlation. Although they can
be designed in many ways, now we illustrate our
design:

(1) Positive correlation: an edge is added if the
nodes representing the sentences i and j have
n(n ≥ 1) of the same named entities, and the
weight of the edge is:

wij =
1

1 + e−n+K1
. (4)

(2) Negative correlation: otherwise, an edge is
added if the two nodes are originally from the
same paragraph, and the weight of the edge is:

wij =
1

1 + ed+K2
, (5)

where d is the distance of the two sentences
(e.g., d = 1 if the sentence is immediately
followed by the other sentence in a paragraph,
d = 2 if there is a sentence between them, etc.).
K1 and K2 are hyperparameters.

To simplify our design, we treat our graph as a
homogeneous graph, which contains single type of
nodes and edges.

3.4 Breadth First Reasoning

When we reason over paragraphs to answer a ques-
tion, we start from the question and find the next
sentence hop by hop. For a GNN where nodes
represent sentences, the following message passing
is unnecessary and may suppress the disturbance
from useless nodes: (1) from the latter node to
the former node, (2) a node haven’t received the
message from question but it updates other nodes.

To prevent each node from being updated mul-
tiple times unnecessarily, the reasoning message
in our BFR-Graph starts from the question node
and passes to the next nodes hop by hop until all
the edges have been passed. Note that a node is
allowed to update multiple times, depending on
whether the connected edges have all been passed.
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Algorithm 1: Algorithm of BFR-Graph
E represents the set of edges that haven’t

been passed yet (dynamic);
A represents the set of active nodes
(dynamic);
Ni represents neighbors of node i (static);
N ′i represents reachable neighbors of node i
(dynamic).

Input: Initial node representations S, the
set of neighbors N .

Output: Node representations S′.
1 E ← all edges
2 A ← question node
3 while True do
4 // To update node i
5 N ′i ← ∅
6 forall j ∈ Ni do
7 if j ∈ A and (i, j) ∈ E then
8 Add (i, j) to N ′i
9 end

10 end
11 if N ′i == ∅ then
12 break
13 end
14 Update node i with N ′i
15 forall j ∈ N ′i do
16 Remove (i, j) from E
17 Remove j from A
18 end
19 Add i to A
20 end

Fig. 3 visually shows the difference between BFR-
Graph and typical GNN.

Specifically, a node i is updated by node j when
the following conditions are met simultaneously:
(1) node i and node j are neighbors, (2) node j
is active, i.e., it is updated last layer, (3) the edge
between node i and node j haven’t been passed
previously. The overall message passing procedure
of BFR-Graph is illustrated in Algorithm 1.

Inspired by Graph Attention Networks
(Veličković et al., 2018), the updating function (or
message passing function) is defined as:

s′i = LeakyRelu(
∑
j∈N ′

i

βijsjW), (6)

βij =
exp(f(si, sj)) · wij∑

k∈N ′
i
exp(f(si, sk)) · wik

, (7)

Figure 4: Multi-score answer prediction. The example
is calculating the score for an answer span located in
paragraph 1 (“p1”) and sentence 5 (“s5”).

where N ′i is the set of reachable neighbors for
node i, calculated with Algorithm 1. f(si, sj) =
siW1W2sj is for calculating the attention score
between node i and j. W, W1 and W2 are learn-
able parametres. wij is the weight of the edge (i, j),
described in the Sec. 3.3. For clarity, s′ is written
as s in following contents.

3.5 Multi-score Answer Prediction

The answer in HotpotQA dataset is a span from
the context. Existing works only calculate the span
probability on the output of encoder (e.g., BERT) or
additionally concatenate the GNN’s hidden output.
Differently, we use a more interpretable method by
calculating the sentence score and paragraph score
obtained from the GNN. An example is shown in
Fig. 4.

Conventionally, the score of y-th word in context
being the start / end of the answer span is calculated
by:

φstart(y) = MLP1(H[y, :]), (8)

φend(y) = MLP2(H[y, :]), (9)

where MLP is a two-layer MLP with output size =
1 to obtain the score value.

Then, we calculate the sentence score corre-
sponding to each node in GNN:

φsent(si) = MLP3(si). (10)

Similarly, we calculate the paragraph score
through a global-max-pooling:

φpara(pj) = MLP4(Max(
{
s
pj
0 , ..., s

pj
Lpj−1

}
)),

(11)
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where s
pj
i is the representation of the i-th sentence

in paragraph pj , Lpj is the number of sentences
in paragraph pj . Max(·) is a max-pooling layer
with pooling size = Lpj × 1, which can also be
done by taking the maximum hidden value on each
dimension over all the sentence nodes.

Finally, the probability of y-th word in context
being the start of the answer span is determined by:

pstart(y) = softmax(φ′start(y)), (12)

φ′start(y) = φstart(y) + φsent(si) + φpara(pj),
(13)

where the y-th word is located in sentence si and
paragraph pj . And the probability of y-th word in
context being the end of the answer span can be
calculated similarly.

In other words, if a sentence or paragraph has a
higher score, the words located in it are more likely
to be the answer.

3.6 Multi-task Joint Training

In addition to the answer span prediction, there are
other two training tasks in HotpotQA. One is the
answer type prediction task: some answers cannot
be retrieved from the context, but are “Yes” or
“No”, so finally there are three type of answers
(e.g., span, “Yes” and “No”). We use a global-
max-pooling similar with Eq.(11) to compress all
the nodes in the GNN and predict the answer type
through a two-layer MLP.

The other task is to predict whether a sentence
in the context is a support sentence (or called sup-
porting fact in some papers) that is an evidence to
the answer. Following previous works (Tu et al.,
2020), we use the output of the GNN to predict the
supporting sentences with a two-layer MLP.

The tasks in HotpotQA are jointly performed
through multi-task learning, and the loss function
is:

L =LCE(ŷ
start, ystart) + LCE(ŷ

end, yend)+

λ1 · LCE(ŷ
type, ytype) + λ2 · LBCE(ŷ

sp, ysp),
(14)

where LCE and LBCE denote the cross entropy
and binary cross entropy loss respectively. ŷstart

denotes the logits of start position from Eq.(12)
and ystart is the label. Similarly, ŷtype and ŷsp are
the logits of answer type prediction and supporting
sentence prediction respectively.

4 Experiments

4.1 Dataset

The HotpotQA dataset (Yang et al., 2018) is the first
explainable multi-hop QA dataset with sentence-
level evidence supervision. Each sample in the
dataset contains 2 gold paragraphs and 8 distracting
paragraphs. Three tasks are included for evalua-
tion: (1) answer span prediction (denoted as “Ans”)
that extracts a span in the paragraphs or generate
“Yes”/“No”; (2) supporting sentences prediction
(denoted as “Sup”) that determines which sentences
are evidences to the answer; (3) joint prediction
(denoted as “Joint”). We submit our model to Hot-
potQA official leaderboard1 and carry out ablation
studies on the dev-set.

We also apply the main idea of BFR-Graph to
the WikiHop dataset (Welbl et al., 2018), which
provides candidate answers for selection while Hot-
potQA dataset needs to find an answer span over
all paragraphs.

Implementation details can be found in Ap-
pendix A.

4.2 Results

The experimental result on HotpotQA dataset is
shown in Table 1. As a reading comprehension task,
the performance of answer prediction should be
emphasized. Our model improves 0.84% Ans-EM
(Exact Match) than HGN-large, becoming the first
model to break through 70% and achieving state-of-
the-art on answer span prediction. On supporting
sentence prediction and joint prediction, our model
shows a close performances to HGN-large, pos-
sibly because this paper is based on the standard
GNN (homogeneous graph) for simple clarifica-
tion, and we just plan to prove that our algorithm
can improve the performance of GNN. Existing
GNN methods mostly constructed elaborate graphs
for more granular expression of nodes, while our
BFR-Graph solve the problem from another novel
perspective. Thus, BFR-Graph is universal and
can be easily applied to existing promising models
(e.g., HGN) to get better results, which provides a
promising direction for future research.

We also compare our model with two state-of-
the-art GNN models (i.e., SAE and HGN), shown
in Table 2. Both of them need to set the number of
GNN layers manually while BFR-Graph can pass
through all the connected nodes automatically with

1https://hotpotqa.github.io/
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Model Ans Sup Joint
EM F1 EM F1 EM F1

Official baseline (Yang et al., 2018) 45.60 59.02 20.32 64.49 10.83 40.16
QFE (Nishida et al., 2019) 53.86 68.06 57.75 84.49 34.63 59.61
DFGN (Qiu et al., 2019) 56.31 69.69 51.50 81.62 33.62 59.82
LQR-Net (Grail et al., 2020) 60.20 73.78 56.21 84.09 36.56 63.68
SAE-large (Tu et al., 2020) 66.92 79.62 61.53 86.86 45.36 71.45
C2F-reader (Shao et al., 2020) 67.98 81.24 60.81 87.63 44.67 72.73
HGN-large (Fang et al., 2020) 69.22 82.19 62.76 88.47 47.11 74.21
BFR-Graph 70.06 82.20 61.33 88.41 45.92 74.13

Table 1: Results on HotpotQA leaderboard. “Ans”, “Sup” and “Joint” denote answer span prediction, supporting
sentence prediction and joint prediction, respectively.

Layers Edges Intuitive
SAE manual 3 types false
NGN manual 7 types false
BFR-Graph adaptive fine-grained true

Table 2: Comparison with state-of-the-art GNN mod-
els. “Layers” denotes the number of GNN layers,
“Edges” denotes how fine-grained the edges are, and
“Intuitive” denotes whether the output of GNN can be
intuitively observed.

Model Accuracy
HDE (Tu et al., 2019) 68.1
DynSAN (Zhuang and Wang, 2019) 70.1
Path-based GCN (Tang et al., 2020) 70.8
ChainEx (Chen et al., 2019) 72.2
Longformer∗ 73.8
Longformer+BFR 74.4

Table 3: Results on WikiHop dev-set. Model annotated
with “∗” is our re-implementation.

an extremely low risk of over-smoothing (Kipf and
Welling, 2017). SAE and HGN set a fixed types of
edges, which is still not fine-grained enough, while
BFR-Graph define different weights (can up to∞
different weights depends on the dataset) to distin-
guish nodes in a finer granularity. Furthermore, we
can easily observe scores from GNN in an intuitive
way in BFR-Graph.

Besides, Table 3 shows the results on WikiHop
dev-set. When we add the breadth first reasoning
graph and weights to Longformer (Beltagy et al.,
2020), the performance is slightly improved, show-
ing that our method have the ability for better rea-
soning.

5 Ablations and Analysis

In this section, we carry out ablation studies on
HotpotQA dev-set. Table 4 shows the results of
our full model and that without breadth first rea-
soning, weights, and multi-score. It indicates that
our methods obviously improve the performance
of GNN.

5.1 Evaluation on Breadth First Reasoning

Table 5 shows the result by gradually replace the
BFR-Graph layers with standard GNN layers. In
detail, “r/p 1 layer” denotes replacing the first layer
with a standard GNN layer, “r/p 2 layers” denotes
the same operation for the first and second layers,
etc.. We observe that the more layers to be replaced,
the more severely the result drops. And when we
replace 4 layers, the joint F1 drops at about 6%,
meaning that it causes over-smoothing. It also re-
flects the severe problem of typical GNN: if it have
more layers, over-smoothing is caused; if it have
less layers, it cannot achieve long-path reasoning.

To further analyze why this particular approach
of message passing in a breadth first reasoning fash-
ion should result in better reasoning, we propose
to calculate how many useful messages the answer
sentence node received from supporting senteences:
precision =

Nsp&rcv

Nrcv
, recall =

Nsp&rcv

Nsp
, where

Nrcv denotes how many nodes’ massages the an-
swer sentence node received, Nsp denotes the num-
ber of supporting sentence (containing the question
sentence here), and Nsp&rcv denotes how many
supporting nodes’ massages the answer sentence
node received.

The above-mentioned precision, recall and corre-
sponding F1 on dev-set is shown in Table 6, where
the typical GNN is a 2-layer GNN following previ-
ous works. With breadth first reasoning, the answer
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Ans F1 Sup F1 Joint F1
full model 81.82 88.80 73.98
- bfr&ws&ms 80.72 87.77 72.20

Table 4: General ablation study for our full model. “-
bfr” denotes a typical GNN without breadth first reason-
ing; “ws” and “ms” denote the weights and multi-score
respectively.

Ans F1 Sup F1 Joint F1
full model 81.82 88.80 73.98
r/p 1 layer 81.86 88.49 73.80
r/p 2 layers 81.57 88.50 73.62
r/p 3 layers 80.66 87.63 72.04
r/p 4 layers 77.08 86.50 67.97

Table 5: Ablations on breadth first reasoning.

sentence could receive messages from supporting
sentences with a higher precision, meaning that it
can focus on useful sentences and eliminate invalid
distractions. Since the restrictions on message pass-
ing in breadth first reasoning, it leads to a decrease
in recall. However, it is hard to draw a PR curve
or get different precision-recall results because this
is not a binary classification task as we generally
understand. But fortunately, BFR-Graph shows a
higher F1 than the typical GNN.

5.2 Evaluation on Weights and Multi-score

Table 7 (top) presents the results with and without
the weights in the GNN. “-ent” denotes removing
the weights (we set the weights = 0.5 rather than
simply remove them) and “- dist” denotes removing
the distance weights. When we remove the weights,
although the answer F1 rises slightly, the support-
ing F1 falls to a greater extent. This shows that
the proposed weights is beneficial to the supporting
sentences prediction, which is directly predicted
from the GNN nodes.

To our understanding, our model enhances the
discrimination of edges by setting weights for them,
and inevitably reduces the robustness of model.
Fortunately, by designing Eqs.(4) and (5), the quan-
titative error will not cause the weight to increase
or decrease sharply, and is still able to distinguish

Precision Recall F1
typical GNN 37.62 95.61 52.89
BFR-Graph 59.44 83.49 63.08

Table 6: Message passing in different style.

Ans F1 Sup F1 Joint F1
full model 81.82 88.80 73.98
- ent 81.91 88.53 73.90
- dist 81.98 88.55 73.91
- ent&dist 81.90 88.51 73.75
full model 81.82 88.80 73.98
- sent 81.73 88.75 73.97
- para 81.81 88.64 73.95
- sent&para 81.73 88.56 73.68

Table 7: Ablations on weights and multi-score.

Complexity
typical GNN K ∗N ∗M ∗ d
BFR-Graph K ∗Nupdate ∗Mreach ∗ d

Table 8: Complexities for different message passing
ways on K-layer GNN with N nodes and represen-
tation dimension d, and M is the average number of
neighbors for each node. For BFR-Graph, Nupdate is
the number of nodes to be updated in current layer and
Mreach is the number of neighbors for current node in
current layer. For clarity, we ignore the difference be-
tween different layers and different nodes.

the difference between sentences.
For multi-score, we evaluate how the result

changes if this particular way of exploiting GNN’s
output is replaced by traditional way. In Table
7 (bottom), “-sent” and “-para” denote removing
multi-score for sentence and paragraph respectively.
It indicates that both the addition of sentence scores
and paragraph scores are beneficial to the perfor-
mance.

5.3 Complexity Analysis
We also analyze the complexities of BFR-Graph
and typical GNN, which is simply shown in Table
8. Firstly, in each layer of our BFR-Graph, only
several nodes are updated by active nodes, so the
number of nodes to be updated in a BFR-Graph
layer is less than or equal to that in a typical GNN
(Nupdate ≤ N ). Secondly, for a node in a layer
of BFR-Graph, it is only updated by its reachable
nodes (i.e., active neighbors), so the number of
reachable nodes for a node in a BFR-Graph layer
is also less than or equal to that in typical GNN
(Mreach ≤M ). Therefore, breadth first reasoning
leads to lower complexity.

For GPU parallel training, we also show the ac-
tual cost of time per epoch. BFR-Graph cost 158.6
minutes per epoch, while a 2-layer and 3-layer
typical GNN costs 157.5 and 165.6 minutes respec-
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tively. We find that BFR-Graph is always 4 layers
in HotpotQA dataset, and it can even cost less time
than a 3-layer typical GNN and is close to a 2-layer
typical GNN.

6 Conclusion

In this paper, we proposed a novel GNN model
of BFR-Graph. Specifically, the reasoning mes-
sage starts from the question node and passes to the
next sentences node hop by hop until all the edges
have been passed. We also construct the reason-
ing graph as a weighted graph and present a more
interpretable way to aggregate scores of different
levels from GNN. On HotpotQA leaderboard, BFR-
Graph achieved state-of-the-art on answer span pre-
diction.
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A Implementation Details

We select N = 3 useful paragraphs in paragraph
selection, which achieves 98.7% recall in dev-set.
We use RoBerta-large (Liu et al., 2019) for context
encoding, with a maximum length of 512 tokens.
We also fine-tune the model on SQuAD dataset
similar as Groeneveld et al. (2020). We use spaCy2

for named entity recognition and we found the bal-
ance factor K1 = 0, K2 = −2 lead to better re-
sult. The manual weights of the loss function are
λ1 = 1, λ2 = 5 in this work. The sentences num-
ber is limited to 30 and the max sentence length
is set to 512 (same with BERT). We use Adam
with learning rate of 1e-5, L2 weight decay of 0.01,
learning rate warm-up over the first 1,000 steps and
linear decay to 0. Other hyperparameters mainly
follow previous works (Fang et al., 2020). We im-
plement our model using PyTorch3 and train it on
RTX 2080ti GPUs.

The whole task consists of two stage training:
the first stage is the paragraph selection and the
second stage is the following. For the second stage,
we train the model using annotated gold paragraphs,
and take the predicted paragraphs from the first
stage during evaluation.

More details of the dataset and metrics can be
found in Yang et al. (2018). For WikiHop dataset,
we migrate the breadth first reasoning and weights
to a baseline model (we reimplement Longformer-
base (Beltagy et al., 2020) as the baseline) and
evaluate the models on the dev-set.

B Case Study and Error Analysis

In Fig.5, we provide an example for case study. The
reasoning chain in this case should be divided into
two part: Q→s1→s2→s5 and Q→s6→s5, and fi-
nally the two part of the chain is combined together
and contribute to the final answer. The complex
and long reasoning chain make the question hard
to answer.

As reported in Fang et al. (2020), HGN retrieved
another incorrect answer span. But fortunately,
our BFR-Graph can effectively deal with complex
reasoning and extract a better answer through the
long reasoning chain.

2https://spacy.io/
3https://pytorch.org/
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Figure 5: Case study.

Category Percentage(%)
Annotation 10
Multiple Answers 22
Discrete Reasoning 16
External Knowledge 20
Multi-hop 16
MRC 16

Table 9: Error Analysis of our BFR-Graph.

To provide in-depth understanding of the weak-
nesses of our model, we carry out error analysis.
Following Fang et al. (2020), we randomly sample
100 examples in the dev-set with the answer F1 as
0. Then we group the error cases into 6 categories:
(1) Annotation: the reference answer is incorrect;
(2) Multiple Answers: multiple correct answers
can answer the question, but only one is provided
in the dataset; (3) Discrete Reasoning: this type
of error often appears in “comparison” questions,
where discrete reasoning is required to answer the
question; (4) External Knowledge: commonsense,
external knowledge or mathematical operation is
required; (5) Multi-hop: the model fails to perform
multi-hop reasoning, and finds the final answer
from wrong paragraphs; (6) MRC: the model ex-
tracts the wrong answer span but correctly finds the
supporting paragraphs and sentences.

Table 9 shows the percentages of the 6 error cate-

gories of our BFR-Graph. We find that many errors
are due to the wrong reference answer (10%) or
multiple answers (22%), which actually should not
be considered as the error cases. Among other er-
ror cases, the major category of errors comes from
the questions that need external knowledge (20%,
including commonsense and mathematical opera-
tion), which is hard to handle without a knowledge
base.

C A Case for Multi-score Prediction

Fig. 6 shows an example with specific scores when
calculating multi-scores. The RoBerta-style tokens
have already been converted to the BERT-style to-
kens for better reading.

“Token-idx” denotes the index for each token.
“Para-score” and “Sent-score” denote paragraph
scores and sentences scores respectively. “Start-
score” and “End-score” are the scores that be the
start and end of the answer span.

There are 3 paragraphs in this case (token index:
0-54, 55-108, 109-204), and the second paragraph
achieve the highest paragraph score. Similarly, we
can find the highest sentence score (token index:
55-79). Both (token index: 66-67) and (token in-
dex: 88-89) lead to the correct answer, with high
span scores.
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Figure 6: A Case for Multi-score Prediction.


