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Abstract

Although many end-to-end context-aware neu-
ral machine translation models have been pro-
posed to incorporate inter-sentential contexts
in translation, these models can be trained only
in domains where parallel documents with sen-
tential alignments exist. We therefore present
a simple method to perform context-aware
decoding with any pre-trained sentence-level
translation model by using a document-level
language model. Our context-aware decoder
is built upon sentence-level parallel data and
target-side document-level monolingual data.
From a theoretical viewpoint, our core contri-
bution is the novel representation of contex-
tual information using point-wise mutual in-
formation between context and the current sen-
tence. We demonstrate the effectiveness of our
method on English to Russian translation, by
evaluating with BLEU and contrastive tests for
context-aware translation.

1 Introduction

Neural machine translation (NMT) has typically
been explored in sentence-level translation settings.
Such sentence-level NMT models inevitably suf-
fer from ambiguities when a source sentence has
multiple plausible interpretations. Examples of
such ambiguities include anaphora, ellipsis, and
lexical coherence (Voita et al., 2019b); although
resolving these ambiguities has only a minor im-
pact on the translation performance measured by
BLEU scores (Papineni et al., 2002), they are vital
in smoothly reading the translated documents.

To address this issue, context-aware NMT models
which incorporate document-level information in
translation have recently been explored (Jean et al.,
2017; Wang et al., 2017; Tiedemann and Scherrer,
2017; Maruf and Haffari, 2018; Voita et al., 2018;
Bawden et al., 2018; Miculicich et al., 2018; Maruf
et al., 2019; Voita et al., 2019b; Yu et al., 2020;
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Kang et al., 2020; Zhang et al., 2020). Most of
these models are end-to-end models that require
document-level parallel data with sentential align-
ments for training. However, this data is available
in only a few domains (Sugiyama and Yoshinaga,
2019). Researchers have therefore started to utilize
target-side monolingual data to construct auxiliary
models which help a sentence-level NMT model per-
form context-aware translation (Voita et al., 2019a;
Stahlberg et al., 2019; Yu et al., 2020).

In this study, we propose a simple yet effective
approach to context-aware NMT using two primi-
tive components, a sentence-level NMT model and
a document-level language model (LM). We can
independently train the two components on com-
mon sentence-level parallel data and document-
level monolingual data, respectively, without us-
ing document-level parallel data. Our approach
thereby makes it possible to perform context-aware
translation with any pre-trained sentence-level NMT

model, using a pre-trained document-level LM.
To give a probabilistic foundation to this combi-

nation of two independent models, we exploit the
probabilistic nature of NMT decoding. When gener-
ating a sequence, a left-to-right decoder outputs a
categorical probability distribution over the vocabu-
lary at every time step. The decoder assigns higher
probabilities to the tokens that would be more suit-
able at that step. Therefore, when multiple valid
translations are possible for the source sentence,
the decoder just gives a higher probability to the
translation that is plausible without considering
contexts. We thus adjust the probability distribu-
tions in a context-aware manner using a target-side
document-level LM which models inter-sentential
dependencies in the target-side document.

We evaluate our methods on English to Rus-
sian translations with the OpenSubtitles2018 cor-
pus (Lison et al., 2018) in terms of the BLEU

scores and contrastive discourse test sets (Voita
et al., 2019b). Experimental results confirm that
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our method achieved comparable performance with
existing context-aware NMT models that require
either document-level parallel data (Zhang et al.,
2018; Sugiyama and Yoshinaga, 2019) or more
than one additional model (Voita et al., 2019a; Yu
et al., 2020) for capturing contexts in translation.

The contributions of this paper are as follows:

• We theoretically derived C-SCORE, a score to
qualify context-aware translation without
the need for document-level parallel data.

• Two formulations with C-SCORE turn any
pre-trained sentence-level NMT model into
a context-aware model, if it generates n-best
outputs or performs left-to-right decoding.

• A comparison between our approach and shal-
low fusion (Gulcehre et al., 2015) reveals that
our approach reformulates shallow fusion
while adding a probabilistic foundation.

2 Context-aware Decoding using
Document-level Language Model

In this section, assuming a sentence-level encoder-
decoder model (Bahdanau et al., 2015; Vaswani
et al., 2017), we first derive context-aware score (C-
SCORE for short), a context-aware objective func-
tion of outputs to be maximized in decoding. We
then describe how to compute the C-SCORE using
the decoder with a document-level language model
(D-LM) (§ 2.1). We finally detail how to perform
context-aware decoding based on C-SCORE (§ 2.2).

2.1 C-SCORE: objective function for
context-aware NMT decoding

Let us consider the problem of finding a transla-
tion y of a source sentence x in a document. The
target-side context sentence(s) preceding y, c(y),
are to be given by the past translations. We formu-
late context-aware translation conditioned on c(y)

as the maximization of the conditional probability
p(y|x, c(y)),

ŷ = arg max
y

log p(y|x, c(y))

= arg max
y

log
p(c(y)|x,y)p(y|x)

p(c(y)|x)

= arg max
y

log p(c(y)|x,y)p(y|x). (1)

Assuming that x and y are semantically similar,
we make the following approximation,

p(c(y)|y,x) ≈ p(c(y)|y). (2)

From Eq. 1 and Eq. 2, we obtain

ŷ ≈ arg max
y

log p(c(y)|y)p(y|x)

= arg max
y

log
p(c(y),y)

p(c(y))p(y)
p(y|x)

= arg max
y

C-SCORE(y;x, c(y))

where

C-SCORE(y;x, c(y)) = log p(y|x) + PMI(c(y),y)

(3)

PMI(c(y),y) = log
p(c(y),y)

p(c(y))p(y)
= log

p(y|c(y))
p(y)

(4)

PMI(c(y),y) is the point-wise mutual information
of c(y) and y which represents the degree of co-
occurrence of y and c(y). Given x, y and c(y), we
can evaluate the C-SCORE by computing the two
terms in Eq. 3 using a sentence-level NMT (S-NMT)
and a document-level LM (D-LM), respectively.

Notations We first introduce some notation to
explain the computation in Eq. 3 and Eq. 4 using
(auto-regressive) neural sequence generation mod-
els in NMT and LM. For a sequence s (|s| ≥ 0)
and token w, a neural sequence generation model
parameterized by θ can compute the log probability
that w follows s, which we denote by log pθ(w|s)):

log pθ(w folows s) = log
pθ(s · w)

pθ(s)
= log pθ(w|s)

where “·” denotes sequence concatenation. Apply-
ing this auto-regressively, for any sequence s(1)

(|s(1)| ≥ 0) and s(2) (|s(2)| ≥ 1), the probability
that s(2) follows s(1) is thereby computed as:

log pθ(s
(2) follows s(1))

= log pθ(s
(2)|s(1)) =

|s(2)|∑
t=1

log pθ(s
(2)
t |s(1) · s

(2)
<t ),

where s
(2)
<t = [s1, . . . , st−1]. (5)

p(y|x) computed by sentence-level NMT Com-
puting log p(y|x) using an S-NMT is straightfor-
ward. Suppose y to be a sequence of raw tokens,
y = [y1, . . . , yT ]. Then log p(y|x) is computed by

log p(y|x) = log pS-NMT(ỹ;x) (6)

where ỹ = [y1, . . . , yT ,</s>] and </s> is a spe-
cial token to indicate the end of sentence.
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PMI computed by document-level LM To com-
pute the components of PMI(c(y),y), p(y) and
p(y|c(y)), we use a document-level language
model (D-LM) which can handle long text spans
containing multiple sentences.

We generate training examples for D-LM from a
document as follows. We assume D-LM explicitly
models sentence boundaries. We first insert the
special token </s> into every sentence boundary
including the start and end of the document. With
this preprocessing, all the sentences start imme-
diately after an </s> token and end immediately
before an </s> token. We then sample text spans
from the document using a sliding window, where
the start and end of the span do not have to match
sentence boundaries. The sliding window’s size is
larger than the stride size, so adjacent spans may
overlap. The resulting sequence is fed to the D-LM

for training. Note that </s> for D-LM indicates
sentence boundaries, in other words, both the start
and end of the sequence.

Using D-LM, p(y) is computed by

p(y) = pD-LM(ỹ|</s>). (7)

where ỹ = [y1, . . . , yT ,</s>].
To compute p(y|c(y)), we first obtain the context

sequence c̃(y) by concatenating all the sentences in
c(y) with </s>. We then compute the conditional
probability p(y|c(y)) by

p(y|c(y)) = pD-LM(ỹ|c̃(y)) (8)

where ỹ = [y1, . . . , yT ,</s>].
Let us explain why we use the boundary-aware

D-LM rather than boundary-agnostic D-LM.1

Firstly, boundary-agnostic LMs cannot compute
the probability that a sentence is closed with a cer-
tain length, namely, Eq. 7 cannot be computed.
Secondly, they also cannot compute p(y|c(y)) cor-
rectly. For example, suppose the context c(y) is
“he’s my friend” (with the punctuation “.” omitted),
and the current target sentence y is “he’s nice.” In
this case, Eq. 8 is computed by

p(y|c(y)) = pD-LM([he,’s,nice]|[he,’s,my,friend]).

However, this estimation of p(y|c(y)) can underes-
timate the actual p(y|c(y)) because Eq. 8 inevitably
gives significant probabilities to other y such as “’s
father” as well, since “He’s my friend’s father” is

1We cannot rely on punctuations to know sentence bound-
aries, since they can be omitted in some domains.

fluent as a sequence. This behavior is unsuitable
for y,2 since “’s father” is not a complete sentence.

2.2 Searching for the optimal solution
Searching for the optimal output y that maximizes
the C-SCORE is not trivial since there are O(V T )
candidate sequences where V is the vocabulary
size and T is the maximum length of sequences
to be searched. We investigate two approaches to
obtain approximate solutions: reranking (§ 2.2.1)
and context-aware beam search (§ 2.2.2).

2.2.1 Reranking with C-SCORE

We first generate B hypotheses of the translation
HB = {y1, . . . ,yB} with beam search of beam
size B using the sentence-level NMT model. We
then choose the one that maximizes the C-SCORE.

ŷ = arg max
y∈HB

C-SCORE(y;x, c(y)) (9)

An issue with reranking is that we need to set B
to a large value when the diversity of models’ out-
puts is limited (Yu et al., 2020), which increases the
cost of decoding. We therefore attempt to integrate
C-SCORE into the decoding with beam search.

2.2.2 Context-aware beam search
Context-aware beam search (C-AWARE beam) is
beam search that is extended to work with C-
SCORE. C-SCORE (Eq. 3) can be decomposed into
token-wise C-SCOREs (Eq. 5 through Eq. 8).

C-SCORE(y;x, c(y)) = log p(y|x) + PMI(c(y),y)

=
T+1∑
t=1

C-SCOREw(ỹt|ỹ<t)

(10)

where

C-SCOREw(ỹt|ỹ<t) = log pS-NMT(ỹt|ỹ<t;x)

+ log
pD-LM(ỹt|c̃(y) · ỹ<t)
pD-LM(ỹt|</s> · ỹ<t)

(11)

By this decomposition, C-SCOREw is conditioned
on the partial sequence generated by time step t.
We can therefore apply beam search to generate
sequences in an auto-regressive manner.

The first term of Eq. 11 represents the translation
probability for the t-th token. The second term can

2Strictly speaking, we assume y to be a realization of a
random variable Y which is a sentence sampled from the
space of an infinitely large document.



5784

be interpreted as PMI between the t-th token and
the context, that is, how consistent the t-th token
is with the context. Compared to the reranking
approach, C-AWARE beam can be considered to
maximize the C-SCORE more directly in the sense
that disambiguation and token selection based on
the context are performed at every step in beam
search. Thus C-AWARE beam will more space-
efficiently consider diverse hypotheses with the
same beam size B than C-AWARE rerank.

2.2.3 Smoothing probabilities for PMI

In our preliminary experiments, we observe that
the original C-AWARE beam significantly improves
contrastive tests but deteriorates BLEU at the same
time. By analyzing contextual PMI correlation be-
tween source and target texts, we find the PMI term
in the C-SCORE sometimes takes an excessively
large value against the translation probability term,
which destroys the C-SCORE. This is understood
intuitively by the fact that the calculation of PMI in-
cludes subtraction of log probability, and log prob-
ability may take a very small negative value to
represent a probability close to zero.

To alleviate this problem, we adopt a smoothing
method for probabilities. For simplicity, in this
paper, we only present the temperature scaling (T -
scaling, for short) (Guo et al., 2017). T -scaling
replaces py=w by

p̄y=w =
p
1/T
y=w∑

w′ p
1/T
y=w′

(12)

where T is a hyper-parameter. T = 1 is equivalent
to no smoothing. We choose T from [1,∞) to
flatten the probability distribution. T -scaling is
applied to both the numerator and denominator
using the same T .

2.2.4 On the relation to shallow fusion
Shallow fusion (Gulcehre et al., 2015) is a method
to integrate probability distribution outputs ob-
tained by NMT and LM at sentence level to form
a new translation objective that is expected to pro-
mote fluency of translations. The original shallow
fusion score is computed using a sentence-level
NMT (S-NMT) and language model (S-LM). The
token-wise formula of the computation is

log p(yt) = log pS-NMT(yt;x) + β log pS-LM(yt),
(13)

where β is a hyper-parameter. In our notation with
the document-level LM, this is written as

log p(yt) = log pS-NMT(ỹt|ỹ<t;x)

+ β log pS-LM(ỹt|</s> · ỹ<t). (14)

A natural extension of this objective to the context-
aware scenario should be

p(yt|c(y)) = log pNMT(ỹt|ỹ<t;x)

+ β log pD-LM(ỹt|c̃(y) · ỹ<t), (15)

where context c̃(y) is integrated into the condition.
We call this conditional (document-level) shallow
fusion. Obviously, this is what we obtain from
Eq. 11 by ignoring the discount of the uncondi-
tional LM probability pD-LM(ỹt|</s> · ỹ<t).

Due to the absence of discounting with the un-
conditional LM, conditional shallow fusion would
prefer tokens which frequently occur regardless of
the context. It is also worth noting that, when the
context is empty, conditional shallow fusion falls
back to the original shallow fusion, whereas our C-
SCORE falls back to sentence-level NMT. Therefore,
we view C-SCORE as a reformulation of shallow
fusion for context-aware translation.

3 Experimental Setup

We evaluate our methods on English to Russian
translation, in terms of BLEU scores (Papineni et al.,
2002) and contrastive tests (Voita et al., 2019b).

3.1 Datasets and preprocessing

We use the OpenSubtitles2018 corpus (Lison et al.,
2018) for parallel and monolingual data. Following
the criteria for document segmentation and filter-
ing on sentence pairs presented by (Voita et al.,
2019b), we build monolingual and parallel data
as follows. To build monolingual data, we add
document boundary information into each docu-
ment such that they consist of contiguous subtitle
sentences from the same movie and the timestamp
difference of any two adjacent sentences is no more
than seven seconds. To build parallel data, we pick
subtitle pairs where the time overlap between the
source and target language subtitles is at least 0.9
(to reduce alignment errors). For the training of
multi-encoder NMT models, document boundary
information is added to the parallel data based on
the source-side timestamps as with the monolin-
gual data. Prior to building the Russian data, we
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Train Dev. Test

src trg (mono) src trg (mono) src trg

# sentences 5.8M 30M 6.0k 23k 15.5k
avg. # tokens 9.9 9.4 8.5 10.1 9.6 8.9 9.8 9.1

Table 1: Statistics of the parallel and monolingual data.

remove the movies from which the contrastive test
sets (§ 3.4) were made.

We perform punctuation normalization, tokeniza-
tion, and truecasing on the source and target texts
using Moses toolkit v4.0.3 We then encode the
texts into subwords using SentencePiece (v0.1.81)4

with unigram LM. The subword vocabularies are of
16,000 tokens and trained for each language. The
statistics of the datasets are listed in Table 1.

3.2 Models

We compare our methods to one sentence-level
translation model (SentTransformer) (Vaswani
et al., 2017) and three context-aware translation
models: Document transformer (Zhang et al.,
2018), DocRepair (Voita et al., 2019a), and Bayes
Document Reranker (Yu et al., 2020). All the
context-aware models use the previous three sen-
tences as context.

Document Transformer (DocTransformer, for
short) is a multi-encoder document-level NMT

model which takes source-side context as an auxil-
iary input and can be thus trained from document-
level parallel data. We follow (Zhang et al., 2018)’s
configuration for DocTransformer.

DocRepair is a sequence-to-sequence post-editing
model. It repairs document-level inconsistencies in
a text, each sentence of which has been translated
separately by a sentence-level NMT model. DocRe-
pair is trained on a pseudo parallel data made
by pairing a monolingual corpus and its round-
trip translations obtained using a back-translation
model and a forward-translation model.

Bayes Document Reranker (hereafter, Bayes
DocReranker) performs document-level transla-
tion on a document containing D sentences in the
following steps. First, it produces B-best transla-
tions for each sentence in the document and then
produces a lattice of width B and depth D, where
each node corresponds to a candidate sentence. It

3http://www.statmt.org/moses/
4https://github.com/google/

sentencepiece

then performs document-level beam search of beam
size B′ on the lattice using the following score:

Score(yi;y<i,xi) =

pD-LM(yi|y<i) + Score(yi−1;y<i−1,xi−1)

+ λ1pNMT(yi|xi) + λ2pBACK-NMT(xi|yi) + λ3|yi|
(16)

Note that this document-level beam search is equiv-
alent to the reranking procedure (§ 2.2.1) when
B′ = 1. Therefore, the essential difference
between Bayes DocReranker and our C-SCORE

reranking is the score function.
SentTransformer, the post-editing model of

DocRepair, and the back-translation models are
based on the same configuration of Transformer
base (see (Vaswani et al., 2017) for hyperparame-
ter settings). The SentTransformer is trained using
the 5.8M sentence pairs and is also used as the
sentence-level NMT model in DocRepair, Bayes
DocReranker, and our methods. For the training of
DocTransformer, we use the 5.8M sentence pairs
with document-level source context, which share
the target-side sentences with the training data of
SentTransformer. Consequently, scores obtained
from the model are for reference.5 We also eval-
uate DocTransformer and SentTransformer using
back-translation (BT) (Sennrich et al., 2016) with
the same monolingual data as the other models.

We use no pre-existing document-level paral-
lel data to train the neural networks of DocRepair,
Bayes DocReranker, and our methods, although
we use a small amount of document-level parallel
data as the development set to tune hyperparame-
ters in the methods that combine multiple models.
Instead, document-level information is fed to the
models via the round-trip augmented data (DocRe-
pair) or language models (Bayes DocReranker and
our methods).

Hyper-parameters We tune the models’ hyper-
parameters based on BLEU score on the develop-
ment set in the evaluation with BLEU, while we
tune these hyper-parameters in the evaluation of
contrastive tests by maximizing the coefficient of
D-LM under the constraint that it does not deterio-
rate BLEU compared to the SentTransformer.

For beam search to produce B-best outputs in
Bayes DocReranker and our C-AWARE Rerank, we

5Although we can train DocTransformer only on pseudo
document-level parallel data generated by back-translation,
we confirmed in preliminary experiments that the resulting
model exhibited poor performance.

http://www.statmt.org/moses/
https://github.com/google/sentencepiece
https://github.com/google/sentencepiece
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Models para monolingual data
only 6M 15M 30M

SentTransformer (w/ BT) 32.36 32.32 32.40 32.40
Shallow Fusion n/a 32.39 32.56 32.52

baselines
DocTransformer (w/ BT) 32.50 32.36 31.88 31.59
DocRepair n/a 32.13 32.36 32.35
Bayes DocReranker n/a 32.80∗ 33.58∗∗ 33.75∗∗

w/o context n/a 32.53 33.44∗∗ 33.67∗∗

proposed
C-AWARE Rerank n/a 32.74∗ 33.01∗∗ 32.93∗

C-AWARE Beam n/a 32.26 32.28 32.27
Cond. Shallow Fusion n/a 32.38 32.55 32.55

Table 2: Test set BLEU scores. ‘*’ and ‘**’ indicate
that gains from SentTransformer in the same column
are statistically significant (p < 0.05 and p < 0.01) by
bootstrap resampling with 1000 samples, respectively.

use a beam size of B = 20. For document-level
beam search of Bayes DocReranker, we use a beam
size B′ = 5. For beam search of SentTransformer,
DocTransformer, C-AWARE beam, and shallow fu-
sion, we use a beam size of B = 4.

3.3 Document-level Language models

The architecture of the document-level LM is the
decoder part of a Transformer. The number of
decoder blocks is 12. The model size is 768 with
12 attention heads, and the inner layer of the feed-
forward networks has 3072 units. We use position
embeddings to represent position information.

As described in § 2.1, when training the lan-
guage models, a special control symbol </s> is
inserted at every sentence boundary. Each training
mini-batch contains text spans each of which is a
randomly sampled fragment of a document with
a maximum span length of W = 384. Text spans
are batched such that about 32,000 tokens are in a
training batch.

3.4 Evaluation methods

The existing automatic metrics are not adequate
to evaluate gains from additional contexts (Baw-
den et al., 2018; Läubli et al., 2018; Müller et al.,
2018; Voita et al., 2019b; Sugiyama and Yoshinaga,
2019). We thus adopt a contrastive test set (Voita
et al., 2019b) to evaluate the model’s ability to
capture contextual information in translation, in ad-
dition to the evaluation by BLEU scores (Papineni
et al., 2002) to confirm that the methods do not
sacrifice general translation performance. BLEU

is computed using multi-bleu.perl from the
Moses Toolkit after decoding the subword repre-

Models deixis lex.c ell.infl ell.vp

SentTransformer 50.0 45.9 53.2 27.0
w/ BT 50.0 45.9 51.6 26.8

baselines
Doc-Transformer 50.0 45.9 56.0 57.2

w/ BT 50.0 45.9 64.4 68.2
DocRepair 89.1 75.8 82.2 67.2
Bayes DocReranker 65.2 72.2 59.6 44.6

proposed
C-SCORE 86.9 94.9 78.2 77.0
Cond. Shallow Fusion 54.7 55.3 53.4 32.4

D-LM PMI(c(y), y) 96.8 97.8 75.8 90.6
p(y|c(y)) 89.7 95.7 77.4 81.6

Table 3: Results on contrastive test sets.

sentation of the models’ outputs into words using
SentencePiece.

The contrastive test set consists of contrastive
questions for context-aware NMT models to answer.
Each question has a source sentence x, a source
context c(x), a target context c(y), and translation
candidates Y = {y1, . . . , yM}. Models must an-
swer with a candidate ŷ ∈ Y which would be the
most appropriate translation of x, i.e.

ŷ = arg max
y∈Y

p(y|x, c(x), c(y))

The test sets consist of 6000 examples in total.

4 Results and Analysis

4.1 General translation performance
measured by BLEU scores

Table 2 lists the performance of the models in
terms of BLEU scores. Bayes DocReranker and
our C-AWARE Rerank consistently outperformed
the baseline SentTransformer, even when it used
data augmentation by back-translation, while the
other methods are just comparable to the baseline.
Althogh Bayes DocReranker performed the best
among all the models, the comparison to Bayes
DocReranker without context information (using
pS-LM(yi) instead of pD-LM(yi|y<i)) reveals that
most of the improvement is not obtained by the
use of contexts. Back-translation did not contribute
to BLEU possibly because the original parallel data
is already large and there was little room for im-
provement with additional pseudo data.

4.2 Results on contrastive test sets
Tables 3 lists evaluation results (accuracy) of the
contrastive tests with models using 30M mono-
lingual data. The highest scores on each column
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(a) PMI (b) PMI with rand. context (c) Cond. prob. (d) Cond. prob. (rand. context)

Figure 1: Source-target correlation of contextual PMI (a, b) and conditional probability (c, d), calculated based on
the correct context (a, c) and wrong context that is randomly chosen from the dataset (b, d). The dataset is a subset
of the training data from the English-Russian parallel corpus. Plots are for 4166 sentence pairs in the dataset.

are in bold, and additionally, the higher one of
the two D-LM-based scores is shown in bold. The
contrastive test include four test sets: deixis is for
person deixis, lex.c is for lexical cohesion, ell.infl
is for inflection of Russian nouns caused by ellipsis
in the source sentence, and ell.vp is for verb ellipsis
in English text which is not allowed in Russian.
Although the contrastive test is targeted at context-
aware NMT models, it is possible to answer the
contrastive questions by arg maxy PMI(c(y), y) or
arg maxy p(y|c(y)). Scores obtained by these two
objectives are also reported in the table in addition
to the scores obtained by SentTransformer.

Our C-SCORE outperforms all the context-aware
models other than DocRepair. The performance
of C-SCORE is slightly worse than DocRepair
for deixis (2.2 points) and ell.infl (4.0 points),
while achieving large improvements for lex.c (19.1
points) and ell.vp (9.8 points) over DocRepair.

D-LM only objectives achieve higher scores than
C-SCORE, except for ell.infl. This is not surprising
because the choices in the tests are guaranteed to
be valid as translation for the source sentences if
given some appropriate context, so the questions
can be solved without translation. This result still
indicates that the D-LM scores give good hints for
tackling contextual ambiguities. The advantage
of C-SCORE over the SentTransformer is demon-
strated by the excellent performance of D-LM in
capturing contexts in translation.

4.3 On translation efficiency

The inference speed depends mainly on the model
size and beam size. In our experiments on a sin-
gle TITAN Xp GPU, SentTransformer decoded the
fastest at 66 sents/sec, followed by DocTransformer
that ran in 40 sents/sec. DocRepair ran in about
28 sents/sec, slightly slower because it decodes in

two passes. C-AWARE Rerank and Bayes DocRe-
ranker were about 4.3 sents/sec and 7.7 sents/sec
respectively. We expect that these models would be
accelerated by using a language model with a better
cache mechanism (e.g. TransformerXL (Dai et al.,
2019)). C-AWARE Beam ran in about 13 sents/sec.6

We leave thorough analysis on speed/performance
trade-offs to future work.

4.4 PMI correlation analysis

In § 4.2 we have confirmed the effectiveness of PMI

as a measure of a valid translation given context
using contrastive tests. To gain a deeper insight
into how well PMI conveys semantic connections
between the current sentence and its context, we
analyze the correlation of PMI between source and
target sentences.

PMI correlation between source and target
The main result we show in this section is that the
PMI of the source and target correlate well. This is
important because this supports the idea that PMI is
a language-independent measure of the connection
between the current sentence and its context.

Although we have discussed only target-side
PMI(c(y),y) defined by Eq. 4, we can compute the
source-side PMI(c(x),x) in the same way. Given
a document-level parallel corpus, we measure a
correlation between PMI(c(x),x) and PMI(c(y),y)
for each sentence pair (x,y) in the corpus.

Figure 1a shows the PMI correlation for about

6Note that the running time of NMT decoding also depends
on the degree of parallelism, and for C-AWARE Beam, de-
coding multiple sentences in parallel is less trivial since it
demands that all the previous sentences in the document are
translated by the time it starts to translate the current one. In
our experiments, assuming a practical scenario where a large
number of users input their documents for translation, we
translate multiple documents in parallel so that multiple sen-
tences from different documents can be translated in parallel.
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Figure 2: Correlation of contextual PMI between the source sentences (from the training data) and the outputs of
some models (SentTransformer, C-AWARE beam without T -scaling, and C-AWARE beam with T -scaling of T = 4).

4000 sentence pairs taken from the dev data. The
pairs of PMI values are computed using English
and Russian language models trained on the train-
ing data. We observe a clear correlation between
source and target, which agrees with the intuition
that if the target sentence matches well in the con-
text, so does the source sentence. What is also
obvious in Figure 1a is that most of the points lay
in the first quadrant where both the source and
target contextual PMI is greater than 0, which is
explained by the simple intuition that most sen-
tences should have positive co-occurrence relation
with their contexts. This behavior is lost when
computing the contextual PMI using an incorrect
context c̃ randomly chosen in the dataset as shown
in Figure 1b.

The effectiveness of PMI as a measure of the
valid translation of the current sentence given con-
text is further emphasized when compared to the
conditional probability p(y|c(y)), which could be
an alternative measure of how suitable y is in the
context as described in § 2.2.4. Figure 1c and 1d
are the conditional probability version of Figure 1a
and 1b: (p(x|c(x)), p(y|c(y))) for each sentence
pair (x, y) in the same dataset are plotted in Fig-
ure 1c and the same tuples but with random con-
texts are plotted in Figure 1d. Unlike the contextual
PMI correlation, conditional probability correlation
remains high even when we give wrong contexts.
This is because the conditional probability of a
sentence is highly affected by how frequently the
sentence is observed regardless of context; if the
source sentence is written with common expres-
sions, then so is the target sentence and they are
likely to be observed regardless of the context.

Analysis of the model outputs
PMI correlation gives us a good explanation of how
C-AWARE beam without T -scaling fails. We plot
the PMI correlation between the source sentences
and their translations obtained with NMT models

(Figure 2). We can find some outliers in the bottom
right area of the plot for C-AWARE beam without
T -scaling, which is the cause of the low correla-
tion coefficient R = 0.610 < Rsrc−ref = 0.695.
This result suggests that C-AWARE beam without
T -scaling chooses some tokens based on exces-
sively high token-wise PMI, which breaks some
translations resulting in the low BLEU. Translation
of the SentTransformer shows a higher correlation
with the source texts than the reference translation
(Figure 1a). One possible explanation for this is
alignment errors in the corpus: although worse than
the reference translations in quality, outputs of Sent-
Transformer are considered to be perfectly aligned
to the source sentences. C-AWARE beam with T -
scaling (T = 4) seems to solve this issue and
achieves the highest PMI correlation R = 0.740.

5 Related Work

The effectiveness of incorporating context into
translation was shown in earlier literature on
document-level NMT (Tiedemann and Scherrer,
2017; Bawden et al., 2018) using the single en-
coder architecture. Multi-encoder architectures
were explored to better capture contextual infor-
mation (Wang et al., 2017; Tu et al., 2018; Jean
et al., 2017; Miculicich et al., 2018; Voita et al.,
2018; Bawden et al., 2018; Maruf and Haffari,
2018; Maruf et al., 2019; Kang et al., 2020; Zhang
et al., 2020). However, since parallel data is often
constructed by picking up reliable sentential align-
ments from comparable documents, document-
level sentence-aligned parallel data for training
these document-level NMT models are expensive
to obtain and available in only a few domains and
language pairs (Sugiyama and Yoshinaga, 2019).

Recent studies have therefore started to focus
on modeling contexts using document-level mono-
lingual data. The current approaches are grouped
into three categories: data augmentation via back-
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translation (Sugiyama and Yoshinaga, 2019), a
post-editing model (Voita et al., 2019a), and mod-
eling document-level fluency via document-level
LMs (Stahlberg et al., 2019; Yu et al., 2020; Jean
and Cho, 2020). In what follows, we review these
approaches in detail.

Sugiyama and Yoshinaga (2019) reported that
the data augmentation by back-translation (Sen-
nrich et al., 2016) enhances a document-level NMT

model with a single encoder architecture in low-
resource settings. However, we have obtained lim-
ited improvements in our settings (Table 2 and Ta-
ble 3). Moreover, this approach is expensive since
it learns a document-level NMT model from a mas-
sive amount of pseudo parallel data.

Voita et al. (2019a) proposed DocRepair, a
context-aware post-editing model that corrects out-
puts of a sentence-level NMT model. Because
DocRepair ignores the confidence of the first-
stage sentence-level translation and possible alter-
native translations, it can miscorrect outputs of the
sentence-level NMT model when they are irregular
but correct. Moreover, when we change the tar-
get sentence-level NMT model, the accompanying
post-editing model must be trained from its outputs.
Our approaches, on the other hand, attempt a more
“soft” revision, taking into account the output prob-
abilities, i.e., confidence of the sentence-level NMT,
and can perform context-aware decoding with any
sentence-level NMT model, reusing a pre-trained
document-level LM.

Stahlberg et al. (2019) and Yu et al. (2020) uti-
lize a document-level LM to model document-level
fluency of outputs; these approaches are similar
to shallow fusion (Gulcehre et al., 2015)7 with
document-level LM (§ 2.2.4), although they per-
form a document-level reranking of translation
hypotheses generated for individual source sen-
tences by using sentence-level NMT. In particular,
Yu’s formulation has a probabilistic foundation like
our approaches, and additionally utilizes a back-
ward translation model. Although their formulation
brings a significant improvement in BLEU (Table 2),
the score is not obtained by better document-level

7Our work is also related to shallow fusion (Gulcehre et al.,
2015), in which token-wise probabilities output by an NMT
model and a sentence-level LM are combined to be used as
translation scores in decoding. The theoretical background
of shallow fusion and our C-SCORE are different: in shallow
fusion, the LM is intended to promote fluency of translations,
whereas in our C-SCORE, we use the probability ratio of two
LM probabilities which only provides contextual difference
and fluency is still left to the translation model.

translation; the comparable BLEU score of the no-
context version of the method (Table 2) and the re-
sults of the contrastive tests (Table 3) reveal that the
improvement is mostly due to the context-agnostic
language model prior and the backward translation
model. As we have discussed in § 2.2.4, document-
level LM scores prefer tokens which frequently ap-
pear regardless of context and are unlikely to lead
to better document-level translation. Moreover,
their method requires training a back-translation
model corresponding to the target sentence-level
NMT model.

Finally, we noticed that Jean and Cho (2020)
(which appeared after the preprint version of this
paper (Sugiyama and Yoshinaga, 2020)8 had been
submitted) have reached a formulation that is very
similar to the one presented in this paper by refor-
mulating a noisy channel model of Bayes DocRe-
ranker (Yu et al., 2020). Concrete differences be-
tween our work and theirs include the fact that we
conducted thorough analysis on the performance of
different decoding strategies (not only beam search
but also reranking). We also interpreted the sub-
traction of LM scores as point-wise mutual informa-
tion and analyzed it by observing PMI correlation
between source and target PMI to deepen the under-
standing of the formulation.

6 Conclusions

We present an approach to context-aware NMT

based on PMI between the context and the cur-
rent sentence. We first provide the formulation of
the objective, C-SCORE, and the computation pro-
cess of the C-SCORE using a sentence-level transla-
tion model and a document-level language model.
We investigate two search methods, reranking and
beam search, and evaluate the methods for English-
Russian translation. We also provide some analysis
and visualization to better understand the nature of
PMI between the context and the current sentence.

We plan to design context-aware BLEU using
PMI for evaluating context-aware NMT models. We
will evaluate our method on non-autoregressive
NMT (Gu et al., 2017). We will release all code and
data to promote the reproducibility of results.9

8This preprint is submitted to and rejected from EMNLP
2020; the interested reader may refer to this paper for experi-
ments on other language pairs such as English to French and
English to Japanese translation.

9http://www.tkl.iis.u-tokyo.ac.jp/
~sugi/NAACL2021/

http://www.tkl.iis.u-tokyo.ac.jp/~sugi/NAACL2021/
http://www.tkl.iis.u-tokyo.ac.jp/~sugi/NAACL2021/
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