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Abstract

Although pre-trained big models (e.g., BERT,
ERNIE, XLNet, GPT3 etc.) have delivered
top performance in Seq2seq modeling, their
deployments in real-world applications are of-
ten hindered by the excessive computations
and memory demand involved. For many
applications, including named entity recogni-
tion (NER), matching the state-of-the-art re-
sult under budget has attracted considerable
attention. Drawing power from the recent
advance in knowledge distillation (KD), this
work presents a novel distillation scheme to ef-
ficiently transfer the knowledge learned from
big models to their more affordable counter-
part. Our solution highlights the construction
of surrogate labels through the k-best Viterbi
algorithm to distill knowledge from the teacher
model. To maximally assimilate knowledge
into the student model, we propose a multi-
grained distillation scheme, which integrates
cross entropy involved in conditional random
field (CRF) and fuzzy learning. To validate the
effectiveness of our proposal, we conducted a
comprehensive evaluation on five NER bench-
marks, reporting cross-the-board performance
gains relative to competing prior-arts. We
further discuss ablation results to dissect our
gains.

1 Introduction

The task of named entity recognition (NER) aims to
put named entity mentioned in a sentence into some
pre-defined categories such as the person names,
organizations, locations, etc. NER is a fundamen-
tal task in nature language processing (NLP), and
often serves as an information extraction tool em-
bedded in solutions for downstream tasks such as
event recognition and aspect-level sentiment analy-
sis. And therefore, the computational and memory
efficiency of an NER model is often considered
crucial in many empirical settings.

Given its practical significance, considerable re-
search effort has been devoted to NER in recent

years. One fruitful direction is to boost NER
performance through the use of more sophisti-
cated model architectures, such as Transformer
and its variants (e.g., BERT (Devlin et al., 2019),
ERNIE (Sun et al., 2019c), XLNet (Yang et al.,
2019), RoBERTa (Liu et al., 2019b), GPT3 (Brown
et al., 2020), etc.). Many of these models are based
on the attention mechanism, which allows the mod-
els to adaptively focus on different parts of the
sentence based on its current understanding. This
enables more accurate parsing of the context, which
is critical for the NER task. While such advanced
models have delivered substantial improvements,
a major drawback is that they are typically com-
putationally expensive and memory intensive, pre-
venting their applications in many cost-sensitive
settings.

As such, it is often desirable to reduce those big
models into more affordable counterparts, prefer-
ably without any significant performance drop.
One strategy is to compress or truncate the original
model, examples in this category include parame-
ter pruning (Srinivas and Babu, 2015; McCarley,
2019), low-rank approximation (Yu et al., 2017;
Ma et al., 2019) and parameter quantization (Gong
et al., 2014; Wu et al., 2016). The resulting model
has a similar architecture to the original model, and
consequently may suffer from similar limitations
of the original model. Alternatively, knowledge
distillation (KD) considers transferring knowledge
into models with heterogeneous architectures (Hin-
ton et al., 2015), which allows more flexibility in
the control of resource usage. In KD, a new learner,
often dubbed the student model, assimilates knowl-
edge from a pre-trained model, commonly known
as the teacher. For classification tasks, this is typ-
ically achieved via minimizing their discrepancy
in the output, regardless of the internal model ar-
chitectures. Teacher outputs, sometimes referred
to as the soft-labels, typically encode more infor-
mation than what a student might receive from the
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raw training feature-label pairs, thus resulting the
improved learning efficiency.

However, for sequence tasks such as NER, stan-
dard techniques from KD do not readily apply.
While common KD seeks to minimize the KL di-
vergence between the output label distributions, for
NER, the number of label combinations grows ex-
ponentially wrt the sequence length. Extracting
teacher knowledge as if each combination is a dif-
ferent label category would be largely inefficient,
if possible at all. On the other hand, many SOTA
NER models are built on conditional random fields
(CRF) to incorporate the label dependencies, and
it only offers an un-normalized likelihood that is
not directly amenable to the computation of KL-
divergence. Another challenge for training an NER
model is the lack of labeled sequences for training,
while the unlabeled sequences may be plentiful.
The promise to leverage unlabeled data to improve
NER accuracy is appealing.

To address the above challenges, in this pa-
per, we present an efficient knowledge distillation
scheme that trains a light model (e.g., BiLSTM)
which is able to retain the accuracy of its heav-
ier counterparts, such as BERT, while significantly
reduce cost. Our solution exploits the “soft sur-
rogates”, i.e., the most probable label sequences
under the teacher model, to inform the student
learner. To efficiently identify the most likely label
sequences and determine their relative likelihood,
we explore the use of Viterbi algorithm to expedite
computation. We also explore the use of unlabeled
data to improve performance.

In summary, we highlight the following con-
tributions in this study: (i) We present a novel
multi-grained knowledge distillation strategy for
sequence labeling via efficiently selecting k-best
label sequence using Viterbi algorithm; (ii) We
advocate the use of a complete cross entropy loss
and fuzzy distillation loss to respectively account
for probability mass of un-selected sequences and
the uncertainties in teacher confidence; (iii) We
present a comprehensive empirical analysis to dis-
sect the gains from each individual components.
We also show our model delivers substantial im-
provement relative to competing solutions on a
wide-range of real-world benchmarks to demon-
strate its utility.

2 Background
Our work is inspired by three lines of re-
search: sequence-level knowledge distillation, k-

best Viterbi algorithm and fuzzy conditional ran-
dom field (CRF). In the following we review the
technical backgrounds that are needed for the con-
struction of our model.

Sequence-level Knowledge Distillation. Knowl-
edge distillation (KD) is originally developed for
classification tasks (Hinton et al., 2015; Tang et al.,
2019). When dealing with sequence outputs (e.g.,
machine translation, sequence labeling), where
each unique combination of the output sequence
is treated as different category, then the standard
distillation objective is no longer appropriate, if fea-
sible at all. This is because the number of unique
combinations for a length L sequence with T pos-
sible tags scale at TL. To combat such exponen-
tial scaling, Kim and Rush (2016) investigated us-
ing beam search for teacher output to select k-best
candidates for KD in neural machine translation
(NMT), and Mun’im et al. (2019) utilized an simi-
lar technique for KD in Large Vocabulary Continu-
ous Speech Recognition (LVSCR) tasks.

k-best Viterbi Decoding. Viterbi decoding is a dy-
namic programming technique to find a sequence
with the highest score in an exponential-growth do-
main, with only linear complexity (Viterbi, 1967).
Generalization has been proposed to extend its orig-
inal scope to find the top-K sequences that are most
probable, see (Huang and Chiang, 2005; Nielsen,
2011) for details. A summary of the algorithm
can be found in the supplementary material. In the
context of KD in sequence tasks, a trained teacher
model assigns varying probability to all sequence
combinations. Our motivation is that the k-best
Viterbi can be repurposed to pick out the K-most
probable label sequences predicted by the teacher
model, which plays an analogous role to the soft-
labels (Figure 1a), without incurring unmanageable
computational overhead.

Conditional Random Field. CRF (Lafferty et al.,
2001) is a classic and powerful energy-based model
that is capable of capturing complex spatial or tem-
poral dependency structures. In the context of NLP,
it has been generally used as a refinement layer that
accounts for correlations missed by the base NLP
model, which typically brings in additional perfor-
mance gains for various NLP tasks (Lafferty et al.,
2001; Collobert et al., 2011a; Huang et al., 2015).
Implementation-wise, CRF computes an energy
given a candidate output y and a context x (i.e.,
input sequence), followed by a softmax operator to
obtain the conditional likelihood, i.e.,
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Figure 1: Left. The model prediction accuracy im-
proves as one includes more candidate K. Right. The
non-top-K probability remains non-neglectable even
for moderately large K. Here, OntoNotes 4.0 is used
for illustration, and Y-axis represents the proportion of
samples, whose non-top-K cumulative probability is
greater than 0.1.

P(y|x) = es(x,y)∑
ỹ∈Yall

es(x,ỹ)
, (1)

where Yall is the set of all possible tag sequences,
s(x,y) represents the “compliance” energy score
between two sequences x and y. In classical NLP
models, s(x,y) is typically specified via hand-
crafted features and dependencies. In modern deep
learning models, a typical decomposition of s(x,y)
is given by two parts

s(x,y) =
L−1∑
j=1

logitj,yj
(x) +Ayj ,yj+1 , (2)

namely the emission and transition score. The tran-
sition matrix A ∈ RT×T characterizes the smooth-
ness of the label sequence (probability of switch-
ing between consequent labels), and logitj,k(x) de-
notes the likelihood of seeing label k at position j
as predicted by the base model. Note that we do
not have to enumerate the exponentially many Yall
to compute the likelihood, which can be efficiently
handled by the Viterbi algorithm introduced above
in linear time (Collobert et al., 2011b).
Fuzzy CRF. It has been argued that properly ad-
justing the uncertainty of teacher prediction usu-
ally lends better knowledge transfer to the student,
which can either be sharpening or relaxing the
teacher predicted distributions. In standard KD,
this is achieved by the incorporation of an anneal-
ing factor. In our setup, we consider relaxation
via generalizing CRF to a candidate set of label se-
quences (Shang et al., 2018) rather than individual
ones. Formally, we define the fuzzy loss as

P(Ycandidate|x) =
∑

y′∈Ycandidate
es(x,y

′)∑
ỹ∈Yall

es(x,ỹ)
, (3)

where Ycandidate contains candidate label se-
quences. Here, we will use the k-best teacher pre-
dicted label sequences as the candidate set.

…Top-K Non-top-K

Teacher outputs

Figure 2: k-best cross entropy loss uses predicted
weights for each candidate label sequence, while k-
best fuzzy loss group the candidates together and use
their aggregated weight. The two losses represent fine-
grained and coarse-grained learning from teacher re-
spectively. Both schemes lump weights for the non-
top-K labels.

3 Multi-Grained Distillation

In this section we detail the construction of our
distillation scheme, with the overall architecture
outlined in Figure 3.

3.1 Viterbi Distillation for Sequence Outputs

Now we are ready to present details of our main
contribution, Viterbi distillation for sequence out-
puts. Our basic idea is to extract information from
the teacher model via drawing a set of most prob-
able sequences, together with the respective con-
fidence to those sequences. Then these sequences
are presented to the student model during its train-
ing, to pass on the knowledge from teacher through
various loss functions.

More specifically, we apply the k-best Viterbi al-
gorithm (see Algorithm 1 in the supplementary ma-
terial) to get the pairs {(y(i)

1 , p
(i,t)
1 ), · · · , (y(i)

K , p
(i,t)
K )}

for sample x(i), where y
(i)
j is the j-th most-likely

label sequence, and p(i,t)j is the corresponding prob-
ability under the teacher model (indicated by the
superscript t). Similarly, in our subsequent discus-
sions we denote p(i,s)j as the probability produced

by the student model on the label sequence y
(i)
j .

3.1.1 Fine-grained k-best Cross Entropy
Distillation

We proposed to approximate the complete cross en-
tropy with the following k-best Vertibi approxima-
tion to avoid the exponential level of computational
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Figure 3: Model schematic for multi-grained knowledge distillation.

complexity:

LSeq-ce(x
(i))

:= −
∑

ỹ∈Yall

Pt(ỹ|x(i)) log
(
Ps(ỹ|x(i))

)

≈ −
K∑
j=1

p
(i,t)
j log

(
p
(i,s)
j (y

(i)
j |x

(i))
)

−
(
1− ptsum

)
log (1− pssum) ,

(4)

where Pt(·|·) and Ps(·|·) are the CRF likelihoods
respectively for teacher and student, and we collect
the probability mass of the top-K sequences into
terms ptsum and pssum, i.e.,

ptsum =

K∑
j=1

p
(i,t)
j , pssum =

K∑
j=1

p
(i,s)
j . (5)

Note that we have suppressed the dependency on
x for notational clarity. We emphasize the residual
probability mass (1− ptsum) � 0 (see Figure 1b),
and therefore should not be excluded from the loss
as in Kim and Rush (2016); Wang et al. (2020).

3.1.2 Coarse-grained Fuzzy Distillation
To more appropriately account for the uncertainty
in the teacher guidance, we advocate the use of a
fuzzy objective that does not discriminate between
the likelihood among the top-K picks. Concretely,
this is given by the binary cross entropy in terms of
ptsum and pssum,

LSeq-fuzzy(x
(i)) := −ptsum log(pssum)

−
(
1− ptsum

)
log (1− pssum) .

(6)

Multi-grained Distillation. See Figure 2 for a
graphical illustration of cross entropy and fuzzy
objectives, which shows different granularity on
learning from teacher.

3.1.3 Integrating Distillation Objectives
In addition to the “pure” distillation operations, we
also allow direct learning from ground-truth labels
and surrogate ones labeled by the teacher model
(details found in Section 3.2). These two kinds of
targets are named hard labels, and the related loss
is as follows,

Lhard(x(i)) := − logP(yhard|x(i)). (7)

Thus, the final loss is the weighted sum of three
terms defined above,

LSeq-all =
1
N

∑N
i=1 λ1Lhard(x(i))

+λ2LSeq-fuzzy(x
(i)) + λ3LSeq-ce(x

(i)),
(8)

where λi ≥ 0, i = 1, 2, 3.

Automated Tuning of Loss Weights. Tuning the
loss weights {λi}3i=1 in (8) via standard techniques
such as grid search can be laborious and costly. In
this work, we leverage the uncertainty weighting
strategy proposed in (Cipolla et al., 2018) to au-
tomate the weight selection procedure to balance
multi-task objectives, both for its simplicity and
robust performance. More specifically, we add
uncertainty regularization terms for the weights,
resulting

LuSeq-all = LSeq-all −
1

2
(log λ1 + log λ2 + log λ3) ,

(9)
as our new learning objective.

3.2 Data Augmentation and Misc
Augmenting with Unlabeled Data. NER appli-
cations are often challenged with the lack of labeled
instances for training. Motivated by the observa-
tions from prior studies that data augmentation us-
ing unlabeled data may improve distillation per-
formance (Mukherjee and Awadallah, 2019; Tang
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et al., 2019), we also feed unlabeled data to the
teacher model to construct additional surrogate la-
bel sequences using k-best Viterbi for distillation.
We pool the surrogate sequences from both labeled
and unlabeled data for cross entropy and fuzzy loss.
Besides, we use Top-1 sequence as hard label to
educate the student.

Token-level Distillation. To verify the necessity of
using a sequence-level distillation, we additionally
consider token-level distillation with standard KD
techniques. Specifically, we consider the following
loss

LToken :=− 1

N

N∑
i=1

T∑
j=1

Li,j , (10)

where Li,j =
∑L

k=1 Pt(yj = k|x(i)) log(Ps(yj =
k|x(i))) is the token-level KL-divergence between
the teacher’s and student’s predicted distributions
for each token, rather than the token sequence
distribution. This breaks the dependencies be-
tween tokens to avoid the combinatory complex-
ity, thus enabling standard KD. The probability
P(yj = k|x(i)) can be simply calculated by emis-
sion score, in this case, the loss is denoted as
LToken-em. To recover the spatial dependencies, we
can add transition matrix to derive the probabil-
ity P(yj = k|x(i)) by calculating the marginal
distribution of token from the probability distri-
bution P(y|x(i)) given by CRF, similar to Wang
et al. (2020). We denote this corresponding loss as
LToken-pos.

4 Related Work

NER without BERT. Extensive investigations in
NER have been conducted without appealing to the
BERT architecture, and instead using simpler archi-
tectures such as BiLSTM or convolutional neural
network (CNN) (Huang et al., 2015; Strubell et al.,
2017a). Special effort has been made to adapt the
NER network architectures for better handling of
lexicons. Liu et al. (2019a) leveraged hybrid semi-
Markov CRFs to improve NER recognition with
Gazetteers, where segments are used as the basic
units instead of words. In Zhang and Yang (2018)
a lattice-structured LSTM is proposed to encode a
sequence of input characters as well as all potential
words that match a lexicon. Gui et al. (2019) in-
corporates lexicons using a rethinking mechanism
under a CNN setup, which renders faster inference
compared with lattice-LSTM. Peng et al. (2019)

explores weighted word embedding to match all
probable words given the lexicons. In the method
given by Ghaddar and Langlais (2018), a lexical
representation is computed for each word with a
120-dimensional vector, where element encodes the
similarity of the word with an entity type. Recently,
Ding et al. (2019) leveraged the graph neural net-
work (GNN) to exploit the additional rich informa-
tion captured by the gazetteers, setting new SOTA
performance. Our distillation work is orthogonal
to these developments, and the techniques can be
combined for further improvements.

Compressing BERT with Distillation. Various
efforts have been made to reduce the size and cost
of BERT or other big models while maximally
maintaining their outstanding performance, and
KD offers an appealing alternative to the direct am-
putation of the original models. Along this line,
Tang et al. (2019) studied on compressing BERT
to BiLSTM for classification, resulting a model
with comparable performance to ELMo but 100×
fewer parameters and 15× faster inference. Tsai
et al. (2019) successfully applied KD for multi-
lingual sequence labeling model, enabling SOTA
results on an MiniBERT model afforded by a single
CPU. Other developments include distillation on
intermediate representations (Sun et al., 2019b) and
student pre-training (Turc et al., 2019). The value
of unlabeled data in KD has also been explored
(Mukherjee and Awadallah, 2019). Our work com-
plements these studies via presenting a framework
of using top-K soft-surrogate labels for KD.

Distilling with top-K Picks. Parallel to our work,
Tang et al. (2020) also considered a top-K scheme
for KD. This work distincts from our proposal via
assigning uniform weights to the un-selected la-
bels sequences, a practice that can be largely inef-
ficient. Another work close to our setup is Wang
et al. (2020), where the authors tried to distill the
structural knowledge from multiple monolingual
teachers to a single student. In their loss, the prob-
ability mass of the non-top-K picks is discarded.
In Figure 1 (right), we show that the probability
for non-top-K picks is non-neglectable, which is
properly accounted for in our proposed complete
cross entropy loss.

5 Experiment

To validate the proposed solution and elaborate
the gains, we benchmark it against state-of-the-art
methods, through a wide range of experiments on
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real-world datasets. All experiments are imple-
mented with Tensorflow and executed on a sin-
gle NVIDIA P100 GPU. Details of the experi-
mental setup are provided in supplementary ma-
terial, due to space limits, and our code will be
avialable at https://github.com/11zhouxuan/

multi_grained_kd_ner.

5.1 Datasets

The following real-world datasets are considered
in our study. Detailed summary statistics of the
datasets can be found in supplementary material.

CoNLL-2003 NER (Sang and De Meulder, 2003)
consists of newswire from Reuters RCV corpus.
Unlabeled data from the Reuters RCV corpus is
used for our data augmentation experiments.

OntoNotes (Consortium et al., 2011) is an anno-
tated multilingual corpus consists of texts from a
wide variety of sources, such as telephone con-
versation, broadcast and newswire. For our NER
experiment, we consider
• English NER is derived from OntoNotes Re-

lease 5.0 and processed according to Pradhan
et al. (2013).

• Chinese NER is derived from OntoNotes Re-
lease 4.0 and processed according to Che et al.
(2013).

Text data from other OntoNotes tasks are used as
unlabeled data.

MSRA (Levow, 2006) is a Chinese NER dataset
with its corpus derived from news domain. We
use the Chinese word segmentation dataset MSR
(Levow, 2006) for unlabeled data.

Weibo (Peng and Dredze, 2015) is a Chinese NER
dataset derived from social media contents. Only a
small fraction of data is labeled in this dataset.

5.2 Model specification

We briefly describe the modeling and training speci-
fications choices for the teacher and student models
below.

Teacher Model. To build a strong learner, our
teacher model is constructed by a BERT model
followed by a CRF layer, and we denote it
as BERT+CRF. Specifically, we use BERTBASE

1

model as our feature encoder, which is known to
perform strongly across a wide range of NLP tasks.

1https://github.com/google-research/
bert

A dropout layer is concatenated to the BERT, fol-
lowed by a fully connected layer that computes the
logit(x) for the labels at each location. We further
apply an additional CRF-layer as defined in (2) to
account for the temporal dependencies among the
labels, similar to the work of Meng et al. (2019).
The teacher model is trained using the standardized
fine-tune paradigm (Devlin et al., 2019). Following
Howard and Ruder (2018); Sun et al. (2019a), we
set different learning rates for each layer. A larger
rate is used for CRF, and for the BERT the learn-
ing rates decays by a factor of 0.9 as the layers
approaches the input.

Student Model. For our student model, we want
it to be light, fast yet still sufficiently expressive.
To this end, we use the BiLSTM+CRF architec-
ture proposed in Huang et al. (2015). This model
exploits a Bidirectional LSTM to map input se-
quence x into a sequence of feature vectors, which
accounts for the context from both directions. The
rest of the construction follows what has been de-
scribed for the teacher model, with the BERT part
replaced by the BiLSTM. We reuse the learned
word-embeddings from the teacher model and keep
it frozen during training. Empirically, we find this
strategy produces better results, possibly due to re-
duced effort transferring the knowledge of richer
embedding representation compared to alternatives
such as word2vec, and it also avoids over-fitting.

5.3 Baselines, Variations and Evaluation
In addition to the vanilla teacher and student mod-
els described above, we also considered the fol-
lowing strong established NER baselines in our
experiments.

• BERT teacher baselines (Chinese NER)
BERT+Glyce (Meng et al., 2019).
• Non-BERT student baselines (English

NER) LSTM-CNNs (Chiu and Nichols,
2016), LEX (Ghaddar and Langlais, 2018),
IDCNN (Strubell et al., 2017b), HSCRF (Liu
et al., 2019a).
• Non-BERT student baselines (Chinese

NER) SUL (Peng et al., 2019), Lattice-LSTM
(Zhang and Yang, 2018), NMDM (Ding et al.,
2019), ME-CNER (Xu et al., 2019).

Variations. To further understand the contribu-
tions from different components of our proposal,
we run different variations of the model to dis-
sect the gains. We use BiLSTM+CRF as our

https://github.com/11zhouxuan/multi_grained_kd_ner
https://github.com/11zhouxuan/multi_grained_kd_ner
https://github.com/google-research/bert
https://github.com/google-research/bert
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Table 1: Comparison of F1 scores. ↑ denotes the gain relative to Vanilla BiLSTM+CRF baseline. Best results in
each category are shown in bold. Results for the competing baselines are collected from the original papers.

Models Datasets
English Datasets Chinese Datasets

English Chinese CoNLL-2003 OntoNotes 5.0 MSRA Weibo OntoNotes 4.0

BERT+CRF (teacher)
Vanilla BERT+CRF NA NA 94.80 67.33 79.16
Glyce+BERT NA NA 95.54 67.60 80.62
BERT+CRF (teacher) 92.03 89.92 95.91 71.22 82.39

LSTM-CNNs Lattice-LSTM 90.91 86.17 93.18 58.79 73.88
IDCNN NMDM 90.54 86.84 94.4 59.5 76.0
LEX SUL 90.52 87.95 93.44 61.24 75.54
HSCRF ME-CNER 91.10 89.94 91.45 68.93 NA
Vanilla BiLSTM+CRF 80.08 82.58 90.70 51.85 64.40
+ TE (no distillation) 88.35 ↑ 8.27 87.35 ↑ 4.77 91.69 ↑ 0.99 54.87 ↑ 3.02 69.78 ↑ 5.38
+ TE + TOKEN-EM 88.46 ↑ 8.38 87.39 ↑ 4.81 91.51 ↑ 0.81 53.55 ↑ 1.70 70.46 ↑ 6.06
+ TE + TOKEN-POS 88.66 ↑ 8.58 88.17 ↑ 5.59 91.77 ↑ 1.07 54.34 ↑ 2.49 71.19 ↑ 6.79
+ TE + SEQ 89.54 ↑ 9.46 88.34 ↑ 5.76 91.98 ↑ 1.98 57.14 ↑ 5.29 72.33 ↑ 7.93
+ TE + DA (no distillation) 90.69 ↑ 10.61 87.52 ↑ 4.94 92.68 ↑ 1.96 69.74 ↑ 17.89 74.53 ↑ 10.13
+ TE + DA + TOKEN-EM 90.49 ↑ 10.41 88.05 ↑ 5.47 92.66 ↑ 1.96 69.83 ↑ 17.98 74.52 ↑ 10.12
+ TE + DA + TOKEN-POS 90.98 ↑ 10.90 88.29 ↑ 5.71 92.59 ↑ 1.89 69.90 ↑ 18.05 74.88 ↑ 10.48
+ TE + DA + SEQ (student) 91.17 ↑ 11.09 88.91 ↑ 6.32 92.99 ↑ 2.29 71.62 ↑ 19.77 76.05 ↑ 11.65

base model, and consider variants with combina-
tions of the following components in our experi-
ments: (i) TE: use fixed pre-trained teacher em-
bedding; (ii) TOKEN-EM: token-level distillation
with loss LToken-em; (iii) TOKEN-POS: token-level
distillation with with loss LToken-pos; (iv) SEQ:
multi-grained sequence-level distillation with loss
LuSeq-all; (v) DA: augmented with unlabeled data.
We also vary the size of best candidate set from
K = 1 to K = 15.

Evaluation. We report the F1 score following
Sang and De Meulder (2003), and relegate other
quantitative metrics such as Precision and Recall
to the supplementary material. We apply early
stopping with max patience set to 5 based on the
performance of the development set.

5.4 Analysis of Results

From Table 1 we first find out that, in all three
Chinese datasets, our teacher model outperforms
two baselines (Meng et al., 2019). We owe this to
the layer-wise learning rate and discriminative fine-
tuning strategies (Howard and Ruder, 2018; Sun
et al., 2019a). Another analysis in terms of teacher
is that directly copying the teacher embedding to
the student model can be most helpful, for both
English and Chinese datasets.

Regarding distillation, it achieved cross-the-
board performance gains relative to the no-
distillation TE baseline. Our final proposal, namely
TE+DA+SEQ, performs better or similarly to al-
most all of its non-BERT baselines. Note that these
competing baselines have leveraged additional do-

Table 2: Performance with different loss combinations.

Loss
Combinations

Datasets
OntoNotes 4.0 CoNLL-2003

P R F1 P R F1
LuSeq-all 77.96 74.23 76.05 90.85 91.50 91.17

+ LToken-pos 76.63 74.47 75.53 90.63 91.51 91.07
- LSeq-fuzzy 78.11 73.43 75.70 90.43 91.11 90.77
- LSeq-ce 75.71 74.87 75.29 90.35 91.60 90.97

Table 3: Comparison of automated uncertainty weight-
ing (auto) defined in (9) versus equal weighting (equal).

Datasets
Without DA With DA
auto equal auto equal

MSRA 91.98 91.77 92.99 92.83
Weibo 57.14 55.59 71.62 70.09
OntoNotes 4.0 72.32 71.32 76.05 75.83
CoNLL-2003 89.54 89.26 91.17 91.09
OntoNote 5.0 88.34 88.27 88.91 88.42

main knowledge, such as lexicon information, to
boost NER performance (see Related Work). Such
practice not only adds specialized modeling effort
and complexity, but also make the resulting archi-
tecture less generalizable to other tasks. Our results
show that we can match the performance via reap-
ing the knowledge from more sophisticated models
using general purpose sequence-level distillation,
rather than appealing to dedicated modeling effort.

We also observed that inducing data augmenta-
tion consistently improves student learning. And
notably, in all cases, the sequence-level distillation
outperforms token-level distillation, especially in
the absence of data augmentation.
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Table 4: Comparison of efficiency.

Models No. of parameters Inference time (s)
Student 2.6M 1.5× 10−3

Teacher 110.9M 7.0× 10−2
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Figure 4: Performance with different candidate size K.

5.5 Ablation Study

Size of Candidate Set. In Figure 4, we compare
how varying the size of candidate set affects per-
formance. The performance peaks at a moderate
K, after that the gain tapers off. This is because
when using an excessive K, the distillation process
starts to include more inaccurate label-sequences,
compromising the learning efficiency (as top-K
label-sequences are treated equally in the fuzzy
objective).
Effect of Augmenting with Unlabeled Data. In
Figure 5, we report the F1 scores with different
number of unlabeled instances to augment the dis-
tillation phase for on Weibo dateset, which has very
few training instances but an enormous unlabeled
set. The use of data augmentation drastically boosts
student’s performance (F1: 57.14→ 71.62). The
distillation performance monotonically increases
as more unlabeled instances are used, and the per-
formance closes, even beats the teacher model in
the large sample limit.
Loss Combinations. We further explore addi-
tional combinations of losses to sharpen our under-
standing, with main results summarized in Table
2. Combinations of sequence-level and token-level
loss (i.e., LuSeq-all +LToken-pos) reveal a slight drop
in performance. We also subtract each individ-
ual LSeq-fuzzy and LSeq-ce from LuSeq-all. It appears
that the coarse-grained loss LSeq-fuzzy is propitious
to increase the recall value, while using the fine-
grained loss LSeq-ce will get better precision value.

Effect of Uncertainty Weighting. In this paper,
we balance our loss functions with different scales

0 2k 5k 10k 30k 50k 70k 100k
Unlabeled data

55

60

65

70

F1
-v
al
ue

Teacher
TE+SEQ
TE

Figure 5: Performance gains using more unlabeled data
on the Weibo dataset. Dashed line denotes the teacher
performance baseline.

by injecting uncertainty (Cipolla et al., 2018). This
method yields a regularization term of weight, pre-
venting the weight tends to zero. Table 3 shows that,
regularized weighting outperforms equal weighting
in all cases.
Computation Efficiency. To examine the effi-
ciency gains, we compare inference time difference
between the teacher and student model, as reported
in Table 4. Our student model achieves over 40×
reduction and speedup, while achieving compara-
ble performance compared with the teacher model.
Alternative Choice of Student Model. We also
exam the performance of multi-grained distillation
method on another student model, that is four trans-
former layers, which has a similarity structure as
BERT. The results are showed in supplementary
material (Table 9).

6 Conclusions
In this work, we develop novel multi-grained
knowledge distillation techniques to train a light
NER model with comparable performance with
their more sophisticated counterparts. In particular,
we show that Viterbi algorithm can be exploited to
impart the knowledge of k-best predictions from
the teacher model to the student. We further advo-
cated the use of CRF adjustments, fuzzy objective
and data augmentation to improve performance.
Our empirical experiments carefully analyze the
gains from our proposal on a wide range of NER
benchmarks, via efficiently transferring knowledge
from a powerful BERT model to a much more com-
pact BiLSTM student. In future work, we seek to
extend the proposed framework to more general
distillation applications where CRF is used, such
as speech recognition, and distill with more general
representation transfer schemes (Chen et al., 2020).
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Table 5: Summary statistics for the datasets. #Ent:
number of entities; S: sentence size; T: token size.

Language Dataset #Ent Type Train Unlabeled Dev Test

English

OntoNotes 5.0 18 S 59.9k 36.0k 8.5k 8.3k
T 1088.5k 676.6k 147.7k 152.7k

CoNLL-2003 4 S 15.0k 50.0k 3.3k 3.5k
T 204.6k 1485.4k 51.4k 46.4k

SemEval-2016 Task5 1 S 1.8k 3.9k 0.2k 0.7k
T 27.6k 78.8k 3.7k 12.6k

Chinese

MSRA 3 S 46.4k 25.5k - 4.4k
T 979.2k 1190.2k - 172.6k

Weibo 4 S 1.4k 50.0k 0.3k 0.3k
T 73.5k 2118.9k 14.4k 14.8k

OntoNotes 4.0 4 S 15.7k 21.3k 4.3k 4.3k
T 491.9k 659.0k 200.5k 208.1k

B Hyperparameters

In Table 6 we list the search grids for our hyper-
parameter tuning. For each dataset we evaluate
all combinations and report the test set results for
best-performing model on the validation set.

Table 6: Hyperparameters for student and teacher mod-
els.

Hyperparameters Teacher Student
Batch size 32 {16,32,64,128}

Learning rate
Logit and BERT initial : le-5 {1e-3,5e-4}

CRF: le-3

Dropout rate
Embedding: 0.5 Embedding: {0.5,0.6}

BERT output: 0.5 LSTM output: 0.5
LSTM hidden size - 300

C k-best Viterbi Algorithm

We implemented the k-best Viterbi algorithm gen-
eralized from the classic Viterbi algorithm, that is
to storage the Top-K rather than maximum scores
at each time step and tag type. Though exists more
efficient k-best Viterbi implementation (Huang
et al., 2012) for large label scenarios, it only offers
marginal efficiency gains as in our tasks. Unlike
existing work (Yang and Zhang, 2018), we remove
short examples where K is larger than the possi-
ble number of label sequences. In our application,
we also output the probability rather than the path
score, and this needs another dynamic program-
ming to calculate the denominator in (1). The tran-
sition matrix is rule-constrained such that invalid
transitions (e.g., B-ORG→ I-PER) are prohibited.

D Results on student with transformer
structure

Though our main result is reported as the BiLSTM
student, the multi-grained distillation method pro-
posed in this article is not restricted to this student
model. We show herein the experiment results (Ta-
ble 9) on the four transformer layers as student
model.

Algorithm 1: Pseudocode of k-best Viterbi
Algorithm

Input: The length of input sequence x(i) as L, the
number of tags T , transition matrix A[T × T ],
the logits[L× T ] of x(i), K

Output: k-best paths and corresponding probabilities
1 Initialize:CurrentPath = 1 : T ;
2 Initialize:CurrentScore = logits[0, :];
3 for m = 0 to L− 1 do
4 w =CurrentPath.shape[1];
5 Update CurrentPath by adding T possible tags

on the end of every path;
6 Update CurrentScore of each path through (2);
7 if CurrentPath.shape[0] < K × T then
8 Continue
9 end

10 Group sort k-best on CurrentScore;
11 Update CurrentPath using the indexes of k-best

scores, resulting [w + 1,K × T ];
12 Update CurrentScore using the indexes of

k-best scores, resulting [K, 1];
13 end
14 Calculate the denominator in (1) using another

dynamic programming, for details see (Collobert
et al., 2011b);

15 return k-best paths and k-best probabilities or
{(y(i)

1 , p
(i,t)
1 ), · · · , (y(i)

K , p
(i,t)
K )},

E Results on Sentiment Analysis Task

Table 7 shows the experimental results on dataset
SemEval-2016 Task 5 of aspect based sentiment
analysis. In details, we choose subtask 1: Aspect
term extraction of the restaurants domain, and split
10% of the training data as the development set.
Texts from datasets SemEval-2014 and SemEval-
2015 are used as unlabeled data.

Table 7: Results on SemEval-2016 Task 5.

Model P R F1
BERT+CRF (teacher) 80.42 79.90 80.16
Vanilla BiLSTM+CRF 76.70 65.11 70.43
+ TE 74.86 66.08 71.20
+ TE + TOKEN-EM 73.69 68.49 71.12
+ TE + TOKEN-POS 76.33 64.79 70.09
+ TE + SEQ 77.02 67.36 71.87
+ TE + DA 77.08 67.04 71.71
+ TE + DA + TOKEN-EM 68.04 74.60 71.17
+ TE + DA + TOKEN-POS 69.59 72.83 71.17
+ TE + DA + SEQ (student) 75.26 70.90 73.01

F Experiment Results Details

This section contains detail experimental results for
precision, recall and F1-value, see Table 8, 10,11,
12,13.
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Table 8: Results on MSRA.

Model P R F1
BERT+CRF (teacher) 95.96 95.86 95.91
Vanilla BiLSTM+CRF 91.57 89.84 90.70
+ TE 93.06 90.88 91.96
+ TE + TOKEN-EM 92.37 90.67 91.51
+ TE + TOKEN-POS 93.23 90.36 91.77
+ TE + SEQ 93.26 90.73 91.98
+ TE + DA 93.77 91.61 92.68
+ TE + DA + TOKEN-EM 93.77 91.57 92.66
+ TE + DA + TOKEN-POS 93.61 91.59 92.59
+ TE + DA + SEQ (student) 93.90 92.11 92.99

Table 10: Results on Weibo.

Model P R F1
BERT+CRF (teacher) 74.30 68.38 71.22
Vanilla BiLSTM+CRF 64.08 43.54 51.85
+ TE 65.67 47.13 54.87
+ TE + TOKEN-EM 60.79 47.85 53.55
+ TE + TOKEN-POS 67.02 45.69 54.34
+ TE + SEQ 66.90 49.87 57.14
+ TE + DA 72.73 66.99 69.74
+ TE + DA + TOKEN-EM 71.04 68.66 69.83
+ TE + DA + TOKEN-POS 72.80 67.22 69.90
+ TE + DA + SEQ (student) 74.29 69.14 71.62

Table 11: Results on OntoNotes 4.0.

Model P R F1
BERT+CRF (teacher) 81.87 82.91 82.39
Vanilla BiLSTM+CRF 66.97 62.02 64.4
+ TE 72.62 67.15 69.78
+ TE + TOKEN-EM 72.13 68.85 70.46
+ TE + TOKEN-POS 72.18 70.22 71.19
+ TE + SEQ 75.34 69.55 72.33
+ TE + DA 76.06 74.80 75.43
+ TE + DA + TOKEN-EM 75.21 72.84 74.52
+ TE + DA + TOKEN-POS 75.99 73.80 74.88
+ TE + DA + SEQ (student) 77.94 74.23 76.05

Table 12: Results on CoNLL-2003.

Model P R F1
BERT+CRF (teacher) 91.46 92.61 92.03
Vanilla BiLSTM+CRF 80.67 79.5 80.08
+ TE 88.43 88.27 88.35
+ TE + TOKEN-EM 87.70 89.23 88.46
+ TE + TOKEN-POS 88.38 88.95 88.66
+ TE + SEQ 89.29 89.79 89.69
+ TE + DA 90.20 91.18 90.69
+ TE + DA + TOKEN-EM 90.18 90.80 90.49
+ TE + DA + TOKEN-POS 90.70 91.27 90.98
+ TE + DA + SEQ (student) 90.85 91.50 91.17

Table 13: Results on OntoNotes 5.0.

Model P R F1
BERT+CRF (teacher) 89.51 88.35 89.92
Vanilla BiLSTM+CRF 82.88 82.29 82.58
+ TE 87.48 87.22 87.35
+ TE + TOKEN-EM 87.41 87.37 87.39
+ TE + TOKEN-POS 88.51 87.34 88.17
+ TE + SEQ 88.72 87.96 88.34
+ TE + DA 88.10 86.85 87.52
+ TE + DA + TOKEN-EM 88.31 87.80 88.05
+ TE + DA + TOKEN-POS 89.02 87.57 88.29
+ TE + DA + SEQ (student) 89.51 88.31 88.91
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Table 9: Comparison of F1 scores on four transformer layers as student model. The abbreviations herein is as
same as Table 1, except BP means BERT pretrained parameters are used. Noting that, we simply choose the first
four transformer layers from BERT model to initialize the student model, however, other reasonable strategies as
in (Sun et al., 2019b; Jiao et al., 2019) will be studied in our future work.

Models Datasets
English Datasets Chinese Datasets

English Chinese CoNLL-2003 OntoNotes 5.0 MSRA Weibo OntoNotes 4.0

BERT+CRF (teacher)
Vanilla BERT+CRF NA NA 94.80 67.33 79.16
Glyce+BERT NA NA 95.54 67.60 80.62
BERT+CRF (teacher) 92.03 89.92 95.91 71.22 82.39

+ BP (no distillation) 89.01 88.16 93.68 64.09 75.07
+ BP + TOKEN-EM 88.53 88.49 94.47 65.99 75.59
+ BP + TOKEN-POS 89.21 88.46 94.55 65.10 75.35
+ BP + SEQ 89.81 88.60 94.62 66.42 77.53
+ BP + DA (no distillation) 90.86 88.59 94.83 70.11 79.17
+ BP + DA + TOKEN-EM 90.83 88.67 94.69 70.09 79.35
+ BP + DA + TOKEN-POS 91.04 88.78 94.84 69.73 79.31
+ BP + DA + SEQ (student) 91.21 89.06 95.07 70.65 79.91


