
Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 5694–5703

June 6–11, 2021. ©2021 Association for Computational Linguistics

5694

Jointly Extracting Explicit and Implicit Relational Triples with
Reasoning Pattern Enhanced Binary Pointer Network

Yubo Chen†, Yunqi Zhang†, Changran Hu‡, Yongfeng Huang†
†Department of Electronic Engineering & BNRist, Tsinghua University, Beijing, China

‡University of California, Berkeley, USA
ybch14@gmail.com zhang-yq15@outlook.com

changran_hu@berkeley.edu yfhuang@tsinghua.edu.cn

Abstract

Relational triple extraction is a crucial task
for knowledge graph construction. Existing
methods mainly focused on explicit relational
triples that are directly expressed, but usually
suffer from ignoring implicit triples that lack
explicit expressions. This will lead to serious
incompleteness of the constructed knowledge
graphs. Fortunately, other triples in the sen-
tence provide supplementary information for
discovering entity pairs that may have implicit
relations. Also, the relation types between the
implicitly connected entity pairs can be iden-
tified with relational reasoning patterns in the
real world. In this paper, we propose a uni-
fied framework to jointly extract explicit and
implicit relational triples. To explore entity
pairs that may be implicitly connected by rela-
tions, we propose a binary pointer network to
extract overlapping relational triples relevant
to each word sequentially and retain the infor-
mation of previously extracted triples in an ex-
ternal memory. To infer the relation types of
implicit relational triples, we propose to intro-
duce real-world relational reasoning patterns
in our model and capture these patterns with
a relation network. We conduct experiments
on several benchmark datasets, and the results
prove the validity of our method.

1 Introduction

Relational triple extraction is defined as automat-
ically recognizing semantic relations with triple
structures (subject, relation, object) among multi-
ple entities in a sentence. It is a critical task for
constructing Knowledge Graphs (KGs) from unla-
beled corpus (Dong et al., 2014).

Early work of relational triple extraction ap-
plied pipeline methods (Zelenko et al., 2003; Chan
and Roth, 2011), which ran entity recognition and
relation classification separately. However, such
pipeline approaches suffered from error propaga-
tion. To address this issue, recent work proposed
to jointly extract entity and relations from the text
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… Mark Spencer, a designer of Digium, a company in Huntsville …
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Figure 1: An example of explicit and implicit relational
triples. Italic phrases are key relational expressions cor-
responding to the explicit relational triples.

with feature-based methods (Yu and Lam, 2010; Li
and Ji, 2014; Ren et al., 2017). Afterward, neural
network-based models were proposed to eliminate
hand-crafted features (Gupta et al., 2016; Zheng
et al., 2017). More recently, several methods were
proposed to extract overlapping triples, such as
tagging-based (Dai et al., 2019; Wei et al., 2020),
graph-based (Wang et al., 2018; Fu et al., 2019),
copy-based (Zeng et al., 2018, 2019, 2020) and
token pair linking models (Wang et al., 2020).

Existing models achieved considerable success
on extracting explicit triples which have direct rela-
tional expressions in the sentence. However, there
are many implicit relational triples that are not ex-
plicitly expressed. For example, in Figure 1, the
explicit triples are strongly indicated by the key
relational phrases, but the implicit relation “Live in”
is not expressed explicitly. Unfortunately, existing
methods usually ignored implicit triples (Zhu et al.,
2019), which will cause serious incompleteness of
the constructed KGs and performance degradation
of downstream tasks (Angeli and Manning, 2013;
Jia et al., 2020; Jun et al., 2020).

Our work is motivated by several observations.
First, other relational triples within a sentence pro-
vide supplementary information for discovering
entity pairs that may have implicit relational con-
nections. For example, in Figure 1, the explicit
triples establish a relational connection between
“Mark Spencer” and “Huntsville” through the in-
termediate entity “Digium”. Second, the relation
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types of implicit relation triples can be derived
through real-world reasoning patterns. For exam-
ple, in Figure 1, the reasoning pattern “one lives
where the company he works for is located” helps
identify the type of the implicit triple as “Live in”.

In this paper, we propose a unified framework
for the joint extraction of explicit and implicit re-
lational triples. We propose a Binary Pointer Net-
work (BPtrNet), which is based on the pointer net-
work (Vinyals et al., 2015), to extract overlapping
relational triples relevant to each word sequentially.
To discover implicitly connected entity pairs, we
preserve the information of previously extracted
triples in an external memory and use it to enhance
the extraction of later time steps. To infer the rela-
tion types between the implicitly connected entity
pairs, we propose to augment our model with real-
world relational reasoning patterns and capture the
relational inference logic with a Relation Network
(RN) (Santoro et al., 2017). The RN obtains a
pattern-enhanced representation from the memory
for each word pair. Then the Reasoning pattern
enhanced BPtrNet (R-BPtrNet) uses the word pair
representation to compute a binary score for each
candidate triple. Finally, triples with positive scores
are output as the extraction result.

The main contributions of this paper are:
• We propose a unified framework to jointly

extract explicit and implicit relational triples.
• To discover entity pairs that are implicitly con-

nected by relations, we propose a BPtrNet
model to extract overlapping relational triples
sequentially and utilize an internal memory to
retain the extracted triples.

• To enhance the relation type inference of im-
plicitly connected entity pairs, we propose to
introduce relational reasoning patterns, cap-
tured with a RN, to augment our model.

• We conduct experiments on several bench-
mark datasets and the experimental results
demonstrate the validity of our method.

2 Related Work

Early work of relational triple extraction addressed
this task in a pipelined manner (Zelenko et al.,
2003; Zhou et al., 2005; Chan and Roth, 2011;
Gormley et al., 2015). They first ran named entity
recognition to identify all entities and then classi-
fied relations between all entity pairs. However,
these pipelined methods usually suffered from er-
ror propagation problem and failed to capture the

interactions between entities and relations.

To overcome these drawbacks, recent research
focused on jointly extracting entities and relations,
including feature-based models (Yu and Lam, 2010;
Li and Ji, 2014; Ren et al., 2017) and neural
network-based models (Gupta et al., 2016; Miwa
and Bansal, 2016; Zheng et al., 2017). For example,
Ren et al. (2017) proposed to jointly embed enti-
ties, relations, text features and type labels into two
low-dimensional spaces. Miwa and Bansal (2016)
proposed a joint model containing two long-short
term memories (LSTMs) (Gers et al., 2000) with
shared parameters. Zheng et al. (2017) proposed
to extract relational triples directly by transforming
this task into a sequence tagging problem, whose
tags contain the information of entities and the re-
lations they hold. However, they only assigned
one label for each word, which means that this
method failed to extract overlapping triples. Subse-
quent work proposed several mechanisms to solve
this problem: (1) labeling tagging sequences for
words (Dai et al., 2019) or entities (Yu et al., 2019;
Wei et al., 2020); (2) transforming the sentence
into a graph structure (Wang et al., 2018; Fu et al.,
2019); (3) generating triple element sequences with
copy mechanism (Zeng et al., 2018, 2019, 2020;
Nayak and Ng, 2020); (4) linking token pairs with
a handshake tagging scheme (Wang et al., 2020).
However, these methods usually ignored implicit
relational triples that are not directly expressed in
the sentence (Zhu et al., 2019), thus will lead to the
incompleteness of the resulting KGs and negatively
affect the performance of downstream tasks (An-
geli and Manning, 2013; Jia et al., 2020).

Our work is motivated by two observations.
First, other triples in the sentence provide supple-
mentary evidence for discovering entity pairs with
implicit relational connections. Second, the rela-
tion types of the implicit connections need to be
identified through real-world reasoning patterns.

In this paper, we propose a unified framework
for the joint extraction of explicit and implicit rela-
tional triples. We propose a binary pointer network
to sequentially extract overlapping relational triples
and externally keep the information of predicted
triples for exploring implicitly connected entity
pairs. We also propose to introduce real-world rea-
soning patterns in our model to help derive the rela-
tion type of implicit triples with a relation network.
Experimental results on several benchmark datasets
demonstrate the effectiveness of our method.
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Figure 2: The overall framework of our approach.

3 Our Approach

The overall framework of our approach is shown
in Figure 2. We introduce the Binary Pointer Net-
work (BPtrNet) and the Relation Network (RN) in
Section 3.1 and 3.2 and the details of training and
inference in Section 3.3, respectively.

3.1 Binary Pointer Network

Existing methods usually failed to extract implicit
relational triples due to the lack of explicit expres-
sions (Zhu et al., 2019). Fortunately, we observe
that other triples in the sentence can help discover
entity pairs that may have implicit relational con-
nections. For instance, in the sentence “George is
Judy’s father and David’s grandfather”, the rela-
tion between Judy and David is not explicitly ex-
pressed. In this case, if we first extract the explicit
triple (Judy, father, George) and keep its informa-
tion in our model, we can easily establish an im-
plicit connection between Judy and David through
George because George is explicitly connected
with David by the relational keyword “grandfa-
ther”. Inspired by this observation, our model ex-
tracts relational triples relevant to each word se-
quentially and keeps all previous triples of this
sentence to enhance the extraction at future time
steps. This word-by-word extraction process can
be regarded as transforming a text sequence into a
sequence of extracting actions, which leads us to a

sequence-to-sequence (seq2seq) model.
Therefore, we propose a Binary Pointer Net-

work (BPtrNet), based on a seq2seq pointer net-
work (Vinyals et al., 2015), to jointly extract ex-
plicit and implicit relational triples. Our model
first encodes the words of a sentence into vector
representations (Section 3.1.1). Then, we use a bi-
nary decoder to sequentially transform the vectors
into (overlapping) relational triples (Section 3.1.2).
We also introduce an external memory to retain
previously extracted triples for enhancing future
decoding steps (Section 3.1.3).

3.1.1 Encoder

Given a sentence [w1, . . . , wn], we first capture
morphological patterns of entities with a convolu-
tional neural network (CNN) (LeCun et al., 1989)
and compute the character representation ci of the
word wi (i = 1, . . . , n): ci = CNN(wi; θ) ∈ Rdc .
Then we introduce the context-sensitive representa-
tions p1:n captured with a pre-trained Language
Model (LM) to bring rich semantics and prior
knowledge from the large-scale unlabeled corpus.
We feed ci, pi and the word embedding wi into a
bidirectional LSTM (BiLSTM) to compute the con-
textualized word representations x1:n and encode
the sentence with another BiLSTM:

xi = BiLSTMin([wi;pi; ci]) ∈ Rdin .
hEi = BiLSTMEnc(xi) ∈ R2dE .

(1)
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3.1.2 Binary Decoder
First, to capture the interactions between entities
and relations, we recognize the entities with a span-
based entity tagger (Yu et al., 2019; Wei et al.,
2020) and transform the tags into vectors as part
of the decoder’s input (Figure 2). Specifically, we
assign each token a start and end tag to indicate
whether the current token corresponds to a start or
end position of an entity of a certain type:

hTi = BiLSTMTag(xi) ∈ RdT

p(y
s/e
i ) = softmax(Ws/ehTi + bs/e)

tags/ei = argmax
k

p(y
s/e
i = k)

(2)

where (Ws,bs) and (We,be) are parameters of
the start and end tag classifiers, respectively. Then
we obtain the entity tag embedding ei ∈ Rde by
averaging the look-up embeddings of the start and
end tags. We also capture a global contextual em-
bedding g by max pooling over hE1:n. Then we
adopt a LSTM as the decoder (hD0 = hEn ):

hDi = LSTMDec([xi; ei;g],h
D
i−1) ∈ R2dE . (3)

Next, we introduce how to extract relational
triples at the i-th time step. We consider the current
word as the object entity, select words as subjects
that form triples with the object from all the words
of the sentence, and predict the relation types be-
tween the subjects and the object. For example, in
Figure 2, when the current object is “Huntsville”,
the model selects “Digium” as the subject and clas-
sifies the relation as “Locate in”. Thus (“Digium”,
“Locate in”, “Huntsville”) is extracted as a rela-
tional triple. Multi-token entities are represented
with their last words and recovered by finding the
nearest start tags of the same type from their last
positions. However, the original softmax pointer
in (Vinyals et al., 2015) only allows an object to
point to one subject, thus fails to extract multiple
triples with overlapping objects. To address this
issue, we propose a binary pointer, which indepen-
dently computes a binary score for each subject
to form a relational triple with the current object
under each relation type. Our method naturally
solves the overlapping triple problem by producing
multiple positive scores at one step (Figure 2). We
formulate the score of the triple (wj , r, wi) as:

s
(r)
ji = σ(r>ρ(Wptr[hEj ;h

D
i ] + bptr)), (4)

and extract this candidate triple as a relational triple
if s(r)ji is higher than some threshold, such as 0.5

in our model (i, j = 1, . . . , n). σ and ρ are the
sigmoid and tanh functions, respectively. r ∈ RdR
is the type embedding of the relation r. Wptr and
bptr are parameters of the binary pointer.

3.1.3 External Memory
We introduce an external memory M to keep the
previously extracted triples of the sentence. We
first initialize M as an empty set. After the de-
coder’s extraction process at the i-th time step, we
represent the extracted triple t = (wst , rt, wi) as:

hMt = [hEst ; rt;h
E
i ] ∈ RdM . (5)

Then we update the memory with the representa-
tions of the output triples t1, . . . , tNi :

M← [M;hMt1 ; . . . ;h
M
tNi

] ∈ RN×dM (6)

where Ni is the number of the currently extracted
triples and N =

∑i
k=1Nk. Note that we set and

update the external memory for each sentence in-
dependently, and the memory stores only the triple
representations of one single sentence. Thus triples
of other sentences will not be introduced into the
sentence currently being extracted. Finally, the
triples in the memory are utilized to obtain the rea-
soning pattern-enhanced representations for future
time steps, as described in Section 3.2.

3.2 Relation Network for capturing patterns
of relational reasoning

Relation types of implicit relational triples are dif-
ficult to infer due to the lack of explicit evidence,
thus need to be derived with real-world relational
reasoning patterns. For example, in the sentence
“George is Judy’s father and David’s grandfather”,
the relation type between “Judy” and “David” can
be inferred as “father” using the pattern “father’s
father is called grandfather”.

Based on this fact, we propose to enhance our
model by introducing real-world relational reason-
ing patterns. We capture the patterns with a Rela-
tion Network (RN) (Santoro et al., 2017), a neu-
ral network module specially designed for rela-
tional reasoning. A RN is essentially a composite
function over a relational triple set T : RN(T ) =
fφ
(
{gθ(t)}t∈T

)
, where fφ is an aggregation func-

tion and gθ projects a triple into a fixed-size em-
bedding. We set the memory M as the input re-
lational triple set T and utilize the RN to learn a
pattern-enhanced representation hPji for the word
pair (wj , wi) at the i-th time step. First, the gθ reads
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the triple representations from M and projects them
with a fully-connected layer:

gθ(t) = ρ(WθhMt + bθ) ∈ RdP . (7)

Then fφ selects useful triples with a gating net-
work1: uφt = σ

(
gθ(t)U

φ[hEj ;h
D
i ]
)
∈ R, and ag-

gregates the selected triples with the word pair to
compute hPji using another fully-connected layer:

hPji = fφ({gθ(t)}t∈M)

= ρ

(
Wφ

[
hEj ;h

D
i ;
∑
t

uφt gθ(t)

]
+ bφ

)
.

(8)

Finally, we modify Equation 4 as s(r)ji = σ(r>hPji)
to compute the binary scores of candidate triples.
We denote our Reasoning pattern enhanced BPtr-
Net model as R-BPtrNet. Note that we use quite
simple formulas for fφ and gθ because our contri-
bution focuses on the effectiveness of introducing
relational reasoning patterns for this task rather
than the model structure. Exploration for more
complex structures will be left for future work.

3.3 Training and Inference
We calculate the triple loss of a sentence as a binary
cross entropy over valid candidate triples Tv, whose
subject and object are different entities (or the end
words of different entities):

Lt = −
1

|Tv|

(∑
t∈Tv

yt log st+(1−yt) log(1−st)
)

(9)
where st is the score of the candidate triple t, yt = 1
for gold triples and 0 for others. We also train the
entity tagger with a cross-entrory loss:

Le = −
1

n

n∑
i=1

∑
∗∈{s,e}

log p(y∗i = ŷ∗i ) (10)

where ŷs/ei are the gold start and end tags of the i-th
word, respectively. Finally, we train the R-BPtrNet
with the joint loss L = Lt + Le.

To prevent error propagation, we use the gold
entity tags to filter out valid candidate triples and
compute the tag embeddings e1:n during training.
We also update the memory M with the gold rela-
tional triples. During inference, we extract triples
from scratch and use the predicted entity tags and
relational triples instead of the gold ones.

1We don’t use the more common attention mecha-
nism (Bahdanau et al., 2015) to select triples because the
attention weights are restricted to sum to 1. If all triples in the
memory are useless, they will still be assigned a large weight
due to the restriction, which will confuse the model.

4 Experiments

4.1 Datasets and Evaluation Metrics
We evaluate our method on two benchmark datasets.
NYT (Riedel et al., 2010) consists of sentences
from the New York Times corpus and contains 24
relation types. WebNLG (Gardent et al., 2017)
was created for natural language generation task. It
contains 171 relation types2 and was adopted for re-
lational triple extraction by (Zeng et al., 2018). We
split the sentences into three categories: Normal,
SingleEntityOverlap (SPO) and EntityPairOverlap
(EPO) following Zeng et al. (2018). The statistics
of the two datasets are shown in Table 1. Follow-
ing previous work (Zeng et al., 2018; Wei et al.,
2020; Wang et al., 2020), an extracted relational
triple is regarded as correct only if the relation and
the heads of both subject and object are all correct.
We report the standard micro precision, recall, and
F1-scores on both datasets.

Dataset
NYT WebNLG

Train Test Train Test

Normal 37013 3266 1596 246
SEO 9782 1297 227 457
EPO 14735 978 3406 26

ALL 56195 5000 5019 703

Table 1: Statistics of evaluation datasets.

4.2 Experimental Settings
We determine the hyper-parameters on the valida-
tion sets. We use the pre-trained GloVe (Penning-
ton et al., 2014) embeddings as w. We adopt a
one-layer CNN with dc = 30 channels to learn
c from 30-dimensional randomly-initialized char-
acter embeddings. We choose the state-of-the-art
RoBERTaLARGE (Liu et al., 2019) model3 as the
pre-tained LM. For a fair comparison with previous
methods, we also conduct experiments and report
the scores with BERTBASE (Devlin et al., 2019).
We set din (Equation 1) as 300. The hidden dimen-
sions of the encoder dE and the entity tagger dT are
both 200. The dimensions of entity tag embeddings
de and relation type embeddings dR are set as 50
and 200, respectively. The projection dimension
dP of the RN is set as 500.

2As mentioned in (Wang et al., 2020), this number is mis-
written as 246 in (Wei et al., 2020) and (Yu et al., 2019). Here
we quote the correct number from (Wang et al., 2020).

3https://github.com/huggingface/transformers
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Method
NYT WebNLG

Prec. Rec. F1 Prec. Rec. F1

NovelTagging (Zheng et al., 2017) 62.4 31.7 42.0 52.5 19.3 28.3
CopyRE (Zeng et al., 2018) 72.8 69.4 71.1 60.9 61.1 61.0
CopyRERL (Zeng et al., 2019) 77.9 67.2 72.1 63.3 59.9 61.6
GraphRel (Fu et al., 2019) 63.9 60.0 61.9 44.7 41.1 42.9
ETL-Span (Yu et al., 2019) 84.9 72.3 78.1 84.0 91.5 87.6
CopyMTL (Zeng et al., 2020) 75.7 68.7 72.0 58.0 54.9 56.4
WDec (Nayak and Ng, 2020) 94.5 76.2 84.4 - - -
CGTUniLM (Ye et al., 2020) 94.7 84.2 89.1 92.9 75.6 83.4
CASRELLSTM (Wei et al., 2020) 84.2 83.0 83.6 86.9 80.6 83.7
CASRELBERT (Wei et al., 2020) 89.7 89.5 89.6 93.4 90.1 91.7
TPLinkerLSTM (Wang et al., 2020) 83.8 83.4 83.6 90.8 90.3 90.5
TPLinkerBERT (Wang et al., 2020) 91.3 92.5 91.9 91.8 92.0 91.9

R-BPtrNet 90.9 91.3 91.1 90.7 94.6 92.6
R-BPtrNetBERT 92.7 92.5 92.6 93.7 92.8 93.3
R-BPtrNetRoBERTa 94.0 92.9 93.5 94.3 93.3 93.8

Table 2: Performance of our method and previous state-of-the-art models on the NYT and WebNLG test sets. The
best scores are in bold and the second-best scores are underlined. R-BPtrNet is our model without pre-trained LMs.
R-BPtrNetBERT and R-BPtrNetRoBERTa are models using BERTBASE and RoBERTaLARGE, respectively.

We add 10% dropout (Srivastava et al., 2014) on
the input of all LSTMs for regularization. Follow-
ing previous work (Zeng et al., 2018; Wei et al.,
2020; Wang et al., 2020), we set the max length
of input sentences to 100. We use the Adam op-
timizer (Kingma and Ba, 2014) to fine-tune the
LM and train other parameters with the learning
rates of 10−5 and 10−3, respectively. We train our
model for 30/90 epochs with the batch size as 32/8
on NYT/WebNLG. At the beginning of the last 10
epochs, we load the parameters with the best val-
idation performance and divide the learning rates
by ten. Finally, we choose the best model on the
validation set and output results on the test set.

4.3 Performance Evaluation

We present our results on the NYT and WebNLG
test sets in Table 2 and compare them with several
previous state-of-the-art models:

• NovelTagging (Zheng et al., 2017) trans-
formed this task into a sequence tagging prob-
lem but neglected the overlapping triples.

• CopyRE (Zeng et al., 2018) proposed a
seq2seq model based on the copy mechanism
to generate triple element as sequences.

• CopyRERL (Zeng et al., 2019) proposed to
learn the extraction order of CopyRE with

Reinforcement Learning (RL).
• GraphRel (Fu et al., 2019) proposed a graph

convolutional network for this task.
• ETL-Span (Yu et al., 2019) proposed a

decomposition-based tagging scheme.
• CopyMTL (Zeng et al., 2020) proposed a

Multi-Task Learning (MTL) framework based
on CopyRE to address multi-token entities.

• WDec (Nayak and Ng, 2020) proposed an
encoder-decoder architecture for this task.

• CGTUniLM (Ye et al., 2020) proposed a gen-
erative transformer module with a triple con-
trastive training object.

• CASREL (Wei et al., 2020) proposed a cas-
cade binary tagging framework.

• TPLinker (Wang et al., 2020) proposed a one-
stage token pair linking model with a novel
handshaking tagging scheme.

From Table 2 we have the following observa-
tions: (1) The R-BPtrNet significantly outperforms
all previous non-LM methods. It demonstrates
the superiority of our seq2seq-based framework
to jointly extract explicit and implicit relational
triples and improve the performance for this task.
Additionally, the R-BPtrNet produces competitive
performance to the BERT-based baseline models
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Method
NYT WebNLG

Nor. SEO EPO N=1 N=2 N=3 N=4 N≥5 Nor. SEO EPO N=1 N=2 N=3 N=4 N≥5

CopyRE 66.0 48.6 55.0 67.1 58.6 52.0 53.6 30.0 59.2 33.0 36.6 59.2 42.5 31.7 24.2 30.0
CopyRERL 71.2 69.4 72.8 71.7 72.6 72.5 77.9 45.9 65.4 60.1 67.4 63.4 62.2 64.4 57.2 55.7
GraphRel 69.6 51.2 58.2 71.0 61.5 57.4 55.1 41.1 65.8 38.3 40.6 66.0 48.3 37.0 32.1 32.1
ETL-Span† 88.5 87.6 60.3 85.5 82.1 74.7 75.6 76.9 87.3 91.5 80.5 82.1 86.5 91.4 89.5 91.1
CASRELBERT 87.3 91.4 92.0 88.2 90.3 91.9 94.2 83.7 89.4 92.2 94.7 89.3 90.8 94.2 92.4 90.9
TPLinkerBERT 90.1 93.4 94.0 90.0 92.9 93.1 96.1 90.0 87.9 92.5 95.3 88.0 90.1 94.6 93.3 91.6

R-BPtrNetBERT 90.4 94.4 95.2 89.5 93.1 93.5 96.7 91.3 89.5 93.9 96.1 88.5 91.4 96.2 94.9 94.2
R-BPtrNetRoBERTa 91.2 95.3 96.1 90.5 93.6 94.2 97.7 92.1 89.9 94.4 97.4 89.3 91.7 96.5 95.8 94.8

Table 3: F1 scores on sentences with different overlapping patterns and different triple numbers. The best scores
are in bold and the second-best scores are underlined. † marks scores reproduced by (Wang et al., 2020).

without using BERT. It shows that the improve-
ments of our model come not primarily from the
pre-trained LM representations, but from the intro-
duction of relational reasoning patterns to this task.
(2) R-BPtrNetBERT outperforms BERT-based base-
line models. It indicates that our method can effec-
tively extract implicit relational triples with the as-
sistance of the triple-retaining external memory and
the pattern-capturing RN. (3) R-BPtrNetRoBERTa

further outperforms R-BPtrNetBERT and other base-
line methods. It indicates that the more powerful
LM brings more prior knowledge and real-world
relational facts, enhancing the model’s ability to
learn real-world relational reasoning patterns.

4.4 Performance on Different Sentence Types
To demonstrate the ability of our model in han-
dling the multiple triples and overlapping triples
of a sentence, we split the test sets of NYT and
WebNLG datasets according to the overlapping

Figure 3: An ablation study on a manually selected sub-
set with rich implicit relational triples.

patterns and the number of triples. We conduct
further experiments on these subsets and report
the results in Table 3, from which we can observe
that: (1) The R-BPtrNetRoBERTa and R-BPtrNetBERT

both significantly outperform previous models on
the SPO and EPO subsets of NYT and WebNLG
datasets. It proves the validity of our method to
address the overlapping triple problem. Moreover,
we find that implicit relational triples usually over-
lap with others. Therefore, the improvements on
the overlapping subsets also validate the effective-
ness of our method for extracting implicit relational
triples. (2) R-BPtrNetRoBERTa and R-BPtrNetBERT

both bring improvements to sentences with multi-
ple triples compared to baseline models. It indi-
cates that our method can effectively extract multi-
ple relational triples from a sentence. Furthermore,
we observe more significant improvements when
the number of triples grows. We hypothesize that
this is because implicit relational triples are more
likely to occur in sentences with more triples. Our
model extracts the implicit relational triples more
correctly and improves the performance.

4.5 Ablation Study on Implicit Triples

We run an ablation study to investigate the con-
tribution of each component in our model to the
implicit relational triples. We manually select 134
sentences with rich implicit triples from the NYT
test set4. We conduct experiments on the subset

4We first select sentences that contain at least two over-
lapping relational triples. For example, if a sentence contains
entity A, B and C, and if A→B and B→C exists or A→B and
A→C exists, this sentence is selected. Note that A→B and
B→A are counted as one triple during this selecting procedure.
Then, we manually check all selected sentences and keep the
ones with implicit relational triples.
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Sentence
...	organizing	an	expedition	
starting	in	November	in	
Jinghong	,	a	small	city	in	the
Yunnan	province	in	China.

	We	'	re	providing	a	new	outlet
for	them	for	distribution	,	''	said
Chad	Hurley	,	chief	executive
and	...	of	YouTube	,	a	division
of	Google.

...	Edmund	,	was	an	influential
municipal	judge	in	Crowley,
who	was	...	as	well	as	a	close
adviser	to	former	Louisiana
Gov.	Edwin	Edwards	...

Ground
Truth

TPLinker

Ours

Chad
Hurley

company YouTube

Google

division
company

Google

Chad
Hurley

YouTube

company
Google

Jinghong
contains

Yunnan

contains

China

Jinghong
contains

Yunnan

contains

Chinacontains

Jinghong

contains

Yunnan

contains

China

contains

Chad
Hurley

company YouTube

lives	in

Edmund

Crowley

Edwin	
Edwards

Louisiana

lives	in

advisor

lives	in

Edmund

Crowley

Edwin	
Edwards

Louisiana

lives	in

Edmund

Crowley

Edwin	
Edwards

Louisiana
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lives	in
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Figure 4: Examples of sentences with implicit relational triples, and the predictions from the TPLinkerBERT and
R-BPtrNetBERT model. Bold and colored texts are entities. We distinguish different entities with different colors.
Explicit and implicit relational triples are represented by black and green solid arrows, respectively. Blue dashed
arrows indicate explicit relational connections between entities, but they do not appear as relational triples because
their relation types don’t belong to the pre-defined relations of the dataset.

using the following ablation options:

• R-BPtrNetRoBERTa and R-BPtrNetBERT are
the full models using RoBERTaLARGE and
BERTBASE as LMs, respectively.

• R-BPtrNet removes the pre-trained LM
representations from the full model.

• BPtrNet removes the RN from the R-
BPtrNet. Under this setting, we feed a gated
summation of the memory into the decoder’s
input of the next time step.

• BPtrNetNoMem removes the external mem-
ory from the BPtrNet, which means that the
previously extracted triples are not retained.

We compare the performance of these options with
the previous BERT-based models. We also analyze
the performance on predicting only the entity pairs
and the relations, respectively. We illustrate the
results in Figure 3, from which we can observe
that: (1) BPtrNetNoMem produces comparable re-
sults to the baseline models. We speculate that it
benefits from the seq2seq structure and the previ-
ous triples are embedded into the decoder’s hidden
states. (2) BPtrNet brings huge improvements over
the BPtrNetNoMem to the entity pair and the triple
F1 scores. It indicates that the external memory
effectively helps discover entity pairs that have im-
plicit relational connections by retaining previously

extracted triples. (3) R-BPtrNet brings significant
improvements over the BPtrNet to the relation and
the triple F1 scores. It indicates that the RN effec-
tively captures the relational reasoning patterns and
enhances the relation type inference of implicit re-
lations. (4) The pre-trained LMs only bring minor
improvements. It proves that the effectiveness of
our model comes primarily from the external mem-
ory and the introduction of relational reasoning
patterns rather than the pre-trained LMs.

4.6 Case Study
Figure 4 shows the comparison of the best previ-
ous model TPLinkerBERT and our R-BPtrNetBERT

model on three example sentences from the im-
plicit subset in Section 4.5. The first example
contains the transitive pattern of the relation “con-
tains”. The second example contains a multi-hop
relation path pattern between “Chad Hurley” and
“Google” through the intermediate entity “Youtube”.
The third example contains a composite pattern be-
tween the siblings “Crowley” and “Edwin Edwards”
with a common ancestor “Edmund”. We can ob-
serve that the TPLinkerBERT model fails to extract
the implicit relational triples. The R-BPtrNetBERT

successfully captures various reasoning patterns
in the real world and effectively extracts all the
implicit relational triples in the examples.
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5 Conclusion

In this paper, we propose a unified framework to
extract explicit and implicit relational triples jointly.
To discover entity pairs that may have implicit re-
lational connections, we propose a binary pointer
network to extract relational triples relevant to each
word sequentially and introduce an external mem-
ory to retain the extracted triples. To derive the
relation types of the implicitly connected entity
pairs, we propose to introduce real-world relational
reasoning patterns to this task and capture the rea-
soning patterns with a relation network. We con-
duct experiments on two benchmark datasets, and
the results prove the effectiveness of our method.
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