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Abstract

The problem of answering questions using
knowledge from pre-trained language models
(LMs) and knowledge graphs (KGs) presents
two challenges: given a QA context (question
and answer choice), methods need to (i)
identify relevant knowledge from large KGs,
and (ii) perform joint reasoning over the QA
context and KG. Here we propose a new
model, QA-GNN, which addresses the above
challenges through two key innovations: (i)
relevance scoring, where we use LMs to esti-
mate the importance of KG nodes relative to
the given QA context, and (ii) joint reasoning,
where we connect the QA context and KG
to form a joint graph, and mutually update
their representations through graph-based
message passing. We evaluate QA-GNN on the
CommonsenseQA and OpenBookQA datasets,
and show its improvement over existing LM
and LM+KG models, as well as its capability to
perform interpretable and structured reasoning,
e.g., correctly handling negation in questions.

1 Introduction

Question answering systems must be able to access
relevant knowledge and reason over it. Typically,
knowledge can be implicitly encoded in large
language models (LMs) pre-trained on unstructured
text (Petroni etal.,2019; Bosselutet al., 2019), or ex-
plicitly represented in structured knowledge graphs
(KGs), such as Freebase (Bollacker et al., 2008)
and ConceptNet (Speer et al., 2017), where entities
are represented as nodes and relations between
them as edges. Recently, pre-trained LMs have
demonstrated remarkable success in many question
answering tasks (Liu et al., 2019; Raffel et al.,
2020). However, while LMs have a broad coverage
of knowledge, they do not empirically perform well
on structured reasoning (e.g., handling negation)
(Kassner and Schiitze, 2020). On the other hand,
KGs are more suited for structured reasoning (Ren
et al., 2020; Ren and Leskovec, 2020) and enable
explainable predictions e.g., by providing reasoning
paths (Lin et al., 2019), but may lack coverage and

If it is not used for hair, a round brush is an example of what?

A. hair brush B. bathroom C. art supplies*
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Figure 1: Given the QA context (question and answer
choice; purple box), we aim to derive the answer by
performing joint reasoning over the language and the
knowledge graph (green box).

be noisy (Bordes et al., 2013; Guu et al., 2015).
How to reason effectively with both sources of
knowledge remains an important open problem.

Combining LMs and KGs for reasoning (hence-
forth, LM+KG) presents two challenges: given
a QA context (e.g., question and answer choices;
Figure 1 purple box), methods need to (i) identify
informative knowledge from a large KG (green
box); and (ii) capture the nuance of the QA context
and the structure of the KGs to perform joint
reasoning over these two sources of information.
Previous works (Bao et al., 2016; Sun et al., 2018;
Lin et al., 2019) retrieve a subgraph from the KG
by taking topic entities (KG entities mentioned in
the given QA context) and their few-hop neighbors.
However, this introduces many entity nodes that
are semantically irrelevant to the QA context,
especially when the number of topic entities or hops
increases. Additionally, existing LM+KG methods
for reasoning (Lin et al., 2019; Wang et al., 2019a;
Feng et al., 2020; Lv et al., 2020) treat the QA
context and KG as two separate modalities. They
individually apply LMs to the QA context and graph

535

Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 535-546
June 6-11, 2021. ©2021 Association for Computational Linguistics



LM
Encoding

A context
Q (0 0]

MLP

el \
Joint
KG Graph (§3.1) ﬂ @
Retrieval

_—
Relevance
Scoring (§3.2)

o@
@

@

[ Yool

/ Y e
am Probability

score

Reasoning

(83.3)
1
Pooling
o@ o ooling
@

QA-GNN

Figure 2: Overview of our approach. Given a QA context (z), we connect it with the retrieved KG to form a joint
graph (working graph; §3.1), compute the relevance of each KG node conditioned on z (§3.2; node shading indicates
the relevance score), and perform reasoning on the working graph (§3.3).

neural networks (GNNSs) to the KG, and do not
mutually update or unify their representations. This
separation might limit their capability to perform
structured reasoning, e.g., handling negation.

Here we propose QA-GNN, an end-to-end
LM+KG model for question answering that
addresses the above two challenges. We first encode
the QA context using an LM, and retrieve a KG
subgraph following prior works (Feng et al., 2020).
Our QA-GNN has two key insights: (i) Relevance
scoring: Since the KG subgraph consists of all
few-hop neighbors of the topic entities, some entity
nodes are more relevant than others with respect to
the given QA context. We hence propose KG node
relevance scoring: we score each entity on the KG
subgraph by concatenating the entity with the QA
context and calculating the likelihood using a pre-
trained LM. This presents a general framework to
weight information on the KG; (ii) Joint reasoning:
We design a joint graph representation of the QA
context and KG, where we explicitly view the QA
context as an additional node (QA context node) and
connect it to the topic entities in the KG subgraph
as shown in Figure 1. This joint graph, which we
term the working graph, unifies the two modalities
into one graph. We then augment the feature of
each node with the relevance score, and design a
new attention-based GNN module for reasoning.
Our joint reasoning algorithm on the working graph
simultaneously updates the representation of both
the KG entities and the QA context node, bridging
the gap between the two sources of information.

We evaluate QA-GNN on two question an-
swering datasets that require reasoning with
knowledge: CommonsenseQA (Talmor et al., 2019)
and OpenBookQA (Mihaylov et al., 2018), using the
ConceptNet KG (Speer et al., 2017). QA-GNN out-
performs strong fine-tuned LM baselines as well as
the existing best LM+KG model (with the same LM)
by up to 5.7% and 3.7% respectively. In particular,
QA-GNN exhibits improved performance on some
forms of structured reasoning (e.g., correctly han-

dling negation and entity substitution in questions):
it achieves 4.6% improvement over fine-tuned LMs
on questions with negation, while existing LM+KG
models are +0.6% over fine-tuned LMs. We also
show that one can extract reasoning processes from
QA-GNN in the form of general KG subgraphs, not
just paths (Lin et al., 2019), suggesting a general
method for explaining model predictions.

2 Problem Statement

We aim to answer natural language questions using
knowledge from a pre-trained LM and a structured
KG. We use the term language model broadly to be
any composition of two functions, fhead(fenc(X))s
where fenc, the encoder, maps a textual input x to a
contextualized vector representation h™ and fic.q
uses this representation to perform a desired task
(which we discuss in §3.2). In this work, we specifi-
cally use masked language models (e.g., ROBERTa)
as fenc, and let h™™ denote the output representa-
tion of a [CLS] token that is prepended to the input
sequence X, unless otherwise noted. We define the
knowledge graph as a multi-relational graph G =
(V,€). Here V is the set of entity nodes in the KG;
E C VxR xVisthe set of edges that connect nodes
in )V, where ‘R represents a set of relation types.

Given a question ¢ and an answer choice a € C,
we follow prior work (Lin et al., 2019) to link the en-
tities mentioned in the question and answer choice
to the given KG G. We denote V, CV and V, CV
as the set of KG entities mentioned in the question
(question entities; blue entities in Figure1) and an-
swer choice (answer choice entities; red entities in
Figurel), respectively, and use V, , :=V,UV, to de-
note all the entities that appear in either the question
or answer choice, which we call topic entities. We
then extract a subgraph from G for a question-choice
pair, GhU = (VI £20) 1 which comprises all
nodes on the k-hop paths between nodes in V, ,.

"We remove the superscript g,a if there is no ambiguity.
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QA Context
A revolving door is convenient for two direction travel,
but also serves as a security measure at what?

A. bank*
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Figure 3: Relevance scoring of the retrieved KG: we use a pre-trained LM to calculate the relevance of each KG

entity node conditioned on the QA context (§3.2).

3 Approach: QA-GNN

As shown in Figure 2, given a question and an
answer choice a, we concatenate them to get the QA
context [q; a]. To reason over a given QA context
using knowledge from both the LM and the KG,
QA-GNN works as follows. First, we use the LM
to obtain a representation for the QA context, and
retrieve the subgraph G, from the KG. Then we
introduce a QA context node z that represents the
QA context, and connect 2 to the topic entities V; 4
so that we have a joint graph over the two sources
of knowledge, which we term the working graph,
Gw (§3.1). To adaptively capture the relationship
between the QA context node and each of the other
nodes in Gy, we calculate a relevance score for each
pair using the LM, and use this score as an additional
feature for each node (§3.2). We then propose an
attention-based GNN module that does message

passing on the Gw for multiple rounds (§3.3).

Finally, we make the final prediction using the LM
representation, QA context node representation and
a pooled working graph representation (§3.4).

3.1 Joint graph representation

To design a joint reasoning space for the two sources
of knowledge, we explicitly connect them in a
common graph structure. We introduce a new QA
context node z which represents the QA context,
and connect z to each topic entity in V; , on the KG
subgraph Gy, using two new relation types 7, , and
T2,a- These relation types capture the relationship
between the QA context and the relevant entities
in the KG, depending on whether the entity is found
in the question portion or the answer portion of
the QA context. Since this joint graph intuitively
provides a reasoning space (working memory) over

the QA context and KG, we term it working graph
Gw = (Vw,Ew), where Yy = Vyp U{z} and Ew =
EabU{(2,r2,4,0) [v €V FU{(2,72,4,v) [EV,}.

Each node in the Gw is associated with one of
the four types: 7 = {Z,Q,A,0}, each indicating
the context node z, nodes in V,, nodes in V,, and
other nodes, respectively (corresponding to the
node color, purple, blue, red, gray in Figure1 and
2). We denote the text of the context node z (QA
context) and KG node v € Vg, (entity name) as
text(z) and text(v).

We initialize the node embedding for z us-
ing the LM representation of the QA context
("M = f.pc(text(2))), and each node on the Gyyp
using the entity embedding from Feng et al. (2020).
In the subsequent sections, we will reason over the
working graph in order to score a given (question,
answer choice) pair.

3.2 KG node relevance scoring

Many nodes on the KG subgraph Gg (i.e., those
heuristically retrieved from the KG) can be irrel-
evant under the current QA context. As an example
shown in Figure 3, the retrieved KG subgraph Gg.p
with few-hop neighbors of the V, , may include
nodes that are uninformative for the reasoning
process, e.g., nodes “holiday” and “river bank” are
off-topic; “human” and “place” are generic. These
irrelevant nodes may result in overfitting or intro-
duce unnecessary difficulty in reasoning, an issue
especially when V), , is large. For instance, we em-
pirically find that using the ConceptNet KG (Speer
etal., 2017), we will retrieve a KG with |Vgyp| > 400
nodes on average if we consider 3-hop neighbors.
In response, we propose node relevance scoring,
where we use the pre-trained language model to
score the relevance of each KG node v € Vg
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conditioned on the QA context. For each node v, we
concatenate the entity text(v) with the QA context
text(z) and compute the relevance score:

pv:fhead(fenc([tex't(z)§teXt(U)]))a (1)

where fhead © fene denotes the probability of text(v)
computed by the LM. This relevance score p,
captures the importance of each KG node relative to
the given QA context, which is used for reasoning
or pruning the working graph Gw.

3.3 GNN architecture

To perform reasoning on the working graph Gy, our
GNN module builds on the graph attention frame-
work (GAT) (Velickovi¢ et al., 2018), which induces
node representations via iterative message passing
between neighbors on the graph. Specifically, in
a L-layer QA-GNN, for each layer, we update the

representation hy) €RP of each node t € Vy by

h§£+l) :fn ( Z astmst> +h’§£)7 (2)
sENU{t}

where N; represents the neighborhood of node ¢,
my; € RP notes the message from each neighbor
node s to ¢, and ag is an attention weight that scales
each message mg; from s to t. The sum of the
messages is then passed through a 2-layer MLP,
fn: RP — RP, with batch normalization (Ioffe
and Szegedy, 2015). For each node ¢t € Vy, we set

hgo) using a linear transformation f, that maps its
initial node embedding (described in §3.1) to RD.
Crucially, as our GNN message passing operates
on the working graph, it will jointly leverage and
update the representation of the QA context and KG.
We further propose an expressive message (1)
and attention (c5;) computation below.

Node type & relation-aware message. As Gw
is a multi-relational graph, the message passed from
a source node to the target node should capture
their relationship, i.e., relation type of the edge and
source/target node types. To this end, we first obtain
the type embedding u; of each node ¢, as well as
the relation embedding r; from node s to node ¢ by

ut:fu(ut)7 Tst:fr<est7u57ut)a 3)
where ug,u; € {0, 1}|T‘ are one-hot vectors indicat-
ing the node types of s and t, e;; € {0,1}/®l is a
one-hot vector indicating the relation type of edge
(s,t), fu: RI7I — RP/2 is a linear transformation,
and f,: RI®IT2TI 5 RP is a 2-layer MLP. We then
compute the message from s to ¢ as

Mg = frn (R ug, rg), (4)

where f,,,: R2°P 5 RP is a linear transformation.

Node type, relation, and score-aware attention.
Attention captures the strength of association be-
tween two nodes, which is ideally informed by their
node types, relations and node relevance scores.

We first embed the relevance score of each node ¢ by

pt=fo(pt), (5

where f,: R — RP/2 is an MLP. To compute the
attention weight ag; from node s to node ¢, we
obtain the query and key vectors g, k by

QS:fq(h§Z)>usapS)a (6)
kt:fk(h§£)7utapta”'st)a @)

where f,: R2P 5 RP and f;,: R3P —RP are linear
transformations. The attention weight is then

exp(Yst) ot = q;rkt
) t— = =
Senomeptn) VD

(®)

Qst =

3.4 Inference & Learning

Given a question ¢ and an answer choice a, we
use the information from both the QA context
and the KG to calculate the probability of it being
the answer p(a | ¢) o< exp(MLP(z™M, 26NN g)),

GNN _ p (L)

where z >~ and g denotes the pooling of

{hl(,L) | v € Viup }- In the training data, each question
has a set of answer choices with one correct choice.
We optimize the model (both the LM and GNN com-
ponents end-to-end) using the cross entropy loss.

3.5 Computation complexity

We analyze the time and space complexity of our
method and compare with prior works, KagNet (Lin
etal., 2019) and MHGRN (Feng et al., 2020) in Ta-
ble 1. As we handle edges of different relation types
using different edge embeddings instead of design-
ing an independent graph networks for each relation
as in RGCN (Schlichtkrull et al., 2018) or MHGRN,
the time complexity of our method is constant with
respect to the number of relations and linear with re-
spect to the number of nodes. We achieve the same
space complexity as MHGRN (Feng et al., 2020).

4 Experiments

4.1 Datasets

We evaluate QA-GNN on two question answer-
ing datasets: CommonsenseQA (Talmor et al.,
2019) and OpenBookQA (Mihaylov et al., 2018).
CommonsenseQA is a 5-way multiple choice QA
task that requires reasoning with commonsense
knowledge, containing 12,102 questions. The test
set of CommonsenseQA is not publicly available,
and model predictions can only be evaluated once
every two weeks via the official leaderboard. Hence,
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Model Time Space

G is a dense graph
O(IR[* V"1 L) O(|R|*VI**'L)
O(RPIVPL)  O(R|IVIL)
O(VPL) O(IR|IVIL)
G is a sparse graph with maximum node degree A < |V|
L-hopKagNet  O(|R||V|LAL) O(IR|F|V|LAL)
L-hopMHGRN  O(|R[?|V|LA) O(|R|IV|L)
L-layer QA-GNN O(|V|LA) O(|R||VIL)

L-hop KagNet
L-hop MHGRN
L-layer QA-GNN

Table 1: Computation complexity of different L-hop
reasoning models on a dense/sparse graph G = (V, &)
with the relation set R.

we perform main experiments on the in-house (IH)
data split used in Lin et al. (2019), and also report
the score of our final system on the official test set.
OpenBookQA is a 4-way multiple choice QA task
that requires reasoning with elementary science
knowledge, containing 5,957 questions. We use the
official data split.

4.2 Knowledge graphs

We use ConceptNet (Speer et al., 2017), a general-
domain knowledge graph, as our structured
knowledge source G for both of the above tasks.
Given each QA context (question and answer
choice), we retrieve the subgraph Gy, from G
following the pre-processing step described in Feng
etal. (2020), with hop size £k =2. Henceforth, in this
section (§4) we use the term “KG” to refer to Gyp.

4.3 Implementation & training details

We set the dimension (D = 200) and number of
layers (L = 5) of our GNN module, with dropout
rate 0.2 applied to each layer (Srivastava et al.,
2014). The parameters of the model are optimized
by RAdam (Liu et al., 2020), with batch size 128,
gradient clipping 1.0 (Pascanu et al., 2013), and
learning rate le-5 and le-3 for the LM and GNN
components respectively. Each model is trained
using two GPUs (GTX Titan X), which takes ~20
hours on average. The above hyperparameters were
tuned on the development set.

4.4 Baselines

Fine-tuned LM. To study the role of KGs, we
compare with a vanilla fine-tuned LM, which does
not use the KG. We use RoBERTa-large (Liu et al.,
2019) for CommonsenseQA, and RoBERTa-large
and AristoRoOBERTa? (Clark et al., 2019) for

20penBookQA provides an extra corpus of scientific facts
in a textual form. AristoRoBERTa uses the facts corresponding
to each question, prepared by Clark et al. (2019), as an

Methods IHdev-Acc. (%) IHtest-Acc. (%)

RoBERTa-large (w/o0 KG) 73.07 (£0.45) 68.69 (£0.56)
+ RGCN (Schlichtkrulletal.,2018)  72.69 (£0.19) 68.41 (£0.66)
+ GconAttn (Wang et al., 2019a) 72.61(£0.39) 68.59 (£0.96)
+ KagNet (Linetal., 2019) 73.47 (£0.22) 69.01 (£0.76)
+ RN (santoroetal., 2017) 74.57 (:|:091) 69.08 (:|:021)
+ MHGRN (Feng et al., 2020) 74.45 (£0.10) 71.11 (£0.81)
+ QA-GNN (Ours) 76.54 (+0.21) 73.41 (£0.92)

Table 2: Performance comparison on Commonsense
QA in-house split (controlled experiments). As the
official test is hidden, here we report the in-house Dev
(IHdev) and Test (IHtest) accuracy, following the data
split of Lin et al. (2019).

Methods Test
RoBERTa (Liu et al., 2019) 72.1
RoBERTa+FreeLLB (Zhu et al., 2020) (ensemble)  73.1
RoBERTa+HyKAS (Maetal., 2019) 73.2
RoBERTa+KE (ensemble) 73.3
RoBERTa+KEDGN (ensemble) 74.4
XLNet+GraphReason (Lv et al., 2020) 75.3
RoBERTa+MHGRN (Feng et al., 2020) 75.4
Albert+PG (Wang et al., 2020b) 75.6
Albert (Lan et al., 2020) (ensemble) 76.5
UnifiedQA" (Khashabi et al., 2020) 79.1
RoBERTa + QA-GNN (Ours) 76.1

Table 3: Test accuracy on CommonsenseQA’s official
leaderboard.  The top system, UnifiedQA (11B
parameters) is 30x larger than our model.

OpenBookQA.

Existing LM+KG models. We compare with
existing LM+KG methods, which share the same
high-level framework as ours but use different mod-
ules to reason on the KG in place of QA-GNN (“yel-
low box” in Figure2): (1) Relation Network (RN)
(Santoro et al., 2017), (2) RGCN (Schlichtkrull
etal., 2018), (3) GconAttn (Wang et al., 2019a), (4)
KagNet (Lin et al., 2019), and (5) MHGRN (Feng
et al., 2020). (1),(2),(3) are relation-aware GNNs
for KGs, and (4),(5) further model paths in KGs.
MHGRN is the existing top performance model
under this LM+KG framework. For fair comparison,
we use the same LM in all the baselines and our
model. The key differences between QA-GNN and
these are that they do not perform relevance scoring
or joint updates with the QA context (§3).

4.5 Main results

Table 2 and Table 4 show the results on Common-
senseQA and OpenBookQA, respectively. On
both datasets, we observe consistent improvements
over fine-tuned LMs and existing LM+KG models,
e.g., on OpenBookQA, +5.7% over RoBERTa,
and +3.7% over the prior best LM+KG system,

additional input to the QA context.
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Methods RoBERTa-large AristoRoBERTa
Fine-tuned LMs (w/o KG) 64.80 (£2.37) 78.40 (£1.64)
+RGCN 62.45 (£1.57) 74.60 (£2.53)
+ GceonAtten 64.75 (+1.48) 71.80 (£1.21)
+RN 65.20 (+1.18) 75.35 (£1.39)
+MHGRN 66.85 (+1.19) 80.6

+ QA-GNN (Ours) 70.58 (+1.42) 82.77 (+1.56)

Table 4: Test accuracy comparison on OpenBook
QA (controlled experiments). Methods with Aris-
toRoBERTa use the textual evidence by Clark et al.
(2019) as an additional input to the QA context.

Methods Test
Careful Selection (Banerjee et al., 2019) 72.0
AristoRoBERTa 77.8
KF + SIR (Banerjee and Baral, 2020) 80.0
AristoRoBERTa + PG (Wang et al., 2020b) 80.2
AristoRoBERTa + MHGRN (Feng et al., 2020)  80.6
Albert + KB 81.0
T5" (Raffel et al., 2020) 83.2
UnifiedQA” (Khashabi et al., 2020) 87.2
AristoRoBERTa + QA-GNN (Ours) 82.8

Table 5: Test accuracy on OpenBook(QA leaderboard.
All listed methods use the provided science facts as
an additional input to the language context. The top 2
systems, UnifiedQA (11B params) and T5 (3B params)
are 30x and 8x larger than our model.

Graph Connection (§3.1) Dev Acc.

Relevance scoring (§3.2) Dev Acc.

No edge between Z and KG nodes 74.81 Nothing 75.56
Connect Z to all KG nodes 76.38 w/ contextual embedding  76.31
Connect Z to QA entity nodes (final) 76.54 w/ relevance score (final)  76.54

w/ both 76.52
GNN Attention & Message (§3.3) Dev Ace. GNN Layers (§3.3)  Dev Acc.
Node type, relation, score-aware (final) ~ 76.54 L=3 75.53
- type-aware 75.41 L= ‘5‘ (final) ;223
. = inajl B
- relation-aware 75.61 -6 7621
- score-aware 75.56 =7 75.96

Table 6: Ablation study of our model components,
using the CommonsenseQA IHdev set.

MHGRN. The boost over MHGRN suggests that
QA-GNN makes a better use of KGs to perform
joint reasoning than existing LM+KG methods.

We also achieve competitive results to other
systems on the official leaderboards (Table 3 and 5).
Notably, the top two systems, TS (Raffel et al., 2020)
and UnifiedQA (Khashabi et al., 2020), are trained
with more data and use 8x to 30x more parameters
than our model (ours has ~360M parameters).
Excluding these and ensemble systems, our model
is comparable in size and amount of data to other
systems, and achieves the top performance on the
two datasets.

4.6 Analysis
4.6.1 Ablation studies

Table 6 summarizes the ablation study conducted
on each of our model components (§3.1, §3.2, §3.3),
using the CommonsenseQA IHdev set.

Graph connection (top left table): The first key
component of QA-GNN is the joint graph that con-
nects the z node (QA context) to QA entity nodes
V4, in the KG (§3.1). Without these edges, the
QA context and KG cannot mutually update their
representations, hurting the performance: 76.5%
—74.8%, which is close to the previous LM+KG
system, MHGRN. If we connected z to all the nodes
in the KG (not just QA entities), the performance
is comparable or drops slightly (-0.16%).

KG node relevance scoring (top right table): We
find the relevance scoring of KG nodes (§3.2)
provides a boost: 75.56% — 76.54%. As a
variant of the relevance scoring in Eq. 1, we
also experimented with obtaining a contextual
embedding w, for each node v € Vg, and adding to
the node features: w, = fenc([text(z); text(v)]).
However, we find that it does not perform as well
(76.31%), and using both the relevance score and
contextual embedding performs on par with using
the score alone, suggesting that the score has a
sufficient information in our tasks; hence, our final
system simply uses the relevance score.

GNN architecture (bottom tables): We ablate the
information of node type, relation, and relevance
score from the attention and message computation
in the GNN (§3.3). The results suggest that all
these features improve the model performance. For
the number of GNN layers, we find L = 5 works
the best on the dev set. Our intuition is that 5
layers allow various message passing or reasoning
patterns between the QA context (z) and KG, such
as “z — 3 hops on KG nodes — z”.

4.6.2 Model interpretability

We aim to interpret QA-GNN’s reasoning process
by analyzing the node-to-node attention weights
induced by the GNN. Figure 4 shows two examples.
In (a), we perform Best First Search (BFS) on the
working graph to trace high attention weights from
the QA context node (Z; purple) to Question entity
nodes (blue) to Other (gray) or Answer choice
entity nodes (orange), which reveals that the QA
context z attends to “elevator” and “basement” in
the KG, “elevator” and “basement” both attend
strongly to “building”, and “building” attends to
“office building”, which is our final answer. In (b),
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(a) Attention visualization direction: BFS from Q

Where would you find a basement that can be accessed with an elevator?
A. closet B.church C. office building*

/ elevator ’ bu11d1ng

house

office
building

basement church

cargo

(b) Attention visualization direction: Q > 0 and A> O

Crabs live in what sort of environment?
A. saltwater* B. g C. fish market

crab / \ salt_water
17 ®

fresh
water

\11[11 208

king
crab

ocean

crustacean shell salt  solution

Figure 4: Interpreting QA-GNN’s reasoning process
by analyzing the node-to-node attention weights
induced by the GNN. Darker and thicker edges indicate
higher attention weights.

we use BFS to trace attention weights from two
directions: Z — Q — O and Z — A — O, which
reveals concepts (“sea” and “ocean”) in the KG that
are not necessarily mentioned in the QA context but
bridge the reasoning between the question entity
(“crab”) and answer choice entity (‘“salt water”).
While prior KG reasoning models (Lin et al., 2019;
Feng et al., 2020) enumerate individual paths in
the KG for model interpretation, QA-GNN is not
specific to paths, and helps to find more general
reasoning structures (e.g., a KG subgraph with
multiple anchor nodes as in example (a)).

4.6.3 Structured reasoning

Structured reasoning, e.g., precise handling of
negation or entity substitution (e.g., “hair” — “art”
in Figure 5b) in question, is crucial for making
robust predictions. Here we analyze QA-GNN’s
ability to perform structured reasoning and compare
with baselines (fine-tuned LMs and existing
LM+KG models).

Quantitative analysis. Table 7 compares model
performance on questions containing negation
words (e.g., no, not, nothing, unlikely), taken from
the CommonsenseQA IHtest set. We find that pre-
vious LM+KG models (KagNet, MHGRN) provide
limited improvements over ROBERTa on questions
with negation (+0.6%); whereas QA-GNN exhibits
a bigger boost (+4.6%), suggesting its strength
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Methods IHtest-Acc. IHtest-Acc.
(Overall) (Question w/ negation)

RoBERTa-large (w/o KG) 68.7 54.2

+ KagNet 69.0 (+0.3) 54.2 (+0.0)

+ MHGRN 71.1(+2.4) 54.8 (+0.6)

+ QA-GNN (Ours) 73.4 (+4.7) 58.8 (+4.6)

+QA-GNN (no edge 71.5 (+2.8) 55.1(+0.9)

between Z and KG)

Table 7: Performance on questions with negation
in CommonsenseQA. () shows the difference with
RoBERTa. Existing LM+KG methods (KagNet, MH-
GRN) provide limited improvements over RoBERTa
(+0.6%); QA-GNN exhibits a bigger boost (+4.6%),
suggesting its strength in structured reasoning.

in structured reasoning. We hypothesize that QA-
GNN’s joint updates of the representations of the
QA context and KG (during GNN message passing)
allows the model to integrate semantic nuances
expressed in language. To further study this hypoth-
esis, we remove the connections between z and KG
nodes from our QA-GNN (Table 7 bottom): now the
performance on negation becomes close to the prior
work, MHGRN, suggesting that the joint message
passing helps for performing structured reasoning.

Qualitative analysis. Figure 5 shows a case
study to analyze our model’s behavior for structured
reasoning. The question on the left contains
negation “not used for hair”, and the correct answer
is “B. art supply”. We observe that in the 1st layer of
QA-GNN, the attention from z to question entities
(“hair”, “round brush”) is diffuse. After multiples
rounds of message passing on the working graph,
z attends strongly to “round brush” in the final layer
of the GNN, but weakly to the negated entity “hair”.
The model correctly predicts the answer “B. art sup-
ply”. Next, given the original question on the left,
we (a) drop the negation or (b) modify the topic en-
tity (“hair” — “art”). In (a), z now attends strongly
to “hair”, which is not negated anymore. The model
predicts the correct answer “A. hair brush”. In (b),
we observe that QA-GNN recognizes the same
structure as the original question (with only the
entity swapped): z attends weakly to the negated
entity (“art”) like before, and the model correctly
predicts “A. hair brush” over “B. art supply”.

Table 8 shows additional examples, where we
compare QA-GNN'’s predictions with the LM
baseline (RoBERTa). We observe that ROBERTa
tends to make the same prediction despite the
modifications we make to the original questions
(e.g., drop/insert negation, change an entity); on
the other hand, QA-GNN adapts predictions to the
modifications correctly (except for double negation



Original Question

(a) Negation Flipped

(b) Entity Changed (hair — arti

If it is not used for hair, a round brush is an example of what?
A. hair brush B. art supply*

If it is used for hair, a round brush is an example
of what? ~ A. hair brush

If it is not used for art, a round brush is an

B. art supply example of what? ~ A. hair brush B. art supply

. . . . A. hair brush (0.38) .

hair, hair hairy hair hair

brush brush
B. art supply (0.64)

round

round art
supply brush

ar:
brush supply  brush

painting painting

GNN 1st Layer GNN Final Layer Model Prediction

. A. hair brush (0.81) . .
air art hair
brush B.art supply (0 19) brush
art . .
supply brush
painting

GNN Final Layer

A. hair brush (0.72)
B.artsupply (0.28)
round art
painting
Model Prediction

GNN Final Layer Model Prediction

Figure 5: Analysis of QA-GNN’s behavior for structured reasoning. Given an original question (left), we modify
its negation (middle) or topic entity (right): we find that QA-GNN adapts attention weights and final predictions
accordingly, suggesting its capability to handle structured reasoning.

Example (Original taken from CommonsenseQA Dev)

RoBERTa Prediction Our Prediction

[Original] If it is not used for hair, a round brush is an example of what?
A. hair brush B. art supply

[Negation flip] If it is used for hair, a round brush is an example of what?

[Entity change] If it is not used for art a round brush is an example of what?

A. hair brush ( X ) B. art supply (V)

A. hair brush (V)
A. hair brush (v)

A. hair brush (v just no change?)

A. hair brush (/' just no change?)

[Original] If you have to read a book that is very dry you may become what?
A. interested B. bored

[Negation ver 1] If you have to read a book that is very dry you may not become what?
[Negation ver 2] If you have to read a book that is not dry you may become what?

[Double negation] If you have to read a book that is not dry you may not become what?

B. bored (v just no change?)

B. bored (V') B. bored (V')
B. bored ( X ) A. interested (V)
B. bored ( X) A. interested (V)

A. interested ( X)

Table 8: Case study of structured reasoning, comparing predictions by RoBERTa and our model (RoBERTa +
QA-GNN). Our model correctly handles changes in negation and topic entities.

THtest-Acc. THtest-Acc.
Methods (Questionw/  (Question w/
<10 entities) >10 entities)
RoBERTa-large (w/0 KG) 68.4 70.0
+ MHGRN 71.5 70.1
+QA-GNN (w/fo node 728(+13)  T15(+1.4)
relevance score)
+QA-GNN (w/ node 734(+1.9)  735(+3.4)

relevance score; final system)

Table 9: Performance on questions with fewer/more
entities in CommonsenseQA. () shows the difference
with MHGRN (LM+KG baseline). KG node relevance
scoring (§3.2) boosts the performance on questions
containing more entities (i.e. larger retrieved KG).

in the table bottom, which is a future work).

4.6.4 Effect of KG node relevance scoring

We find that KG node relevance scoring (§3.2)
is helpful when the retrieved KG (Ggyp) is large.
Table 9 shows model performance on questions
containing fewer (<10) or more (>10) entities in
the CommonsenseQA IHtest set (on average, the
former and latter result in 90 and 160 nodes in Ggp,
respectively). Existing LM+KG models such as
MHGRN achieve limited performance on questions
with more entities due to the size and noisiness of
retrieved KGs: 70.1% accuracy vs 71.5% accuracy
on questions with fewer entities. KG node relevance
scoring mitigates this bottleneck, reducing the
accuracy discrepancy: 73.5% and 73.4% accuracy
on questions with more/fewer entities, respectively.

5 Related work and discussion

Knowledge-aware methods for NLP. Various
works have studied methods to augment NLP
systems with knowledge. Existing works (Pan
et al., 2019; Ye et al., 2019; Petroni et al., 2019;
Bosselut et al., 2019) study pre-trained LMs’
potential as latent knowledge bases. To provide
more explicit and interpretable knowledge, several
works integrate structured knowledge (KGs) into
LMs (Mihaylov and Frank, 2018; Lin et al., 2019;
Wang et al., 2019a; Yang et al., 2019; Wang et al.,
2020b; Bosselut et al., 2021).

Question answering with LM+KG. In particu-
lar, a line of works propose LM+KG methods for
question answering. Most closely related to ours
are works by Lin et al. (2019); Feng et al. (2020); Lv
et al. (2020). Our novelties are (1) the joint graph of
QA context and KG, on which we mutually update
the representations of the LM and KG; and (2)
language-conditioned KG node relevance scoring.
Other works on scoring or pruning KG nodes/paths
rely on graph-based metrics such as PageRank, cen-
trality, and off-the-shelf KG embeddings (Paul and
Frank, 2019; Fadnis et al., 2019; Bauer et al., 2018;
Lin et al., 2019), without reflecting the QA context.

Other QA tasks. Several works study other
forms of question answering tasks, e.g., passage-
based QA, where systems identify answers using
given or retrieved documents (Rajpurkar et al.,
2016; Joshi et al., 2017; Yang et al., 2018), and
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KBQA, where systems perform semantic parsing
of a given question and execute the parsed queries
on knowledge bases (Berant et al., 2013; Yih et al.,
2016; Yu et al., 2018). Different from these tasks,
we approach question answering using knowledge
available in LMs and KGs.

Knowledge representations. Several works
study joint representations of external textual
knowledge (e.g., Wikipedia articles) and structured
knowledge (e.g., KGs) (Riedel et al., 2013;
Toutanova et al., 2015; Xiong et al., 2019; Sun et al.,
2019; Wang et al., 2019b). The primary distinction
of our joint graph representation is that we construct
a graph connecting each question and KG rather
than textual and structural knowledge, approaching
a complementary problem to the above works.

Graph neural networks (GNNs). GNNs have
been shown to be effective for modeling graph-
based data. Several works use GNNs to model the
structure of text (Yasunaga et al., 2017; Zhang et al.,
2018; Yasunaga and Liang, 2020) or KGs (Wang
et al., 2020a). In contrast to these works, QA-GNN
jointly models the language and KG. Graph At-
tention Networks (GATSs) (Velickovic et al., 2018)
perform attention-based message passing to induce
graph representations. We build on this framework,
and further condition the GNN on the language
input by introducing a QA context node (§3.1), KG
node relevance scoring (§3.2), and joint update of
the KG and language representations (§3.3).

6 Conclusion

We presented QA-GNN, an end-to-end question
answering model that leverages LMs and KGs.
Our key innovations include (i) Relevance scoring,
where we compute the relevance of KG nodes
conditioned on the given QA context, and (ii) Joint
reasoning over the QA context and KGs, where
we connect the two sources of information via the
working graph, and jointly update their representa-
tions through GNN message passing. Through both
quantitative and qualitative analyses, we showed
QA-GNN’s improvements over existing LM and
LM+KG models on question answering tasks,
as well as its capability to perform interpretable
and structured reasoning, e.g., correctly handling
negation in questions.
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