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Abstract

Measuring document similarity plays an im-
portant role in natural language processing
tasks. Most existing document similarity
approaches suffer from the information gap
caused by context and vocabulary mismatches
when comparing varying-length texts. In this
paper, we propose an unsupervised concept
representation learning approach to address
the above issues. Specifically, we propose a
novel Concept Generation Network (CGNet)
to learn concept representations from the per-
spective of the entire text corpus. Moreover,
a concept-based document matching method
is proposed to leverage advances in the recog-
nition of local phrase features and corpus-
level concept features. Extensive experiments
on real-world data sets demonstrate that new
method can achieve a considerable improve-
ment in comparing length-varying texts. In
particular, our model achieved 6.5% better
F1 Score compared to the best of the base-
line models for a concept-project benchmark
dataset.

1 Introduction

Measuring the similarity between documents is a
fundamental problem in several natural language
tasks such as information retrieval (Manning et al.,
2008), paraphrase identification (Yin and Schütze,
2015) and question routing (Zhang et al., 2020).
A wide range of document similarity approaches
(Kusner et al., 2015; Huang et al., 2016) have been
proposed to handle the fundamental problem; how-
ever, most of them are based on the assumption that
the documents being compared have similar docu-
ment length. However, varying-length document
matching tasks are ubiquitous in many real-world
scenarios. For instance, in the news categorization
task, the news articles may include both short re-
ports for breaking news or narrative reports with
cumbersome details.

The document matching in varying length may

introduce the information gap between two doc-
uments in the following two aspects: (i) context
mismatch, which is caused by the long-length doc-
uments usually provide more detailed context to
support the key information while the short-length
documents contain limited context information.
The issue renders the existing pre-trained natural
language representation models (Conneau et al.,
2017a; Devlin et al., 2018) pay more attention to
the long but less important contexts, which makes
their document representations distinct from the
short-length documents with little context informa-
tion. (ii) vocabulary mismatch, which is usually
caused by the different terms usage between short
and long texts, which leads them do not share ma-
jority terms. Existing document distance such as
word mover’s distance (Kusner et al., 2015) focus
on comparing the local features. Still, the vocabu-
lary mismatch issue makes the local features hard
to be matched while the majority of vocabulary is
not shared.

To address the above challenges, our approach
proposes a concept-based document matching
method that incorporates both local phrase features
and corpus-level concepts in an unsupervised set-
ting, where concepts can be interpreted as a group
of representative features that are interpretable for
humans. The main contributions of this paper can
be summarized as follows: (i) A novel unsuper-
vised concept generation network is proposed to
learn corpus-level concepts in the perspective of
entire text corpus. Specifically, each concept and
its phrase assignment is iteratively optimized by
the reconstruction loss between local phrase fea-
tures and global concept representations. (ii) A
new concept-based document comparison method
is proposed to measure the similarity between two
text documents based on augmented concept repre-
sentations, which leverages the advances of local
phrases and corpus-level concepts. Moreover, an
enhanced concept-weight constraint is proposed to
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improve the performance in optimizing the con-
cept-based document similarity. (iii) Extensive
experiments on several length-varying text match-
ing datasets demonstrate that the effectiveness of
our proposed approach consistently outperforms
existing state-of-the-art methods. In particular,
our method improved 7.1% Accuracy and 6.5%
F1-score in concept-project dataset compared to
the best baseline method.

The rest of this paper is organized as follows.
Section 2 reviews related work, and Section 3 pro-
vides a detailed description of our proposed model.
The experiments on multiple real-world data sets
are presented in Section 4. The paper concludes
with a summary of the research in Section 5.

2 Related Work

In this section, we briefly describe recent advances
in document similarity research. We start our dis-
cussion with recent progress in supervised meth-
ods, and then we shift our focus to unsupervised
settings.

2.1 Supervised Methods

A large group of previous studies (Parikh et al.,
2016; Liu et al., 2018; Zhang et al., 2019; Gupta
et al., 2020; Zhang et al., 2020) learns document
matching model between two text sequences in
supervised settings. Tan et al. (2016) exploit at-
tention mechanism to distil important words from
sentences. Yang et al. (2019a) propose an inter-
sequence alignment approach considering both pre-
vious aligned features and original point-wise fea-
tures. Zhou et al. (2020) present a neural approach
for general-purpose text matching with deep mu-
tual information estimation. However, these seman-
tic alignment approaches require massive human
annotations in their training process, which are ex-
pensive and infeasible to obtain in many real-world
scenarios.

2.2 Unsupervised Methods

Some approaches can be used to match document
in unsupervised manners, including traditional sta-
tistical approaches (Metzler et al., 2007; Pincombe,
2004; Hua et al., 2016; Zhang et al., 2017). In
past few years, neural-network-based methods have
been used for document representation, which in-
cludes Doc2Vec (Conneau et al., 2017b), Skip-
Thought vectors (Kiros et al., 2015). More recently,
the state-of-the-art representation methods focus

on the contextual representations to encode words
in their context such as BERT (Devlin et al., 2018)
and XLNet (Yang et al., 2019b). A comparably
long text may lose its local information after be-
ing encoded as a fix-length representation due to
the informative contexts. Word Mover’s Distance
(WMD) approaches (Yokoi et al., 2020; Wang et al.,
2019) can partially solve the problem since they
focus on local feature matching. However, these
methods still suffer from the vocabulary mismatch
issue from length-varying texts, which makes the
local features hard to be matched since texts share
different majority of vocabulary terms.

Few approaches consider the length-varying
texts in unsupervised settings. Hongyu Gong and
Xiong (2018) proposed an unsupervised document
matching approach by comparing documents in a
common space of hidden topics (DSHT), which
is optimized by Singular Value Decomposition
(SVD). Compared to this approach, our method
leverages both local features and global corpus-
level concepts while DSHT only compares corpus-
level topics. Moreover, the proposed CGNet can
generate concepts in more scalable data set com-
pared to the matrix decomposition solution in
DSHT.

3 Model

We now describe our approach to calculate the doc-
ument similarity for length-varying texts. We begin
by introducing the overview of our model in Sec-
tion 3.1. Then we provide details of the concept
generation and document matching components
in Section 3.2 and 3.3. Last, the implementation
details are described in Section 3.4.

3.1 Model Overview

Given a corpus of documents D = {d1, d2, ..., dn},
we propose a concept-based document match-
ing approach to compute the document distance
dist(di, dj) between any two documents di and dj
in the corpus. The overall architecture is shown
in Figure 1, which includes two main components:
1) Concept Generation, which is to generate the
corpus-level concepts from the entire document
corpus. Each concept ci consists of a group of doc-
ument phrases by minimizing the reconstruction
loss between local phrase representation and global
concept representation. Moreover, both cluster di-
vergence and evidence regularization terms are pro-
posed to regularize the generated concepts. 2) Doc-



5613

Text Corpus

Document di

Document dj

Phrase
Extraction

Concept
Assignment

Corpus Phrase
Extraction & Encoding

Concept Generation

Concept-based Reconstruction

Concept Divergence

Concept Evidence

Concept 
Representations

Concept-based
Document Similarity

Phrase
Representation

Phrase
Encoding

Concept Feature Space

Phrase Feature Space

P1

P2

P3

P4

P4
P3

P2
P1

P2

P4

P1

P3

P3

P1

P2

C3

C2

P4

C1

C7

C5

C4 P4

Concept C1

C8

Document Matching

P4

C1

C3

C2

Figure 1: Overall Architecture

ument Matching. After the corpus-level concepts
are learned from previous step, document match-
ing is to calculate the document similarity based
on concept-based document comparison method.
Specifically, the concept-based similary adopt the
Wasserstein distance (Fournier and Guillin, 2015)
to compute similarity between two documents’ con-
cept representations in terms of enhanced concept-
weight constraint.

3.2 Concept Generation

To generate concepts from a document corpus, we
propose an unsupervised Concept Generation Net-
work (CGNet). First, we extract a set of phrases
Sp from the text corpus D. The extracted phrases
can be in different formats such as word tokens,
noun phrases or n-grams according to the data cor-
pus and language. Then, pre-trained language rep-
resentation models such as Transformers (Devlin
et al., 2018; Yang et al., 2019b) can be adopted
to encode the extracted phrases into embeddings
as their semantic representations. Specifically, we
denote the embedding of the i-th phrase in doc-
ument dj as p

(j)
i ∈ Rθ, where θ is the dimen-

sion of the phrase embedding. Suppose σ(dj) is
the number of phrases in document dj , we denote
the phrase embedding set P(j) for document dj as
P(j) =

{
p
(j)
i | i ≤ σ(dj), i ∈ Z+

}
, where Z+ rep-

resents the set of positive integers. Specifically, we
use P =

⋃n
i=1 P(i) to represent the entire phrase

set for all the documents.
We assume each document can not only be rep-

resented as a group of phrases but a set of corpus-
level concepts, which are treated as good approxi-

mations of phrase representations. Especially for
short-length texts, the limited phrases makes phrase
representation hard to represent both text semantics
and phrase importance. Instead, our concept rep-
resentation can represent short-text semantics and
weight document features in corpus perspective
rather than individual document.

To learn the corpus-level concepts, we first ran-
domly initialize κ concept centroid embeddings in
the same feature space of phrases, where κ is the
number of concepts. Specifically, we denote ci ∈
Rθ as the embedding of the i-th concept centroid,
where the concept dimension θ shares the same
dimension as phrase representation. Noted that
the concept centroid embeddings will be trained as
model parameters in our CGNet model.

Then we assign each phrase to concepts based
on its phrase embedding and concept centroids by
student-t distribution as follows:

s
(j)
ik =

(
1 + ‖p(j)

i − ck‖2/α
)−α+1

2∑κ
k′=1

(
1 + ‖p(j)

i − ck′‖2/α
)−α+1

2

, (1)

where s(j)ik can be interpreted as the probability of
the i-th phrase in document dj assigned to the k-th
concept. Since Student-t distribution has heavier
tails, which makes it more prone to producing val-
ues that fall far from its mean. This characteristics
can help to assign lower probability to phrases that
do not belong to any concept. The parameter α
can control the degrees of freedom of Student’s
t-distribution. Since our unsupervised setting, we
let α = 1 for all experiments.

Based on the phrase assignment on each concept,
the concept representation for document dj can be
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represented as:

C(j) =
{
ck
∣∣s(j)ik ≥ γ,∀i ≤ σ(dj),∀k ≤ κ

}
, (2)

where C(j) is the set of concept centroid embed-
dings for document dj and γ is a threshold to assign
concepts for each document. When the probabil-
ity s(j)ik is greater than γ, the concept ck is added
into the concept embedding set C(j); otherwise, the
concept ck is excluded.

To improve the concept assignment, we propose
to optimize the concept centroids by minimizing
the reconstruction loss between local phrases and
corpus-level concepts for each document. The re-
construction loss is defined as follows:

Lr =
1

n

n∑
i

sinkhorn(P(i),C(i)), (3)

where P(i) and C(i) represents the embedding
sets of phrases and concepts for the i-th docu-
ment, respectively. Function sinkhorn(·) represents
sinkhorn divergence (Cuturi, 2013), a sensible ap-
proximation of the Wasserstein distance (Fournier
and Guillin, 2015) at a low computational cost.
The experimental results in Section 4.2.4 show
the sinkhorn divergence achieves empirical better
performance than traditional mean squared error
(MSE).

Only minimizing the reconstruction loss can
easily get trivial local optima that assigns all the
phrases to one concept. Thus, we propose two
regularization terms, concept divergence loss and
concept evidence loss, to regularize the concept
centroid and avoid trivial solutions.

Concept Divergence. To prevent the similar or
even duplicate concepts, we propose a divergence
regularization term Ld that penalizes on concepts
that are close to each other. The regularization term
Ld is defined as follows:

Ld =
κ∑
i=1

κ∑
j=i+1

max
(
0, µ− ‖ci − cj‖22

)
, (4)

where µ is a threshold that justifies whether two
concepts are similar or not. We set µ to 1.0 in
our experiments. The divergence regularization
exerts a large penalty when the L2 norm distance
between two concept embeddings are smaller than
the threshold µ; otherwise, no penalty is produced.

Concept Evidence. To encourage each concept
as close to encoded phrase instances, we propose

a concept evidence regularization term Le, which
penalizes the long distance between each concept
embedding and its corresponding closest encoded
phrases. The evidence regularization term Le is
defined as follows:

Le =
1

κ

κ∑
k=1

τ∑
j=1

min
j

( ⋃
pi∈P
‖ck − pi‖22

)
, (5)

where minj(·) represents the j-th minimum value
in the given set and pi ∈ P is one of the phrase
embedding from the entire phrase embedding set P.
We denote ∪ as the union operator to combine all
the L2 norm distance between concept centroids
and phrase embeddings. We choose the sum of
top-τ minimum distances as the concept evidence
loss for each concept. The value of τ determines
the minimum number of phrases we desired in each
concept. By default, we set τ to five, which indi-
cates a large penalty is produced while the k-th
(k ≤ τ ) closest phrases has a long distance to the
concept centroid.

Finally, our loss function is the combination of
reconstruction loss Lr, concept divergence loss Ld
and concept evidence lossLe with their correspond-
ing weights λr, λd and λe.

3.3 Concept-based Document Matching
Our concept-based document matching method is
based on the concept generated in Section 3.2. Ac-
cording to the document concept assignment in
Equation (2), some local phrases are excluded from
any concept while its concept assignment proba-
bility s(j)ik < γ for ∀k < κ. However, these local
phrases may contain distinguished semantics that
cannot be grouped with enough phrases as a con-
cept, but play an important role in distinguishing
the difference between documents. To involve the
local phrases into our document matching task, we
generate a local-feature augmented representation
C(j)
† as follows:

C(j)
† = C(j)∪

{
p
(j)
i

∣∣∣∣∣ ⋃
i≤σ(dj)
j≤κ

{
ck
∣∣s(j)ik ≥ γ} = ∅

}
,

(6)
where all the local phrases that do not belong to
any concept in C(j) are added into the augmented
concept embedding set C(j)

† . The parameter γ is
the same threshold as in Equation (2).

Based on the idea of the Wasserstein distance
(Fournier and Guillin, 2015), we propose the
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concept-based document similarity Ψ between aug-
mented concept representations of documents di
and dj as follows:

Ψ(C(p)
† ,C(q)

† ) = max
∑

ci∈C
(p)
†

∑
cj∈C

(q)
†

fi,j
ci · cj
‖ci‖‖cj‖

s.t.
∑
i∈Z+

fi,j ≤ wp,i, ∀i ≤
∣∣C(p)
†
∣∣

∑
j∈Z+

fi,j ≤ wq,j , ∀j ≤
∣∣C(q)
†
∣∣,

(7)
where the fi,j is a flow from concept representation
ci in C(p)

† to cj in C(q)
† . Parameters wp,i and wq,j

represent the weight of concept i and j in docu-
ment p and q, respectively. We choose the concept
weight as the averaged TF-IDF weight of phrases
that are assigned to the concept, which is used
as upper bound constraint of the flow parameters.
Overall, the concept-based document similarity is
to find a flow between concept representations of
two documents that maximize the similarity score.

3.4 Implementation Details

The proposed CGNet model described in this sec-
tion is implemented using the Pytorch1 framework
and trained on a single Nvidia Quadro RTX 6000
GPU with 24GB memory. For phrase extraction,
we set the minimum phrase frequency to 10 and
maximum document frequency to 0.5. The phrases
embeddings are initialized with pre-trained fastText
model (Bojanowski et al., 2016) using the default
dimensionality of 300. We set the number of train-
ing epochs of CGNet to 100 and batch size to 8.
For the sinkhorn divergence used in Equation (3),
we apply an approximate Wasserstein distance im-
plementation2. For the settings of concepts, we set
number of concept κ to 100 and concept threshold
γ to 0.8. It should be noted that while we train
our CGNet with the text corpus, the model – once
trained – can be applied to new document in the
same domain that is not included in the text cor-
pus.

4 Experiment

In this section, we evaluate the performance of the
model described in Section 3 on document match-
ing task for length-varying texts.

1https://pytorch.org/
2https://github.com/dfdazac/wassdistance

4.1 Experimental Setup
We begin by introducing the evaluation settings,
with details on the datasets, metrics and baselines
that we use in our experiments.

4.1.1 Datasets and Labels
We conducted experiments on three publicly avail-
able datasets in different tasks: (i) Concept-Pro-
ject (Hongyu Gong and Xiong, 2018). The dataset
is to match science projects and concepts when
people intend to search related projects that match
a given concept. It includes 537 pairs of projects
and concepts involving 53 unique concepts from
the Next Generation Science Standards3 (NGSS)
and 230 unique projects from Science Buddies4.
Each pair is labeled by human beings with the de-
cision wther it is a good match or not. (ii) CL-S-
ciSumm 2017 (Prasad, 2017). The dataset consists
of 494 ACL Computational Linguistics research
papers covering 30 categories in total. Each cate-
gory contains a reference paper and its correspond-
ing human-annotated summary. We compare the
reference summary with its corresponding refer-
ence paper and use all the citing papers as nega-
tive cases. The matching task is formulated as a
ranking problem and use the reference paper as
the top-1 ground-truth. (iii) CL-SciSumm 2018
(Jaidka et al., 2019). The dataset consists of 605
research papers with reference papers including
summaries and citing papers, which covers 40 cat-
egories. Different from dataset CL-SciSumm 2017,
we randomly select 5 corresponding citing papers
as the true candidate for each reference summary
and choose the other 15 citing papers from all the
citing papers as distractors.

4.1.2 Evaluation Metrics
For Concept-Project dataset, we use Accuracy,
Precision, Recall and F1-score as evaluation met-
rics based on the binary classification predictions.
The metrics including Precision, Recall and F1-
score are based on positive predictions.

For the CL-SciSumm 2017 dataset, we use pop-
ular ranking evaluation metrics from the literature,
which includes: (i) Precision@1: The proportion
of predicted instances where the true reference pa-
per appears in the ranked top-1 result. (ii) Mean
Reciprocal Rank (MRR): the average multiplica-
tive inverse of the rank of the correct answer, repre-
sented mathematically as MRR = 1

N

∑N
i=1

1
ranki

,
3https://www.nextgenscience.org/
4https://www.sciencebuddies.org/
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where N is the number of samples and ranki is the
rank assigned to the true comment by a model.
(iii) Normalized Discounted Cumulative Gain
(NDCG): the normalized gain of each reference
paper based on its ranking position in the results.
We set the relevance score of the true comment to
one and those of the distractors (citing papers) to
zero.

For the CL-SciSumm 2018 dataset, the results
are evaluated by Precision@K: The proportion of
predicted instances where the true citing papers ap-
pear in the ranked top-K result. For example, P@3
or “Precision at 3" corresponds to the percentage
of cases where the true citing appears in the top 3
ranked results. We vary the value of K from 1 to 5
in our experiments.

4.1.3 Competing Methods
The following methods are included in the perfor-
mance comparison: (i) TF-IDF, which uses the co-
sine similarity between the TfIdf-weighted vectors
of the document as a measure of document simi-
larity. (ii) Infersent, which finds the cosine simi-
larity between document embeddings generated by
the state-of-the-art sentence embedding method In-
ferSent (Conneau et al., 2017a). (iii) BERT, which
uses inner product between the document represen-
tation generated by the pre-trained deep bidirec-
tional transformer (Devlin et al., 2018). (iv) WMD
(Kusner et al., 2015), which uses word mover’s
distance metric based on the embeddings of doc-
ument words generated by fastText5. (v) WRD
(Yokoi et al., 2020), which is a variant of tradi-
tional WMD method. WRD separates word im-
portance and word meaning by decomposing word
vectors into their norm and direction. The align-
ment-based similarity is computed by earth mover’s
distance. (vi) DSHT (Hongyu Gong and Xiong,
2018), which matches documents by comparing
them in a common space of hidden topics.

4.2 Experimental Results
We now present and discuss the empirical results
of our evaluation for the three document matching
tasks.

4.2.1 Concept-Project Matching
Table 1 summarizes results of the concept-project
document matching task. Our model significantly
outperforms all the baselines in accuracy, precision
and F1-score. In particular, our model achieves

5https://fasttext.cc/

87.2% accuracy and 88.4% F1 score, which is
7.1% and 6.5% better than the best baseline method
(DSHT). The improvements over all the baselines
are statistically significant at a p-value of 0.01. The
baseline methods including InferSent, BERT have
high recalls, but low F1 scores and precision. This
is because these approach cannot distinguish un-
matched documents but predict most of documents
are matched.

4.2.2 Summary-Reference Matching
Table 2 shows the result of Summary-Reference
Matching task in CL-SciSumm 2017 dataset. From
the results, we conclude that our approach outper-
forms all the baselines on all metrics. The results
are statistically significant at p < 0.01 using the
Wilcoxon signed rank test (Smucker et al., 2007).
Since the summary-reference task only has one
true reference, the other citing papers being distrac-
tors, the P@1 result becomes especially important
for this task. Our approach achieves 90% preci-
sion, which is 3.3% better than the precision of
the best baseline method (WMD). We also find the
global representation methods such as BERT and
InferSent performs worse than approaches using
local features such as WMD and TF-IDF, which is
different from the results in concept-project dataset.
But our concept-based approach that utilizes both
local and global features has consistently outper-
forms these baseline methods.

4.2.3 Summary-Citance Matching
Figure 2 shows the precision at K result of
summary-citance matching task in CL-SciSumm
2018 dataset when k is set from one to five. Both
mean and variance are presented by 10 experimen-
tal runs. From the result, we conclude that our
method can significantly outperform the other base-
lines for all the settings of K. Specifically, our
model performs around 5% better than the best
baseline method, WMD. Moreover, the variance
of our model is also much smaller than the other
baselines, which indicates that our model is less
impacted by random selected distractors. The re-
sult of WRD is not available to compute due to its
out-of-memory issue. In addition, we also find the
similar results that local feature-based approaches
performs better than global representation methods.

4.2.4 Ablation Study
To verify the effectiveness of designed components
in our approach, we make an ablation study in the
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Acc Prec Recall F1

TF-IDF 0.538 0.540 0.993 0.700
InferSent 0.540 0.541 0.997 0.701

BERT 0.548 0.545 1.000 0.706
WMD 0.685 0.656 0.880 0.752
WRD 0.704 0.678 0.863 0.759
DSHT 0.801 0.807 0.832 0.819

CGNet 0.872 0.865 0.904 0.884

Table 1: Performance result of Concept-Project

MRR P@1 NDCG

TF-IDF 0.918 0.867 0.938
InferSent 0.457 0.267 0.581

BERT 0.181 0.033 0.357
WMD 0.933 0.867 0.951
WRD 0.701 0.533 0.773
DSHT 0.555 0.367 0.661

CGNet 0.944 0.900 0.959

Table 2: Result of Summary-Reference Matching

following settings: (i) w/o Sinkhorn: To demon-
strate the effectiveness of the sinkhorn-based re-
construction loss, we remove the sinkhorn loss and
instead simply use mean-square-error between the
embeddings of phrases and concepts. (ii) w/o Clus-
ter Divergence Loss (CDL): We remove the cluster
divergence loss in Equation (4) in our training pro-
cess. (iii) w/o Cluster Evidence Loss (CEL): To
show the effectiveness of the concept evidence loss,
we remove the CEL in the concept learning process
in Equation (5). (iv) w/o Enhanced Concept-weight
Constraint (ECC): We replace the concept-weight
constraint to one in our concept mover’s distance
to demonstrate the performance of the module.

Table 4 shows the results of the ablation study,
which demonstrates that each component improves
the overall performance in concept-project match-
ing task, across our evaluation metrics. This indi-
cates that our modeling choices are suited to tackle
the inherent challenges involved in matching the
length-varying documents. In particular, the clus-
ter divergence loss has great impact on the perfor-
mance since the loss can avoid assigning all the
cluster centroids to the same value.

4.2.5 Parameter Analysis

We conduct several experiments to investigate the
impact of the following two hyper-parameters: con-
cept number and phrase length. (i) Concept Num-
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Figure 3: Parameter Analysis of Concepts Number

ber. Figure 3 shows the results in concept-project
dataset using different concept numbers from 1 to
30. We conclude that both the F1 score and Accu-
racy can continuously be improved when the num-
ber of concepts are increased to 10. After the con-
cept number reaches to 10, the performance starts
to degrade but still keep in a high level, which indi-
cates that our model is not sensitive to the setting
of concept number. (ii) Phrase Length. Figure 4
shows the performance results in concept-project
dataset using different settings of phrase length.
From the results, we conclude that the token-level
phrases have the best performance compared to
other settings even including the combination of
length 1 and 2. The main reason is that the 2-gram
features contain a large portion of noisy phrases
that make the extracted concepts less effective for
document matching.

4.3 Efficiency Analysis

The running time of training are shown in Table
5. We can see the training time is increased lin-
early when the data size is increased. Since our
model can be converged in a few epochs (usually
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Phrase assignments for each concept

Concept-1 fat, fur, fats, blubber, adipose, whale, beluga, oils, mammal, blubber adipose, carbohydrates,
warm blooded, colligative, ” or, fats, animal, calories, adipose, protein, mitochondria

Concept-2 sea, isle, tide, seas, tides, compass, vessel, boat, islands, ocean, waters, pirate, currents, winds, oceans,
atlantic, ship, coast, oceanic, waves

Concept-3 bug, bugs, ants, bee, bees, insect, insects, katydid, spiders, grasshoppers, sowbugs, weevil, pillbugs,
crickets, snails, peanuts, flies, do more, lions, peanut

Concept-4 odor, smell, scent, smells, rancid, taste, rancidity, emit, fishy, gone, emitting, tastes, auditory, sounds,
emits, emitted, stimuli, unpleasant, bloom, sensation

Concept-5 cow, cows, age, milk, rex, ages, formula, rennet, lactase, horses, tablet, formulas, gestation, pasteurizing,
calcium, matrix, ratio, breast, milkshake, cream

Table 3: Case Study of Concepts

Acc Prec Recall F1

w/o Sinkhorn 0.866 0.890 0.859 0.874
w/o CDL 0.562 0.555 0.976 0.707
w/o CEL 0.859 0.848 0.900 0.873
w/o ECC 0.805 0.780 0.890 0.832

CGNet 0.872 0.865 0.904 0.884

Table 4: Result of Ablation Study
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Figure 4: Parameter Analysis of Ngrams

less than 100 epochs), our model can be trained
in a reasonable duration. Moreover, we find the
evaluation time of each dataset has less difference
compared to the training time since the evaluation
time is related to the size of phrases and concepts.

4.4 Interpretation of Concepts
Table 3 give some interpretation of concepts, show-
ing top-20 phrases ranked by the phrase assignment
probability in Equation (2) of five concepts gener-
ated by our CGNet model. From the results, we
conclude that: (i) The generated concept is capable
of representing high-level topics. For instance, the
Concept-1 relates to fat and energy of sea mam-
mals when phrases such as fat, blubber adipose and
carbohydrates appears; the Concept-2 relates to the
sea sailing when phrases such as tide, isle, compass

Concept- Summary- Summary-
Project Reference Citance

Training Time
20.76 6.35 10.95

(sec/epoch)

Eval Time
0.412 0.143 0.281

(sec/pair)

Table 5: Efficiency Result for Training (second/epoch)
and Testing (second/pair).

are assigned to the concept. (ii) phrases in con-
cepts are not only grouped by the similar semantics
but the inherent co-occurrence in the text corpus.
For example, the calories and mammal shares very
few semantic similarity but these two terms can be
connected by documents that introduce the energy
storage system of sea mammals. (iii) The 2-gram
phrases can introduce useful phrases such as “blub-
ber adipose" in Concept-1. However, sometimes it
produces some noises such as “do more" in Con-
cept-3.

5 Conclusion

In this paper, an unsupervised concept represen-
tation learning method is proposed to address
the length-varying text comparison problem. To
achieve this, we propose a deep neural network
based model to generate corpus-level concept rep-
resentation and design a concept-based document
matching method based on augmented concept rep-
resentation that leverages the advances of both local
phrase features and global concept features. Ex-
tensive experiments on real-world datasets demon-
strated that our proposed method dramatically out-
performs competing methods, exhibiting a signif-
icant improvement in all the metrics in different
length-vary text comparison tasks.
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